
Lazy Assertions

— Draft —

Olaf Chitil, Dan McNeill and Colin Runciman

Department of Computer Science, The University of York, UK

Abstract. Assertions test expected properties of run-time values with-
out dissrupting the normal working of a program. So in a lazy functional
language assertions should be lazy — not forcing evaluation, but only
examining what is evaluated by other parts of the program. We describe
two different ways of embedding lazy assertions in Haskell, one sequen-
tial and the other concurrent. Examples illustrate the relative merits of
the two approaches. We also show that timely failure of lazy assertions
may require assertions in assertions!

1 Introduction

A programmer writing a section of code typically does so with many assumptions
or intentions about the values involved. Some of these assumptions or intentions
are expressed in a way that can be verified by a compiler, for example as part of
a type system. But many are beyond the expressive power of types amenable to
automatic static checking. It may be possible to formulate some of these deeper
properties as theorems to be proved in a suitable logic, but as this option involves
an expensive and highly specialised activity it is rarely pursued.

Instead of leaving essential properties unexpressed and unchecked, a useful
and comparatively simple option is to express them as assertions — boolean-
valued expressions that the programmer assumes or intends will always be true.
Assertions are checked at run-time as they are encountered, and any failures are
reported. In the absence of any such failure, the program runs just as it would
without any assertions, apart from the extra time and space needed for checking.

The usefulness of assertions in conventional state-based programming has
long been recognised, and many imperative programming systems include some
support for them. In these systems, each assertion is attached to a program point;
whenever control reaches that point the corresponding assertion is immediately
evaluated to a boolean result. Important special cases of program points with as-
sertions include points of entry to, or return from, a procedure with preconditions

or postconditions.
In a functional language, the basic units of programs are expressions rather

than commands. The commonest form of expression is a function application. So
our first thought might be that an assertion in a functional language can simply
be attached to an expression: an assertion about arguments (or ‘inputs’) alone
can be checked before the expression is evaluated and an assertion involving

the result (or ‘output’) can be checked afterwards. But in a lazy language this
view is at odds with the need to preserve normal semantics. Arguments may
be unevaluated when the expression is entered, and may remain unevaluated or
only partially evaluated even after the expression has been reduced to a result.
The result itself may only be evaluated to weak head-normal form. So neither
arguments nor result can safely be the subjects of an arbitrary boolean assertion
that could demand their evaluation in full.

Here is the problem we address in this paper. How can assertions be intro-
duced in a lazy functional language? How can we satisfy our eagerness to evaluate
assertions, so that failures can be caught as soon as possible, without compro-
mising the lazy evaluation order of the underlying program to which assertions
have been added?

Our aim is an embedded solution to this problem. That is, we aim to support
assertions by a small but sufficient library defined in the programming language
itself. This approach avoids the need to modify compilers or run-time systems
and gives the programmer a straightforward and familiar way of using a new
facility. Specifically, we shall be programming in Haskell[3].

The rest of the paper is organised as follows. Section 2 uses two examples to
illustrate the problem with eager assertions in a lazy language. Section 3 outlines
and illustrates the contrasting nature of lazy assertions. Section 4 describes an
implementation of lazy assertions that postpones their evaluation until the un-
derlying program is finished. Section 5 describes an alternative implementation
in which each assertion is evaluated by a concurrent thread. Section 6 addresses
a residual problem of sequential demand within assertions. Section 7 discusses
related work. Section 8 concludes and suggests future work.

2 Eager Assertions Must be True

The library provided with the GHC compiler already includes a function assert

:: Bool -> a -> a. It is defined in such a way that assert True x = x but
an application of assert False causes execution to halt with a suitable error
message. An application of assert always expresses an eager assertion because
it is a strict function: evaluation is driven by the need to reduce the boolean
argument, and no other computation takes place until the value True is obtained.

To explore the consequences of this eager definition of assert we shall look at
two examples. We return to the same examples in later sections.

Example 1: sets represented as ordered trees

Consider the following datatype.

data Ord a => Set a = Empty

| Union (Set a) a (Set a)

Functions defined over sets include with and elem, where s ‘with‘ x rep-
resents s ∪ {x} and x ‘elem‘ s represents the membership test x ∈ s.

with :: Ord a => Set a -> a -> Set a

Empty ‘with‘ x = Union Empty x Empty

(Union s1 y s2) ‘with‘ x = case compare x y of

LT -> Union (s1 ‘with‘ x) y s2

EQ -> Union s1 y s2

GT -> Union s1 y (s2 ‘with‘ x)

elem :: Ord a => a -> Set a -> Bool

x ‘elem‘ Empty = False

x ‘elem‘ (Union s1 y s2) = case compare x y of

LT -> x ‘elem‘ s1

EQ -> True

GT -> x ‘elem‘ s2

The Ord a qualification in the definition of Set and in the signatures for with
and elem only says that comparison operators are defined for the type a. It does
not guarantee that Set a values are strictly ordered trees as the programmer
intends. To assert this property, we could define the following predicate.

strictlyOrdered :: Ord a => Set a -> Bool

strictlyOrdered = soBetween Nothing Nothing

where

soBetween _ _ Empty = True

soBetween lo hi (Union s1 x s2) = between lo hi x &&

soBetween lo (Just x) s1 &&

soBetween (Just x) hi s2

between lo hi x = maybe True (< x) lo && maybe True (> x) hi

Something else the programmer intends is a connection between with and
elem. It can be expressed by asserting x ‘elem‘ (s ‘with‘ x). Combining this
property with the ordering assertion we might define:

s ‘checkedWith‘ x = assert post s’

where

s’ = assert pre s ‘with‘ x

pre = strictlyOrdered s

post = strictlyOrdered s’ && x ‘elem‘ s’

Observations The eager assertions in checkedWith may ‘run ahead’ of evalu-
ation actually required by the underlying program, forcing fuller evaluation of
tree structures and elements. The strict-ordering test is a conjunction of two
comparisons for every internal node of a tree, forcing the entire tree to be eval-
uated (unless the test fails). Even the check involving elem forces the path from
the root to x.

Does this matter? Surely some extra evaluation is inevitable when non-trivial
assertions are introduced? It could even have the helpful side-effect of fixing a
space-leak! It does matter, it is not inevitable (as later sections show) and the

0

-2 +2

-6 -1 +1 +6

· · · -4 +4 · · ·

-5 -3 +3 +5

Fig. 1. A tree representation of the infinite set of integers. Each integer i occurs at
a depth no greater than 2log

2
(abs(i) + 1). Differences between adjacent elements on

leftmost and rightmost paths are succesive powers of two.

consequences may be far from helpful. Forcing evaluation can just as easily cause
space leaks as cure them [8]. It can also cause assertion-checking to degenerate
into a pre-emptive, non-terminating and unproductive process. What if, for ex-
ample, a computation involves the set of all integers, represented as in Figure 1?
Functions such as elem and with still produce useful results. But checkedWith
eagerly carries the whole computation away on an infinite side-track!

Example 2: the infinite sequence of primes

A standard exercise in programming with lazy lists is to enumerate the primes.
Here is one solution:

primes = sieve [2..]

sieve (p:xs) = p : filter (noFactorIn primes) xs

noFactorIn (p:ps) x = p*p > x ||

x ‘mod‘ p > 0 && noFactorIn ps xs

If we consider only the assertion that primes is an ordered sequence, we would
merely revisit the lessons from the previous example: a famous property of the
primes is that there are infinitely many of them. But what if we wish to assert
this very property for the programmed prime sequence? Using eager assert,
no single assertion can be formulated. We cannot possibly compute the entire
sequence of primes, verify that it is truly infinite, and then continue! Rather, to
express the expectation that a list is infinite requires infinitely many assertions
that each recursive tail is non-empty. Using the definition

infinitelyMany xs =

assert (not null xs) (head x : infinitelyMany (tail xs))

we can evaluate infinitelyMany primes. A similar technique of interleaving
atomic assertions with a copying process could be used to handle the infinite
ordered trees in the previous example. This is left as an exercise for the reader
— but see Section 6.

3 Lazy Assertions Must Not Be False

We have seen that the need for laziness in the evaluation of assertions may
be inherent in the nature of the program, or in the nature of the assertion,
or both. Laziness in this context means that the evaluation of assertions should
only examine those parts of their subject data structures that are in any case de-
manded by the underlying program. Lazy assertions should make a (provisional)
assumption of validity about other data not (yet) evaluated. Computation of the
underlying program should proceed not only if an assertion reduces to True, but
also if it cannot (yet) be reduced to a value at all; the only constraint is that an
assertion must never reduce to False.

If we are to guard data structures that are the subjects of assertions from
over-evaluation, we cannot continue to allow arbitrary boolean expressions in-
volving these structures. We need to separate the predicate of the assertion from
the subject to which it is applied. An implementation of assertions should com-
bine the two using only a special evaluation-safe form of application. So the type
of assert becomes

assert :: (a -> Bool) -> a -> a

where assert p acts as a lazy partial identity.

If we had an implementation of this lazy assert, how would it alter the
examples we looked at before?

Example 1 revisited

In view of the revised type of assert, the definition of checkedWith must be
altered slightly, making pre and post predicates rather than booleans.

s ‘checkedWith‘ x = assert post (assert pre s ‘with‘ x)

where

pre = strictlyOrdered

post = \s’ -> strictlyOrdered s’ && x ‘elem‘ s’

Now the computation of checkedWith applications should progress just like an
unchecked application of with. If infinite sets are involved, the corresponding
assertions are only partially computed, up to the limits imposed by the finite
needed parts of these sets.

Example 2 revisited

In a lazy language, the wish to write a single assertion that a list is infinite seems
only reasonable. Given a lazy assert we can use a predicate infinitelyMany

defined like this

infinitelyMany [] = False

infinitelyMany xs = infinitelyMany (tail xs)

with primes as the subject. The single-assertion computation

assert infinitelyMany primes

should behave just like the computation of primes alone.

4 Sequential Implementation

Now we see how we can implement a library for lazy assertions in Haskell. We
develop the library in steps: we give a working version, criticise it, and then refine
it to the next version. This section concludes with a sequential implementation
that is usable but has some disadvantages.

4.1 Delayed Assertions

First we want to ensure that the evaluation of the assertions cannot disturb the
evaluation of the underlying program. We do so by evaluating all assertions after

termination of the main computation. The main computation only evaluates the
underlying program and collects all assertions.

The implementation uses some extensions of the Haskell 98 standard: Ex-
tended exceptions enable a program to catch all erroneous behaviour of a sub-
computation , IORefs add mutable variables to the IO monad, and the function
unsafePerformIO :: IO a -> a enables us to implement assert using excep-
tions and mutable variables without giving it a monadic type [7].

We introduce a global mutable variable finalisers that stores a list of
pending assertions, to be checked at the end of the main computation.

finalisers :: IORef [IO ()]

finalisers = unsafePerformIO $ newIORef []

The function assert simply adds an assertion to the finalisers list. The
function also takes a string as argument to simplify identification when an asser-
tion fails. Only evaluation of the action evalAssertion n p x actually evalu-
ates the assertion of name n and predicate p with test argument x. The function
evalAssert has to catch exceptions to ensure that an exception in one assertion
does not prevent the remaining pending assertions from being tested.

assert :: String -> (a -> Bool) -> a -> a

assert n p x = unsafePerformIO $ do

fins <- readIORef finalisers

writeIORef finalisers (evalAssertion n p x : fins)

return x

evalAssertion :: String -> (a -> Bool) -> a -> IO ()

evalAssertion n p x = do

Control.Exception.catch

(when (not (p x))

(hPutStrLn stderr ("\nAssertion " ++ show n ++ " failed.")))

(\e -> hPutStrLn stderr

("\nAssertion " ++ show n ++

" raised exception: " ++ show e)

To use assertions we have to wrap the action corresponding to the underlying
program by applying runA to it. To ensure that the assertions are always run at
the end of the computation, the definition of runA has to catch any exception
occurring in the main computation.1

runA :: IO a -> IO ()

runA io = do

Control.Exception.catch io

(const (putStrLn "Exception occurred in main computation" >>

return undefined))

fins <- readIORef finalisers

sequence_ fins

Properties of the Implementation. This simple implementation does not prevent
an assertion from evaluating a test argument further than the main computation
itself. Because assertion checking is delayed, over-evaluation cannot disturb the
main computation, but it can cause run-time errors or non-termination in the
evaluation of an assertion (see Section 2).

4.2 Avoiding Over-Evaluating

To avoid over-evaluation do we need any non-portable “function” for testing if an
expression is evaluated? No, exceptions and the function unsafePerformIO are
enough. We can borrow and extend a technique from the Haskell Object Obser-
vation Debugger (HOOD) [4]. We arrange that as evaluation of the underlying
program demands the value of an expression wrapped with an assertion, the
main computation makes a copy of the value. Thus the copy comprises exactly

1 The variable finalisers is initialised with the empty list. However, interactive inter-
preters may not reevaluate a CAF such as finalisers every time a new expression
is interactively evaluated. Hence to ensure correct initialisation we have to insert
writeIORef finalisers [] as first line in the do block of runA.

those parts of the value that were demanded by the evaluation of the underlying
program.

We introduce two new functions, demand and listen. The function demand

is wrapped around the value that is consumed by the main computation. The
function returns that value and, whenever a part of the value is demanded, the
function also adds the demanded part to the copy. The function listen simply
returns the copy; because listen is only evaluated after the main computation
has terminated, listen returns those parts of the value that were demanded by
the main computation. If the result of listen is evaluated further, than it raises
an exception. For every part of a value there is a demand / listen pair that
communicates via an IORef. The value of the IORef is Unblocked v to pass a
value (weak head normal form) or Blocked to indicate that the value was not
(yet) demanded. The implementation of demand is specific for every type. Hence
we introduce a class and here we give only one exemplary instance for lists. We
discuss in an appendix how to reduce the effort of writing these instances.

data ValState a = Blocked | Unblocked a

class Assert a where

demand :: IORef (ValState a) -> a -> a

instance Assert a => Assert [a] where

demand r [] = unsafePerformIO $ do

writeIORef r (Unblocked [])

return []

demand r (x:xs) = unsafePerformIO $ do

r1 <- newIORef Blocked

r2 <- newIORef Blocked

writeIORef r (Unblocked (listen r1 : listen r2))

return (demand r1 x : demand r2 xs)

listen :: IORef (ValState a) -> a

listen r = unsafePerformIO $ do

val <- readIORef r

case val of

Blocked -> error "blocked"

Unblocked x -> return x

We have to adapt our implementation of assert to use demand and listen

assert :: Assert a => String -> (a -> Bool) -> a -> a

assert s p x = unsafePerformIO $ do

r <- newIORef Blocked

fins <- readIORef finalisers

writeIORef finalisers (evalAssertion s p (listen r) : fins)

return (demand r x)

Finally the evaluation of an assertion has to handle the case that it is blocked
to avoid over-evaluation:

evalAssertion :: String -> (a -> Bool) -> a -> IO ()

evalAssertion n p x = do

Control.Exception.catch

(when (not (p x))

(hPutStrLn stderr ("\nAssertion " ++ show n ++ " failed.")))

(\e -> case e of

ErrorCall "blocked" -> return ()

_ -> hPutStrLn stderr ("\nAssertion " ++ show n ++

" raised exception: " ++

show e))

Properties of the Implementation. An assertion can use exactly those parts of
values that are evaluated by the main computation, no less, no more. However,
if an assertion fails, the programmer is informed rather late; because of the
problem actually detected by the assertion, the main computation may have
run into a run-time error or worse a loop. The computation is then also likely to
produce a long, fortunately ordered, list of failed assertions. A programmer wants
to know about a failed assertion before the main computation uses the faulty
value! Additionally, both this and the previous implementation retain all tested
values until the end of the computation, so that most realistic computations will
run into space performance problems.

5 Concurrent Implementation

How can we evaluate assertions as eagerly as possible yet still only using data that
is demanded by the main computation? Rather than delaying assertion checking
to the end, we can evaluate each assertion in a separate thread concurrently to
the main computation. When an assertion demands a part of a value that has
not yet been demanded by the main computation, the assertion thread is blocked
and control is passed to the main thread. Whenever the main thread demands
another part of the tested value and an assertion thread is waiting for that value,
the main thread is blocked and control is passed to the assertion thread. Thus
the assertion always gets a new part of the value for testing before it is used by
the main computation. Coroutining is used to pass control between an assertion
thread and the main thread.

So this implementation requires a further extension: Concurrent Haskell
[7].The function forkIO starts a new thread. We also use the quantity semaphore
type QSem. The functions waitQSem blocks a thread until a ‘unit’ of a semaphore
becomes available, and signalQSem makes a ‘unit’ available.

To control the running status of a pair of threads we introduce a Switch of
two binary semaphores and associated functions for passing control.

data Switch = S QSem QSem

initSwitch :: IO Switch

initSwitch = do mainS <- newQSem (-1)

assertS <- newQSem (-1)

return (S mainS assertS)

continueAssert :: Switch -> IO ()

continueAssert (S mainS assertS) = do signalQSem assertS

waitQSem mainS

continueMain :: Switch -> IO ()

continueMain (S mainS assertS) = do signalQSem mainS

waitQSem assertS

finishAssert :: Switch -> IO ()

finishAssert (S mainS _) = signalQSem mainS

A part of a tested value can be in any of three states: (1) not yet demanded
by either the main or the assertion thread, (2) demanded by the assertion thread
which is hence blocked, and (3) evaluated, because it was demanded by the main
thread:

data ValState a = Untouched | DemandedByAssert | Evaluated a

The basic idea of copying the test value on demand is still the same as
before. As a helper for the function demand we introduce the function copy. It
distinguishes the states DemandedByAssert and Evaluated and passes control
to the assertion thread in the first case. Similarly the function listen passes
control according to the state.

class Assert a where

demand :: a -> Switch -> IORef (ValState a) -> a

instance Assert a => Assert [a] where

demand [] s = unsafePerformIO $ do

copy s r []

return []

demand (x:xs) s = unsafePerformIO $ do

r1 <- newIORef Untouched

r2 <- newIORef Untouched

copy s r (listen s r1 : listen s r2)

return (demand x s r1 : demand xs s r2)

copy :: Switch -> IORef (ValState a) -> a -> IO ()

copy s r x = do

state <- readIORef r

case state of

Untouched -> writeIORef r (Evaluated x)

DemandedByAssert -> do

writeIORef r (Evaluated x)

continueAssert s

listen :: Switch -> IORef (ValState a) -> a

listen s r = unsafePerformIO $ do

state <- readIORef r

case state of

Untouched -> do

writeIORef r DemandedByAssert

continueMain s

state <- readIORef r

case state of

Evaluated x -> return x

Evaluated x -> return x

Finally we adapt the definition of the assert function to the concurrent
setting. We use the evalAssertion of our first sequential implementation.

assert :: Assert a => String -> (a -> Bool) -> a -> a

assert n p x = unsafePerformIO $ do

r <- newIORef Untouched

s <- initSwitch

forkIO (evalAssertion n p (listen s r) >> finishAssert s)

continueAssert s

return (demand x s r)

Properties of the Implementation. This implementation fulfils the central prop-
erties that evaluation of assertions does not influence the result of the main
computation, no tested values are evaluated further than by the main compu-
tation, and a failed assertion is signalled before the main computation uses the
faulty value. The implementation does not hold onto the data of all assertions
until the end of the computation, because assertions are evaluated as early as
possible without over-evaluation. The implementation does not need a wrapper
function runA.

6 Stuck Assertions

We noted in Section 3 that lazy assertions must not be False. Computation of
the underlying program should proceed not only if an assertion reduces to True,
but also if computation of the assertion is stuck, that is the assertion cannot

(yet) be reduced to a value at all. Consequently both the sequential and the
concurrent implementation do not distinguish between assertions that reduce to
True and assertions that are stuck.

Evaluation order can often be disregarded when considering the correctness
of lazy functional programs. Lazy evaluation does, however, specify a mostly
sequential semantics. The semantics of logical connectives such as (&&) are not
symmetric. When the evaluation order demanded by an assertion does not agree
with the evaluation order demanded by the underlying computation the assertion
gets stuck.

Example 1: revisited

Consider using our definition of checkedWith in the following expression:

1 ‘elem‘ (Union Empty 4 (Union Empty 2 Empty) ‘checkedWith‘ 6)

Both input set and result set of checkedWith are not strictly ordered, but
no assertion fails! This is because only a part of each set is ever demanded by
the computation so the assertion strictlyOrdered gets stuck. For example, of
the input set only the part

Union _ 4 (Union Empty 2 _)

is demanded (where indicates an undemanded expression). The computation
of the function strictlyOrdered traverses the tree representation of the set in
preorder. Hence it gets stuck on the unevaluated left subtree of the root Union
constructor. Consequently it never makes the comparison 4 < 2 which would
immediately make the assertion fail.

Detecting the problem. It would help to list at the end of all computation all
assertions that are stuck. It is easy to extend our sequential implementation
to do this. The concurrent implementation would need to be extended by a
global list of blocked assertions, similar to the finalisers of the sequential
implementation.

A solution? We could avoid sequentiality in the assertion by creating a separate
concurrent thread for each atomic test. We can use assert to start new threads
and call assertions within assertions.2 In the following definition the sequential
(&&)s have been replaced by asserts that do not actually check any property
of their last arguments but start separate checking threads. This assertion is as
eager as possible, because each between comparison is evaluated by a separate
thread.

2 We have to slightly modify the sequential implementation to ensure that assertions
which are being added to the list finalisers during evaluation of assertions will
still be eventually evaluated.

assertStrictlyOrdered :: Ord a => String -> Set a -> Set a

assertStrictlyOrdered n = assert n (soBetween Nothing Nothing)

where

soBetween _ _ Empty = True

soBetween lo hi (Union s1 x s2) =

assert n (const (soBetween lo (Just x) s1)) $

assert n (const (soBetween (Just x) hi s2)) $

between lo hi x

between lo hi x = maybe True (< x) lo && maybe True (> x) hi

Using assertions within assertions is a trick that should not be our final
answer to the problem of stuck sequential assertions. An alternative implemen-
tation might use a new type that replaces Bool and provides a parallel logical
conjunction.

7 Related Work

The work reported in this paper started as a BSc project. The second author’s
dissertation [5] includes an earlier version of concurrent assertions and discusses
some example applications.

In Section 4 we adapted a technique first used in HOOD [4]. HOOD defines a
class of types for which an observe function is defined. Programmers annotate
expressions whose values they wish to observe by applying observe label to them,
where label is a descriptive string. These applicative annotations act as identities
with a useful side-effect: each value to which an annotated expression reduces —
so far as it is demanded by lazy evaluation — is recorded, fragment by fragment
as it is evaluated, under the appropriate label. The similarity of observe and
assert is clear, but an important difference is that whereas observe records
a sequence of labelled fragments for subsequent inspection or separate process-
ing, assert reassembles them for further computation within the same Haskell
program. A HOOD programmer can evaluate by inspection any assumptions or
intentions they may have about recorded values, but this inspection is a laborious
and error-prone alternative to machine evaluation of predicates.

Another well-established Haskell library for checking properties of functional
programs is QuickCheck [1]. Properties are defined as boolean-valued functions,
as in the example:

prop_ElemWith :: Set Int -> Int -> Bool

prop_ElemWith s x = x ‘elem‘ (s ‘with‘ x) == True

Evaluating quickCheck prop ElemWith checks the property using a test suite of
pseudo-randomly generated sets and elements as the values of s and x. The test-
value generators are type-determined and they can be customised by program-
mers. QuickCheck reports statistics of successful tests and details of any failing
case discovered. This sort of testing nicely complements assertions. QuickCheck
properties are not limited to expressions that fit the context of a particular

program point, and a separate testing process imposes no overhead when an
application is run. But assertions have the advantage of testing values that ac-
tually occur in a program of interest, and provide a continuing safeguard against
undetected errors.

Möller [6] offers a different perspective on the role of assertions in a func-
tional language. The motivating context for his work is transformational program
development; assertions carry parts of the specification and are subject to refine-
ment. He assumes strict semantics, however, and does not consider the problem
of assertions in a lazy language.

8 Conclusions and Future Work

Assertions, first used in call-by-value procedural languages, can be introduced
in a way that fits with a call-by-need functional language. Assertions can be
supported by a high-level library written in the functional language itself. The
library can guarantee that assertions do not force evaluation beyond the needs
of the underlying program, but programming assertions to fail as eagerly as
possible despite this guarantee can be a delicate art.

There are still many areas to explore. We could define combinators to for-
mulate assertions about functional and monadic values. We need experience in
the use of assertions in larger applications. A failed assertion should output the
evaluated part of its subject value. Using assertions in connection with Hat [9]
would allow the causes of assertion failures to be traced — just as combined
working with QuickCheck and Hat allows failed tests to be investigated [2]. We
are looking for a more portable implementation that works with other Haskell
systems than the Glasgow Haskell Compiler. We need to explore further the
effect of assertions on the time and space performance of a program; in partic-
ular, the copying of values can cause a loss of sharing. Finally, we would like to
garbage collect permanently stuck assertions.

Acknowledgements

Thanks to Dean Herington, Claus Reinke and Simon Peyton Jones for their
contributions to a discussion on the Haskell mailing list about how to achieve
data-driven concurrency.

References

1. K. Claessen and R. J. M. Hughes. QuickCheck: a lightweight tool for random
testing of Haskell programs. In Proc. 5th Intl. ACM Conference on Functional

Programming, pages 268–279. ACM Press, 2000.
2. K. Claessen, C. Runciman, O. Chitil, J. Hughes, and M. Wallace. Testing and

tracing lazy functional programs using QuickCheck and Hat. In Lecture notes of

the 4th Intl. Summer School in Advanced Functional Programming. 40pp, to appear
in Springer LNCS, 2002.

3. S. L. Peyton Jones (Ed.). Haskell 98: a non-strict, purely functional language.
Journal of Functional Programming, 13(1):special issue, 2003.

4. A. Gill. Debugging Haskell by observing intermediate datastructures. Electronic

Notes in Theoretical Computer Science, 41(1), 2001. (Proc. 2000 ACM SIGPLAN
Haskell Workshop).

5. D. McNeill. Concurrent data-driven assertions in a lazy functional language. Tech-
nical report, BSc Project Dissertation, Department of Computer Science, University
of York, 2003.

6. B. Möller. Applicative assertions. In J. L. A. van de Snepscheut, editor, Mathematics

of Program Construction, pages 348–362. Springer LNCS 375, 1989.
7. S. L. Peyton Jones. Tackling the awkward squad: monadic input/output, concur-

rency, exceptions and foreign-language calls in haskell. In C. A. R. Hoare, M. Broy,
and R. Steinbruggen, editors, Engineering theories of software construction, pages
47–96. IOS Press, 2001.

8. C. Runciman and N. Röjemo. Heap profiling for space efficiency. In J. Launchbury,
E. Meijer, and T. Sheard, editors, 2nd Intl. School on Advanced Functional Pro-

gramming, pages 159–183, Olympia, WA, August 1996. Springer LNCS Vol. 1129.
9. M. Wallace, O. Chitil, T. Brehm, and C. Runciman. Multiple-view tracing for

Haskell: a new Hat. In ACM Workshop on Haskell, 2001.

Appendix: The class Assert and its Instances

In both the sequential and the concurrent implementation there is a class Assert.
We need an instance of Assert for every type of value that we wish to make
assertions about. To simplify the writing of new instances we define a family
of demandn functions. For the concurrent implementation they are defined as
follows:

demand0 :: Switch -> IORef (ValState a) -> a -> a

demand0 x s r = unsafePerformIO $ do

copy s r x

return x

demand1 :: (Assert b) => (b -> a) -> b

-> Switch -> IORef (ValState a) -> a

demand1 c x1 s r = unsafePerformIO $ do

r1 <- newIORef Untouched

copy s r (c (listen s r1))

return (c (demand x1 s r1))

demand2 :: (Assert b, Assert c) => (c -> b -> a) -> c -> b

-> Switch -> IORef (ValState a) -> a

demand2 c x1 x2 s r = unsafePerformIO $ do

r1 <- newIORef Untouched

r2 <- newIORef Untouched

copy s r (c (listen s r1) (listen s r2))

return (c (demand x1 s r1) (demand x2 s r2))

Instances thus become short and easy to write:

instance Assert a => Assert [a] where

demand [] = demand0 []

demand (x:xs) = demand2 (:) x xs

instance (Assert a,Assert b) => Assert (a,b) where

demand (x,y) = demand2 (,) x y

instance Assert Char where

demand c = c ‘seq‘ demand0 c

The use of seq is needed in the last case where no pattern matching takes
place to ensure that the value is always evaluated by the main thread, not the
assertion thread.

Although this is an improvement, it will still be useful to use a tool such as
DrIFT3 to derive the often large number of instances needed in practice.

A different problem is that the class context of the function assert restricts
its use in the definition of polymorphic functions. For Example 1 we obtain the
type

checkedWith :: (Ord a, Assert a) => Set a -> a -> Set a

Users of HOOD seem to be able to live with a similar restriction.
For Hugs there is a special version of HOOD that provides a built-in poly-

morphic function observe. Likewise a built-in polymorphic function assert is
feasible. Even better, since the implementations of observe and assert are
based on the same technique, it is desirable to identify the functionality of a
single built-in polymorphic function in terms of which both observe, assert
and possibly further testing and debugging functions could be defined. A built-
in polymorphic function removes both the annoying need for a large number of
similar instances and the restricting class context.

3 http://repetae.net/john/computer/haskell/DrIFT/

