
Design and Verification of Distributed Multi-media
Systems

D.H.Akehurst, J.Derrick, A.G.Waters

University of Kent at Canterbury
{D.H.Akehurst, J.Derrick, A.G.Waters}@kent.ac.uk

Abstract. Performance analysis of computing systems, in particular distributed
computing systems, is a complex process. Analysing the complex flows and
interactions between a set of distributed processing nodes is a non-trivial task.
The problem is exacerbated by the addition of continuous system functions that
are time dependent, such as communication between components in the form of
multimedia streams of video and audio data. Quality-of-Service (QoS)
specifications define constraints on such communications and describe the
required patterns of data transfer. By making use of these specifications as part
of the performance analysis process it is possible to add significant confidence
to predictions about the correct (required) operation of a distributed system.
This paper presents a method for designing distributed multimedia systems,
including the specification of QoS, using the ODP framework and UML and
describes a technique for verifying the QoS specification against the designed
functional behaviour of the system using Timed Automata.

1 Introduction
This paper demonstrates a specific approach to the design of distributed systems. The
approach enables verification that Quality of Service (QoS) [15] specifications are
met by the specified behavioural aspects of the design. The context which we aim to
support is that of designers using the UML/OCL paradigm but requiring stronger
verification than these would traditionally facilitate. This leads to an approach with
design based around an adaptation of the UML supported by verification in a more
formal setting provided by model checking timed automata.

The design includes the specification of both functional and non-functional aspects
of behaviour. This is in the form of UML state diagrams for the functional behaviour
and CQML statements to define the non-functional QoS of the system. The overall
structure of the system and its components is specified using stereotyped UML class
diagrams and a variation on UML object diagrams (snapshots) is used to define
particular configurations of objects.

This approach to design enables us to verify that the environmental contract of an
object (defined by the QoS specification) is met by the defined functional behaviour
of that object. The verification is enabled by generating a network of timed automata
(TA) from the design, which makes use of existing techniques for mapping UML
state diagrams on to UPPAAL style timed automata templates. To map the QoS
statements, we define timed automata templates that model the three QoS
characteristics – latency, throughput and anchored jitter; these templates are
instantiated using parameter values taken from the CQML statements.

A snapshot diagram (e.g. Fig. 1) is used to deduce a particular network of parallel
automata constructed from the generated TA templates. This network can be model
checked (using UPPAAL) to give feedback as to whether or not the functional
behaviour verifiably conforms to the specified QoS. The event traces of UPPAAL can
be used to construct a series of snapshots that illustrate the sequence of actions that
lead to a problem. This enables the feedback to be in a form of the original design
language rather than in the “lower level” analysis language.

The approach to design and verification described in this paper, builds on our work
from a previous project [14], which address performance prediction from UML
system designs and earlier work from this project [6], regarding the UML and
specification of QoS. In particular we build on the work of [3], which describes a
modelling language for the Computational Viewpoint that is an adaptation of the
UML to enable design of distributed systems using the concepts defined in the RM-
ODP. The work presented in this paper discusses an approach for mapping these high-
level design specifications on to TA in order to verify the QoS aspects of the design.
[6] deals with the static aspects of specifying QoS, the current work extends this by
addressing the implication of the specified QoS on dynamic aspects of the system.

The rest of this paper is organised as follows. Section 2 illustrates our design
approach using an example system. Section 3 describes the translation from
specifications in our design languages into Timed Automata for the structure,
behaviour and QoS of the system. Section 4 demonstrates the analysis technique
incorporating the use of the UPPAAL model checker and illustrates how results can
be fed back to the designer. Section 5 discusses some related work and concludes the
paper.

2 An ODP Computational Specification
In this section we place our design approach in the context of the ODP framework and
illustrate our approach to computational viewpoint design using an adaptation of the
UML. Subsequently, in section 3, we will show how to translate these designs to TA
in order to verify aspects of the design.

The computational viewpoint is concerned with the identification of distributable
components (objects) and their interaction points (interfaces). The viewpoint
addresses: the specification of the behaviour of identified objects; the specification of
the signatures of the interfaces through which they interact; the specification of
templates from which such components can be instantiated; and the specification of
any constraints under which the objects must operate.

The current trend in software design communities is to make use of the UML as a
specification language for system design. However, for the purpose of designing
distributed systems (in particular within the context of the ODP computational
viewpoint) the UML is deficient in a number of ways. To combat these deficiencies
we have adapted the UML design language; this adaptation is presented and discussed
in [3]. The description of the following example design highlights some of these
adaptations.

In general, our design approach is to start with a snapshot of the system, to give an
indication of the primary distributable components composing the system and the
interfaces required to connect them. From the snapshot we identify and specify the
computational object templates and interface signatures of the system. For each

computational object we subsequently provide a behaviour specification. Finally we
specify environment contracts for each computational object in the form of QoS
constraints. As our illustrative example we take the specification of a lip
synchronisation system, based on the specification presented in [4].

2.1 System Snapshot
A key aspect of a computational viewpoint specification is the decomposition of the
system into distributable objects that interact at interfaces. An object, which may be a
composition of two or more other objects, is a unit of distribution and management
that encapsulates behaviour [16]. To differentiate from the UML concept of an object,
we shall use the term computational object.

Fig. 1 depicts a computational viewpoint snapshot of an example mobile
videophone, including a lip synchronisation component. There are three aspects of the
example system – transmitter device, channel, receiver device. The transmitter
device’s camera emits video frames to the videoBinding across the bound transVideo
interfaces. The receiver device’s vidWindow receives the video frames from the
VideoBinding at the bound recVideo interfaces. On arrival of each video frame a
signal is output to the syncController at the bound vidReady interfaces. Similarly the
audio packets are emitted from the microphone computational object to the
AudioBinding at the transAudio interfaces; they arrive across the binding at the
speaker computational object and recAudio interfaces, where signals are emitted to
the syncController at the audReady interfaces.

Transmission of the audio and video data via different channels applies a different
and variable time delay to the media streams. As a result the computational object
syncController is used to adjust the playback rate of the media streams to produce
synchronised presentation. The syncController indicates when to display each video
frame by emitting a signal at its vidCtrl interface, which is received by the
vidWindow. Finally, the syncController has an interface appControl that is used to
reset the synchronisation algorithm.

A UML object diagram could have been used to illustrate the system configuration,
but the notation would not effectively distinguish between computational objects,
interfaces and bindings. To rectify this, we define an alternative notation which does
distinguish between these concepts, enabling the presentation of computational
viewpoint snapshots in a clearer fashion. Using the UML object diagram notation, the
components would all appear as boxes, however, we use different syntactic
representations for each category of component. This syntactic representation is

Fig. 1

: VideoBinding

appControl

camera :
VideoCamera

trans
Video

: AudioBinding

trans
Audio

microphone :
Microphone

rec
Video

rec
Audio

vidWindow :
VideoWindow

speaker :
Speaker

sync
Controller

audReady

vidReady

vidCtrl

video channel

audio channel

receiver device transmitter device

. Computational Viewpoint snapshot illustrating the Lip Synchronisation

linked to UML descriptions via a metamodel which effectively defines a
transformation between the two representations [3].

In the adapted notation, circles depict computational objects. Binding objects are
distinguished from computational objects by illustrating them as elongated circles.

Interfaces are illustrated using ‘T’ shapes, attached to a circle to indicate that the
object (depicted by the circle) offers that particular interface. The role of the interface
(producer/consumer, initiator/responder or client/server) is indicated by the direction
and style of an arrow placed near the interface. Bound interfaces are either connected
via an irregularly dashed line (e.g. vidCtrl) or placed head to head (all other bound
interfaces in this snapshot – transVideo, recVideo, transAudio, recAudio, vidReady,
audReady and appControl).

The identification policy for objects and interfaces is similar to the approach used
in UML object diagrams, computational objects and interfaces are identified by either
or both of an ‘instance name’ and a ‘template name’ separated by a colon and
underlined. Where bound interfaces are close together we omit naming both interfaces
separately and distinguish between them using their role. As with the UML object
diagram notation, where appropriate, we need not give both template and instance
name. In this snapshot the two bindings (for audio and video) are labelled with only
the template name, the interfaces are labelled with only an instance name, as is
syncController; other objects are labelled with both template and instance name.
Object templates and interface signatures are specified in detail using a notation based
on UML class diagrams as described in the next subsection.

2.2 Template and Signature Specifications
The snapshot discussed in the previous subsection indicates the kinds of component
needed in order to build the system. The next step is to fully specify those
components in order to obtain reusable and detailed definitions of the aggregated
parts of the system. From a computational viewpoint, the necessary specifications
include the definition of computational object templates, interface signatures, and the
relationships between them.

The UML concept of class has a similarity to the ODP notion of template (and
signature), thus, we define stereotypes of the UML class concept for specifying
components based on the ODP concepts of: computational viewpoint object
templates; stream, operational and signal binding objects; reactive objects; and
stream, operational and signal interface signatures. This gives us a language and
notation suitable for defining the computational viewpoint of an ODP system, which
is (hopefully) familiar to UML designers; easily used; and provided with tool support
from many standard UML tools.

Fig. 2 defines a template diagram for the instances specified in the computational
snapshot shown in Fig. 1. Both object template and interface signatures are depicted
using the notation for UML classes, distinguished using stereotype labels. To aid the
distinction, computational object and binding object templates are shaded, whereas
interface signatures are not. The stereotype of interface signatures also distinguishes
between operations, stream and signal signatures.

The relationship between an object template and the interfaces that its instances
may offer is specified using stereotyped UML associations. The stereotype of the
association defines the role in which the object may offer instances of the interface

signature; the association end name gives a navigation name for the object to refer to
the interface. Each interface instance may be offered by only one object; hence the
object end of the association is defined to be an aggregation (using a black diamond).

Fig. 2. Template Diagram for the Lip Synchronisation system

Given this specification, the objects and interfaces from the snapshot diagram are
related to the appropriate template or signature. In our example, the snapshot already
shows the relationship for all of the objects except the syncController, which is
instantiated from the SynchronisationController template; the interfaces are
instantiated from the defined signatures with a similar name. The snapshot diagram
could be refined to show these relationships but we do not illustrate the refinement
here.

2.3 Behaviour
After defining the object templates and the interfaces they may support, it is necessary
to define the behaviour of the objects and the interactions that occur across the
interfaces. This subsection firstly describes how UML State Diagrams can be adapted
to specifying behaviour within the computational viewpoint and subsequently
illustrates the technique by defining the behaviour of computational objects
instantiated from the SynchronisationController template (i.e. syncController). It is
assumed that the reader is familiar with standard State Diagrams (or Statecharts [10]).

Normally a State Diagram is associated with a UML class; it is used to specify the
behaviour of objects instantiated from that class. Events that affect the state of the

object and actions caused by the object are related to interactions (i.e. operations)
defined on the class and other classes it is associated with.

In our model for design, interactions are defined on interfaces attached to an
object, thus we cannot directly reference those interactions from the object. In
addition, a reference to the interaction is not sufficient (on its own) to identify the
cause of the event; an interface signature (and hence the interactions defined in it)
may be instantiated multiple times for a single object.

In order to use State Diagrams in the context of our adapted design language, we
associate a State Diagram with a particular computational object template; however,
we have to alter the interpretation of the text specified on transitions.

Normally a transition is labelled with a string that has the following general
format:

<event-signature> ‘[’ <guard > ‘]’ ‘/’<action-expressions>

Where, for standard State Diagrams, event-signature describes an event with its
arguments; the guard condition is a Boolean expression written in terms of
parameters of the triggering event and attributes of the object. The action-expressions
are executed if and when the transition fires. Typically an action expression alters the
local state of an object or causes another event to be fired, possibly by sending a
message to another object.

Our adaptation requires the event-signature to identify the interface from which the
interaction causing the event is received, along with the identifier for the interaction;
guard conditions are interpreted in the standard manner; and action-expressions
either:

1. Alter the local state of the object;
2. Instantiate interfaces to be offered by the object; or
3. Cause interactions at a specified interface; by identification of an interface and

an interaction available at that interface.
This alteration to the text label of a transition enables State Diagrams to be used in

the context of our adaptation to the UML design language.

 Synchronisation Controller
The Synchronisation Controller objects have a complex specification. For a full
description of the algorithm and the way in which it works refer to [4], it is not the
purpose of this paper to describe a synchronisation algorithm, we simply use it as an
example. A State Diagram (Fig. 3) is presented that specifies the behaviour.

Note that events are identified by an interface name and name from the signature of
that interface, e.g. appCtrl.restart. Additionally, signals are sent within an
action expression by identifying an interface name and a name from the signature of
that interface, e.g. vidCtrl.videoPresent.

2.4 Environment Contracts – QoS Specification
The previous subsections have defined the structure, templates and functional
behaviour of the system. We now address the specification of non-functional aspects
of the system by defining some QoS constraints.

Fig. 3. State Diagram specification of the Synchronisation Controller’s behaviour

The ODP standard defines the concept of an environment contract, which it uses to

describe QoS constraints. This is a contract between an object and its environment,
i.e. all other objects with which it interacts. As interactions occur across interfaces,
environment contacts for an object generally involve one or more interfaces. A QoS
constraint involves two parts:

1. Requirements of the object by the environment, known as obligations; and
2. Requirements of the environment by the object, known as expectations.

The relationship between these two parts states that “provided the expectations are
met (by the environment) the obligations will be met (by the object)”. The
expectations and obligations are expressions that constrain the QoS characteristics of
interactions with the object.

There are many possible QoS characteristics that could be constrained. For the
purpose of this paper we look at three stream and time related characteristics –
latency, anchored jitter and throughput. Latency is the amount of time between two
events (e.g. time between sending a frame and receiving it); throughput is the rate of
occurrence of events (e.g. the rate of flow of frames); and anchored jitter is a
variation in nominal throughput (e.g. variation in rate of flow of frames).

There is currently no clear contender for a most commonly used (de facto) QoS
specification language. One that we have found to be most suited to our design
approach, partly due to its association with the Object Constraint Language (OCL)
and UML, is the Component Quality Modelling Language (CQML) [1]. CQML is a
lexical language for QoS specification and has been developed to explicitly include as
many features as possible. We have found the language to be expressive, very useable

and easily adapted to integrate with our other UML based languages used within the
ODP framework. The CQML semantics require that the interaction constrained by a
characteristic must facilitate access to a historical sequence of events. The definition
of quality characteristics, such as latency, throughput and anchored jitter, is
expressed in terms of the history of events (we do not provide the definition of these
characteristics in this paper). Constraints regarding particular characteristics are
formed in CQML by specifying quality statements; these are grouped to form QoS
specifications on particular components as QoS Profiles. A QoS profile includes
statements for both expectations and obligations; each expectation or obligation is an
expression referring to one or more quality statements. The quality statements enable
reuse of QoS specifications across multiple QoS profiles.

A quality statement contains the conjunction of a number of sub expressions that
constrain a variety of quality characteristics. Each quality characteristic is defined by
an OCL expression that (in the case of latency, anchored jitter and throughput)
references a particular interaction. To enable quality characteristics to be generalised
and reused, they can be defined with specific parameters.

Given a set of pre-defined quality characteristics (throughput, anchoredJitter and
latency) the QoS specifications associated with the Template diagram of Fig. 2 can be
defined. We illustrate this (below) using the VideoBinding component. QoS
specifications for other parts of the system can be found in [2].

Use of CQML, in the context of our model for design, means that QoS profiles are
associated with computational objects (or their templates) and the constrained
interactions are identified by reference to an interface and an appropriate interaction.
The requirement to provide event sequences is met by the ‘Event Notification
Function’, defined in the RM-ODP [16], which also requires event histories to be
made available. We alter the standard CQML notation slightly, changing the
keywords profile, uses and provides into QoSProfile, exp: and obl: as we find this
allows the expressions to be more easily understood in the context of the ODP
framework terminology; we also do not require profiles to be named.

 VideoBinding
The VideoBinding from camera to video window is specified to provide a through
frame rate of no less than 25 fps with a latency of between 40 and 60 milliseconds
(ms) so long as it receives an input frame rate of no less than 25 fps. This is expressed
in CQML as follows:

QosProfile for VideoBinding {
 exp: quality {
 throughput(1000,transVideo.video)>=25; };
 obl: quality {
 throughput(1000,recVideo.video)>=25;
 latency(transVideo.video,recVideo.video).maximum=60;
 latency(transVideo.video,recVideo.video).minimum=40; }; }

The above QoS Profile, defined for the VideoBinding template, defines one
expectation, that there should be at least 25 events received every second (1000 ms) at
the ‘video’ VidowFlow part of the consumer interface transVideo. It also defines that
the binding is obliged to provide at least 25 frames every second (fps) from the
VideoFlow (named ‘video’) part of the VideoInterface signature (recVideo) supported

by the binding in the role of a producer. Additionally there are constraints between
consumer and producer VideoFlows that specify the maximum and minimum latency
that should occur for a frame passing through the binding.

The particular VideoFlow interactions, on which the constraints are placed, are
navigated to using the association end names of the associations relating object
templates to interface signatures.

3 Translation to Timed Automata
To verify that the constraints defined by the QoS specifications are met by the
functional behaviour, for a particular configuration of system components, we create a
network of parallel timed automata. It is intended that the TA network be
automatically generated by transforming the information contained in the design
specification. There are three aspects to this transformation:

1. State Diagrams are mapped to hierarchical timed automata [8] which can be
flattened for input to UPPAAL using the method described in [8].

2. The parameters of the QoS constraints are used as arguments to TA templates
that model the appropriate QoS characteristic.

3. A snapshot configuration diagram is used to appropriately connect the set of
TAs, produced by the first two steps, into a single network.

This gives a network of TA that model the whole system, plus the environment in
which the system is supposed to execute. There are three different sets of automata
arising from the transformation:

1. Func - Automata modelling the functional behaviour of objects.
2. Obl - Automata modelling the obligation QoS statements, which observe the

outputs of objects.
3. Exp - Automata modelling the expectation QoS statements, which provide

inputs to objects from the environment.
The behaviour of the original specification (i.e. the one containing the functional

description together with CQML statements of QoS) is now represented by the
parallel composition of these three sets of automata:

Func || Obl || Exp

This TA network is entered into the UPPAAL model checking tool [13], which is
subsequently used to check for deadlock in the system. Formally, there are six
situations which could cause deadlock: internal deadlock in an automaton from any of
the three sets; and deadlock due to a missed synchronisation between a pair of
automata each from any pair of the three sets:

a) Deadlock in a functional behaviour automaton (Func): occurs if the
functional behaviour is badly designed and causes a deadlock.

b) Deadlock in one of the QoS obligation automata (Obl): indicates that the
functional behaviour does not meet the QoS obligation; occurs if the
automaton has entered a state that indicates a QoS violation. The QoS
obligation automata are designed with specific deadlock states to indicate
that the QoS constraints they represent have been violated.

c) Deadlock in one of the QoS expectation automata (Exp): will never occur.

d) Synchronisation deadlock between automata from Func and Obl: will never
occur, the Obl automata will enter a specific deadlock state if they can’t
synchronise on an output event from a Func automata.

e) Synchronisation deadlock between automata from Exp and Func: indicates
that the functional behaviour is expecting a different QoS to that provided
by the automata from Exp.

f) Synchronisation deadlock between automata from Exp and Obl: will never
occur, automata from these sets never synchronise on common events.

In short, a deadlock is due either to an internal problem of the functional behaviour
of a computational object; or due to the computational object not interacting with its
environment in the manner specified by the obliged or expected QoS.

The position of the deadlock can be fed back to the designer (see example below),
indicating which QoS constraint has not been met by the system, or that the functional
behaviour has deadlocked. This is illustrated in section 4 by analysis of our example
system. Before we discuss the analysis, the following subsections describe the manner
in which we have modelled the three QoS characteristics – latency, throughput and
jitter – using Timed Automata. These automata are instantiated by giving values to
their parameters, taken from the CQML specifications.

3.1 Throughput and Anchored Jitter
The characteristic of throughput is easily modelled as a continuous source of events;
however, due to the properties of anchored jitter, it is unnecessary to separately model
the two characteristics and we can define a single TA that models both. Anchored
jitter is defined as a variation in throughput; the variation does not change the overall
throughput rate (this would be non-anchored jitter), it simply means that given the
expected time for arrival of an event, the event might arrive one or other side of this
time. The expected arrival times of following events are not affected by the actual
arrival time of events (as is the case with non-anchored jitter). Thus, the specification
of anchored jitter is tied to the specification of a particular throughput (which gives
the expected arrival times) and hence it is more efficient to model the two
characteristics as a single automaton template.

A QoS expectation relating to throughput and anchored jitter can be encoded as the
TA illustrated in Fig. 4. The automaton offers output events at a regular rate with an
inter-event gap of ‘RATE’ (inverse of throughput) with an anchored jitter of between
‘MAX’ and ‘MIN’ above and below the value ‘RATE’. The variable ‘data’ models a
parameter value carried by the output event, for example a frame count, or as in the
case of the lip sync example can hold a timestamp for the time the event (frame or

F

ig. 4. Expectation Anchored Jitter and Throughput

F

packet) is created.
A pair of CQML

particular interface
For the quality s

quality {
 through
 anchore

The parameters
RATE = 1
MIN = MAX

Note: The autom
rate. As such it do
specification of th
frames arriving wi
TA is modelling th

quality {
 minimum
 anchore

Similarly, the T
and jitter. Note the
this automaton. Th
does not force an o

The automaton
early; i.e. before ti
state ‘RateTooSlow
after the last outpu

3.2 Latency
The QoS character
and the response
occurs and the time
automaton, it is ne
that is passing thr
measure the time b
can only accept fi
Given only a laten
ig. 5. Obligation Anchored Jitter and Throughput
 quality statements defining the throughput and anchored jitter at a
 map to the parameter values of this automaton as follows:
tatements:

put >= X;
dJitter <= Y; }

RATE, MIN and MAX would be defined as:
/ X
 = Y

aton models throughput using a fixed (through jittery) inter-arrival
es not truly model the throughput characteristic used in the QoS
e example, which specifies a constraint on the total number of
thin a specified time (i.e. 1000 milliseconds). Strictly speaking this
e quality statement:

_inter_arrival_time = 1/X;
dJitter <= Y; }

A shown in Fig. 5 assures a QoS obligation involving throughput
 important difference between the obliged and expected versions of
e obliged version is acting as an observer of offered outputs and
utput to occur.
will deadlock in state ‘RateTooFast’ if an output is offered too

me ‘RATE-MIN’ after the last output. Similarly it will deadlock in
’ if an output is offered too late; i.e. after time ‘RATE+MAX’

t.

istic latency is defined as “the time that elapses between a stimulus
to it”, i.e. latency is the relationship between the time one event
 that an associated second event occurs. To model this using timed

cessary to be able to record the entry time for every stimulus event
ough the component by a clock. We can use each such clock to
etween stimulus and response. Since, the UPPAAL model of TA

nite number of clocks, we must calculate how many are needed.
cy specification, it is not possible to determine how many clocks

are needed (i.e. how many events to track at any one time) and it would seem that a
language allowing only a fixed number of clocks would not enable us to model this
characteristic. However, no event will be generated (and need to be tracked) if the rate
of generation of stimulus events is zero, i.e. without a throughput there is no need to
check for latency. Therefore, if we have a defined throughput, or at least a defined
minimum inter arrival time, it is possible to calculate how many clocks are required.

We calculate this value, called SIZE, as follows:
 SIZE = latency * minimum inter arrival time

To model this as a Timed Automaton, we use a circular buffer of SIZE number of
clocks to record the stimulus event times. The next available clock is reset when a
stimulus event occurs and the time value of the clock is compared with the required
latency when the corresponding response event occurs. If an attempt is made to reuse
a clock before it has been checked (by response event occurrence) then essentially the
buffer is too small. However, assuming that events do not arrive quicker than the
minimum arrival rate, if the latency we are checking against is met by every event, the
above calculation of SIZE ensures that the buffer is not too small; hence, buffer
overflow indicates that latency has not been met. If, at any point in time the number
of stimulus events passes SIZE, then the actual latency of some preceding event must
have exceeded the value of latency against which we are checking.

The automaton template in Fig. 6 models this; the variable t is an array of clocks, v
is an array of corresponding (frame or packet) identifiers, eid gives an index into
arrays based on the identity of the arriving frame/packet, latency is a constant holding
the value of latency to check, start and check are the stimulus and response channels
and st_id and ch_id carry the identity of the frame/packet represented by the stimulus
and response channels.

4 Performance Analysis
This section first describes the result of verifying our illustrative example, followed
by a description of a technique to present back to a designer, in the context of the
original design language, a trace originally produced by UPPAAL in terms of the
generated automata.
LatencyFailed

QueueTooSmall

t[eid]:=0, v[eid]:=st_id t[eid]<=latency, v[eid]==ch_id

check?
eid:=ch_id-((ch_id/SIZE)*SIZE)

v[eid]!=ch_id

t[eid]>latency
eid:=st_id-((st_id/SIZE)*SIZE)

start?

Fig. 6. An Automaton Template for Latency Obligation

4.1 Verification of the Example
As discussed above, the UPPAAL verifier is used to check the model against a query
stating that there are no deadlocks for all time: A[] not deadlock

For our example, the UPPAAL verifier indicates that there is a deadlock; its cause
is that the QoS specified for the video window is not met by its behaviour, i.e.
situation (b) of those described in section 3. UPPAAL provides a trace of Automata
events that lead to the deadlock situation; these events are succinctly described as
follows:

1. The first video frame arrives at the video window, i.e. at a time 50ms after
being generated.

2. The videoReady and videoPresent signals both happen with no (significant)
time delay, also at time 50.

3. The video window completes presentation with no delay and the
videoPresented signal is output immediately, i.e. at time 50.

4. The second frame arrives late at the video window, i.e. at a time 59ms after
being generated, i.e. 49ms after the first was received and 99ms after the first
was generated.

5. The videoReady and videoPresent signals occur immediately, i.e. at time 99
(relative to first frame generation).

6. The video window takes anything longer than 1ms to present the frame and the
videoPresented signal is output at a time > 100ms (relative to first frame
generation). This is >50ms since the last videoPresented signal, and does not
meet the obliged anchoredJitter QoS constraint on the video window.

7. Analysis of this trace determines that the QoS specified for the video window
constrains it to take at most 5ms to present a frame. Thus if this varies between
0ms and 5ms, on top of the expected 10ms jitter as input, it follows that the
output will vary by more than 10ms. The situation could be aggravated further
if the synchronisation algorithm delays the videoPresent signal by (the
possible) 5ms within this scenario.

After analysing the scenario, the designer can determine a solution to the problem
and alter the system design in order to remedy the problem. For instance, possible
options to solve the problem detected in our example system are as follows:

1. Allow more jitter on the output of the video window,
2. Fix the time taken to present a frame – may not be possible if it is a hardware

constraint,
3. Add a buffer on the video stream to reduce the input jitter.

For example, we could implement options 2 and 3. To do so we could a fix time
for video frames to be presented, i.e. specify a fixed latency between signals
videoPresent and videoPresented; and state that the anchored jitter on the output rate
must be less than 15ms rather than 10 ms. These changes ensure that the jitter on
frames being presented will be the same as the jitter on the signals instructing frames
to be presented (coming out for the controller) and that the controller is free to add up
to an extra 5ms of jitter on top of the possible 10ms caused by transmission over the
binding. The changes to the specification are localised to the QoS profile for the video
window, which is altered to that shown below. Using this, the resulting system is now
free from this deadlock; absence of all such deadlocks indicates that the functional
behaviour is consistent with the QoS specification.

QosProfile for VideoWindow {
 exp: quality {
 throughput(1000,recVideo.video) >= 25; };
 obl: quality {
 throughput(1000,vidReady.videoPresented)>=25;
 latency(recVideo.video,vidReady.videoReady)=0;
 latency(recVideo.video,vidReady.videoPresented)<=10;
 latency(vidCtrl.videoPresent,
 vidReady.videoPresented)=5;
 anchoredJitter(vidReady.videoPresented) < 15; }; }

4.2 Feedback of Results
A weakness of model checking TA in the context of higher level languages, such as
the UML, is that the output of model checking tools is a trace in the formal language
of the model checker. For example, the trace output from the above example defines a
sequence of events and transitions on TA with the time that they occur or were taken.
A trace in this form is of little use to a designer working in the UML/OCL context
who is not familiar with the level of formality provided by TA; the designer did not
specify the system in TA. To overcome this we must be able to give feedback to the
designer using the language in which he has designed the system.

Table 1 shows a trace of transitions (derived from UPPAAL) and the time at which
the transitions are taken, for the situation leading to deadlock described in the
previous sub-section. Synchronised transitions are shown as a pair in the same row of
the table. A two-part label identifies the transitions. The first part is the instance name
of the TA template in which the transition is defined; the second part, in UPPAAL is a
number identifying a particular transition, we have replaced this with the name of
either ‘internal’ if there is no synchronisation, or the parameter name (specified in the
template) for the channel on which the synchronisation is defined.

Table 1. UPPAAL Trace of transitions leading to deadlock

Time Transition(s)
50 (videoSource.out, vidWin.videoIn)
50 (audioSource.out, speaker.audioIn)
50 (vidWin.videoReady, split.in)
50 (speaker.audioReady, synchController_Audio.audioReady)
50 (synchController.internal)
50 (split.out1, synchController_Video.vidReady)
50 (synchController_Video.internal)
50 (synchController_Video.internal)
50 (synchController_Video.internal)
50 (synchController_Video.vidPresent, vidWin.videoPresent)
50 (synchController_Video.internal)
50 (split.out2, synchController_Audio.vidReady)
50 (vidWin.videoPresented, vidOutput.in)
50 (synchController_Video.internal)
51 (synchController_Video.internal)
... "
78 (synchController_Video.internal)
79 (vidOutput.internal)
79 (vidSource.internal)

79 (synchController_Video.internal)
80 (synchController_Video.internal)
81 (synchController_Video.internal)
82 (synchController_Video.internal)
83 (synchController_Video.internal)
84 (synchController_Video.internal)
84 (synchController_Video.internal)
99 (videoSource.out, vidWin.videoIn)
99 (vidWin.videoReady, split.in)
99 (split.out1, synchController_Video.vidReady)
99 (synchController_Video.internal)
99 (synchController_Video.internal)
99 (synchController_Video.internal)
99 (synchController_Video.vidPresent, vidWin.videoPresent)
99 (synchController_Video.internal)
99 (split.out2, synchController_Audio.vidReady)

100 (synchController_Video.internal)
101 (synchController_Video.internal)
102 (synchController_Video.internal)
103 (synchController_Video.internal)
104 (vidWin.videoPresented, vidOutput.in)

deadlock in state vidOutput.RateTooSlow
The ODP computational viewpoint semantics defines inter-object communication

to be in the form of signals. Our translation approach maps communication signals
between objects to synchronisation events in a TA model and primitive bindings
between interfaces map to the synchronisation channels in UPPAAL; thus the trace of
events given by UPPAAL can be transformed back into a trace of inter-object
communications (across interfaces) within the domain of the original (designers)
language of the computational viewpoint. The original snapshot diagram that defines
the configuration of system components can be used as a vehicle to illustrate back to
the designer the problematic trace.

Table 1 shows some of the transitions highlighted by a darker background. These
are the synchronised transitions that map to communication between objects; the other
transitions are internal to an object (as indicated) or relate to internal communication

video
Window 1: video

speaker

sync
Controller

2: audio

3: videoReady

4: audioReady

5: videoPresent

6: videoPresented

video
Window 1: video

speaker

sync
Controller

2: videoReady

3: videoPresent

(a) at time 50

video
Window

1: videoPresented

speaker

sync
Controller

(b) at time 99 (c) at time 104
Fig. 7. Series of snapshots leading to deadlock / invalid QoS

between the audio and video parts of the synchronisation controller. These shaded
transitions can be illustrated by a series of computational viewpoint snapshots, which
we show in Fig. 7. This transformation appears to be automatable, and ongoing work
is investigating implementation of an automatic transformer.

5 Conclusion
Our verification technique builds on previous works that propose the use of Timed
Automata for modelling QoS and Statechart based behaviour specifications. [12]
maps UML state machines into UPPAAL as does [9]; either of these techniques
would compliment our work, and give us mechanisms to transform the state diagram
based functional behaviour into UPPAAL timed automata. A group at Lancaster have
made significant use of timed automata for modelling distributed and multimedia
systems: [5] discusses the use of temporal logic and timed automata for modelling
such systems in a multi-paradigm approach and in [11] they specify systems directly
in TA and map these to Java-beans to provide prototype implementations of the
specified systems. The work of [7] shows ways to model QoS using timed automata
and we have made use of that work to compliment our own.

There are two aspects to the work presented in this paper, the approach taken for
designing distributed systems and the technique for verifying the QoS of the system.

Structurally, the proposed design languages enable the definition of all structural
components from the computational viewpoint; to form a complete system
specification it is necessary to provide specifications from the other four ODP
viewpoints; this is left as future work.

Of course there are some limitations to the approach. For example, the
specification of QoS is limited by the nature of the language chosen to express it,
CQML. The primary limitation we discovered with this language, is that in the
context of a computational object we use it to define constraints on interactions at
each interface supported by an object; if an object supports an interface signature
multiple times, there is no means in CQML to quantify over the collection of
interfaces; we believe that CQML could be extended to enable such quantifications.

Future plans include provision of a design tool that incorporates our design
languages and facilities to perform the verification and feed back of results.
Additionally we are looking at techniques for inferring QoS constraints across
interface bindings and through an objects functional behaviour. It is expected that this
will enable us to analyse individual components of a particular configuration,
separately - deducing similar results as if we had analysed the complete configuration.
This should aid us in avoiding the huge state explosion problems we would get by
attempting to model check large timed automata networks.

6 References
[1] Aagedal J. Ø. "Quality of Service Support in Development of Distributed Systems," PhD

thesis, Department of Informatics, Faculty of Mathematics and Natural Sciences, The
University of Oslo, 2001

[2] Akehurst D. H., Bordbar B., Derrick J., and Waters A. G., "Design and Verification of
Distributed Multi-media Systems," University of Kent at Canterbury, 1-03, January 2003.

[3] Akehurst D. H., Derrick J., and Waters A. G., "Addressing Computational Viewpoint
Design," in proceedings EDOC 2003, Brisbane, Australia, September 2003.

[4] Blair G. and Stefani J.-B., Open Distributed Processing and Multimedia: Addison
Wesley, ISBN 0-201-17794-3, 1997.

[5] Blair L., "The Role of Temporal Logic and Time Automata in Distributed Multimedia
Systems," in proceedings Modal & Temporal Logic Based Planning for Open Networked
Multimedia Systems (PONMS '99), Cape Cod, MA, pp. 1-7, November 1999.

[6] Bordbar B., Derrick J., and Waters A. G., "Using UML to specify QoS constraints in
ODP," Computer Networks, vol. 40, pp. 279-304, 2002.

[7] Bowman H., Faconti G., Katoen J.-P., Latella D., and Massink M., "Automatic
verification of a lip-synchronisation algorithm using uppaal - extended version," in B.
Luttick, J. F. Groote, and J. V. Wamel (eds) proceedings FMICS'98 Third International
Workshop on Formal Methods for Industrial Critical Systems, CWI, Amsterdam, The
Netherlands, pp. 97-124, May 1998.

[8] David A. and Moller M. O., "From HUppaal to Uppaal: A translation from hierarchical
timed automata to flat timed automata," BRICS, Department of Computer Science,
University of Aarhus,, Research Series RS-01-11, March 2001.

[9] David A., Moller M. O., and Yi W., "Formal Verification of UML Statecharts with Real-
Time Extensions," in R.-D. Kutsche and H. Weber (eds) proceedings 5th International
Conference, FASE 2002, Held as Part of the Joint European Conferences on Theory and
Practice of Software, ETAPS 2002, Springer, LNCS, Volume 2306, Grenoble, France,
April 2002.

[10] Harel D., "Statecharts: A Visual Formalism for Complex Systems," Science of Computer
Programming, vol. 8, pp. 231-274, 1987.

[11] Jones T. and Blair L., "Prototyping of Real-time Component Based Systems by the use of
Timed Automata," in P. Hofmann and A. Schürr (eds) proceedings Workshop on Object-
oriented Modeling of Embedded Real-time Systems (OMER-2 '01), GI-Edition - Lecture
Notes in Informatics (LNI), P-5, Munich, Germany, May 2001.

[12] Knapp A., Merz S., and Rauh C., "Model Checking Timed UML State MAchines and
Collaborations," in W. Damm and E.-R. Olderog (eds) proceedings 7th International
Symposium on Formal Techniques in Real-Time and Fault Tolerant Systems, FTRTFT
2002, Co-sponsored by IFIP WG 2.2,, LNCS, Volume. 2469, Oldenburg, Germany,
September 2002.

[13] Larsen K. G., Pettersson P., and Yi W., "UPPAAL in a Nutshell," Springer International
Journal of Software Tools for Technology Transfer, vol. 1, October 1997.

[14] Waters A. G., Linington P. F., Akehurst D. H., Utton P., and Martin G., "Permabase:
Predicting the performance of distributed systems at the design stage," IEE Proceedings -
Software, vol. 148, pp. 113-121, August 2001.

[15] X.641, "Information technology - Quality of service: Framework," vol. 1997: ITU-T
Recommendation, 1998.

[16] X.901-5, "Information Technology - Open Distributed Processing - Reference Model: All
Parts," ITU-T Recommendation, 1996-99.

	Introduction
	An ODP Computational Specification
	System Snapshot
	Template and Signature Specifications
	Behaviour
	Synchronisation Controller

	Environment Contracts – QoS Specification
	VideoBinding

	Translation to Timed Automata
	Throughput and Anchored Jitter
	Latency

	Performance Analysis
	Verification of the Example
	Feedback of Results

	Conclusion
	References

