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ABSTRACT
PARADIGM has recently emerged as a new language to de-
sign cooperative object-oriented systems. To our knowledge,
PARADIGM temporal aspects have not been studied before.

Here we describe a polynomial algorithm to translate
PARADIGM models to Propositional Linear Temporal Logic
programs. The resulting program is an executable specification
of the modelled system, suitable for verifying model proper-
ties. It is also a declarative view of the model. Therefore we
provide a temporal framework to understand and reason about
PARADIGM models behavior, and system development in
general. Finally, we believe this work provides further evidence
on the benefits that PARADIGM has to offer to the Software
Engineering community. We complement a previous conference
paper which introduced the main concepts behind the translation
process and its application in system verification.
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1. INTRODUCTION
PARADIGM [14] is a high-level, visual, object-oriented mod-

elling language to design cooperative systems. It is the sublan-
guage of SOCCA [8] used for modelling object communication,
coordination and cooperation. PARADIGM appears as a promis-
ing approach to the design of complex systems (see e.g. [15], [7],
and [1]).

Propositional Linear Temporal Logic (PLTL) has been used both
in system specification and verification [13]. A number of tools
have been proposed to accomplish such tasks, notably STeP [4]
and SPIN [11]. In the STeP framework the specification language
SPL (that means Simple Programming Language) can be used to
specify a system that is translated to a Fair Transition System.
Then, behavior properties expressed by temporal logic formulas
can be verified using a deductive approach. In the SPIN frame-
work a system is specified using the Promela language to repre-
sent a system conceived through a Global State Automata. Then
temporal logic formulas can again be verified but in this case
using the model checking technique. Other approaches to ver-
ification are based on more complex temporal assumptions like
branching time, e.g. Kronos [16], here we focus on linear time
leaving verification over branching time and other issues for fu-
ture exploration.
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We show that is possible to translate a PARADIGM model into
a PLTL program, thus obtaining an executable specification. The
resulting PLTL program will be composed by a number of logic
rules implying, at any time, the current state of process execu-
tions. Furthermore, these rules can be entirely generated from
the information provided in any PARADIGM model. This paper
focuses on the translation algorithm (a Prolog implementation is
discussed in [2]). This work complements the results presented
in [3], which was mainly concerned with translation concepts and
its application in verification.

One benefit that can be expected from such a translation is that
the temporal logic framework allows us to prove correctness
properties about the system behavior by automatic means. Prop-
erties are intended to be expressed as queries to a PLTL inter-
preter (see e.g. [6]) with the logic program as a knowledge base.
The interpreter can be also expected to be used as a simulation
tool: process executions can be traced to any situation of interest.
This feature can be useful during design stages: we can change
the PARADIGM model, translate it to a logic program, and study
the process behavior until requirements have been met. Finally,
the logic approach offers a different, declarative way for studying
PARADIGM models. It provides a possible temporal framework
for system development. We therefore aim to enhance the current
knowledge on PARADIGM and its benefits in system develop-
ment.

Paper organization: Section 2 and 3 offer the necessary
overview on PARADIGM and PLTL, respectively. Section 4
presents the concepts behind the translation algorithm, which is
properly introduced in section 5. Section 7 shows some examples
of verification properties, and conclusions are given in section 8.

2. PARADIGM
PARADIGM models a dynamic system as a set of parallel

processes. Processes are modelled as state transition diagrams
(STD’s from now on), and they can be assigned a role of em-
ployees or managers. Managers coordinate their employees by
prescribing them a proper set of subprocesses.

A subprocess is a temporal constraint placed on the employee
behavior. It is modelled as an STD which inherits a subset of
employee states and transitions, meaning that as long as this sub-
process is prescribed the employee can only achieve part of its
complete behavior. Because an employee can be controlled by
several managers, its behavior at anytime results from the com-
posite behavior assigned by each of its currently prescribed sub-



processes. In other words, employee transitions can only be per-
formed if they are allowed in all subprocesses that are currently
prescribed to the employee in question. For simplicity, we as-
sume all processes in the PARADIGM model are always active.

Traps model those execution stages where employees need coor-
dination. They are defined as being a subset of subprocess states.
Once an employee enters the first state of those defining a trap,
the manager which prescribed the subprocess containing that trap
is notified, and the employee can only perform transitions within
the trap.

Manager states are assigned to a set of subprocesses, one per em-
ployee. This set is currently prescribed as long as the manager
remains in that state, but it is possible for a subprocess to be pre-
scribed in several manager states. A manager cannot prescribe,
at a given time, more than one subprocess per employee.

Manager transitions are assigned to a set of traps which must be
entered for the transition in question to be performed. Employee
executions cannot proceed outside of traps until the manager pre-
scribes the right set of subprocesses, thus changing their behavior
restrictions, and in the other way managers cannot proceed until
the right employees are inside their traps. An interesting example
of a PARADIGM model is explained in [8].

3. THE TEMPORAL LOGIC
The system is thought as evolving along a (possibly finite)

sequence of statesσ = s0, s1, . . . wheres0 is the initial state.
Notice that no final state is enforced in that sequence of states.
This allows the consideration of reactive systems which is a class
of systems that PARADIGM is well equipped to deal with. Each
statesi is defined as a set of atomic propositions holding at that
execution stage. Aftern steps a computationσ = s0, . . . , sn

had gone through|σ| = n + 1 states. Time here is used to re-
fer to the stage sequence the system goes through, so it is linear
and with future unbounded. We assume a propositional language
LP based on the traditional temporal operators3A (A is true in
some future state) and2A (A is always true from the next state
on). Here we only consider the future fragment, which is enough
to highlight verification possibilities. Other well known opera-
tors like f(next),U (until) and the past fragment can be added
to the proposal in the future with interesting benefits during the
verification stage. The set of well formed formulas of the tempo-
ral language can be defined inductively as follows (p is an atomic
proposition):

φ = p|¬φ|φ1 ∧ φ2|φ1 ∨ φ2|φ1 → φ2|3φ|2φ

Formula semantics is shown below w.r.t. a pair(σ, t) where
σ = s0, s1, . . . , st, . . .:

(σ, t) |= p iff p ∈ st with p atomic
(σ, t) |= ¬φ1 iff (σ, t) 6|= φ1

(σ, t) |= φ1 ∨ φ2 iff (σ, t) |= φ1 or (σ, t) |= φ2

(σ, t) |= φ1 ∧ φ2 iff (σ, t) |= φ1 and(σ, t) |= φ2

(σ, t) |= φ1 → φ2 iff (σ, t) 6|= φ1 or (σ, t) |= φ2

(σ, t) |= 3φ iff existss > t : (σ, s) |= φ
(σ, t) |= 2φ iff for all s > t : (σ, s) |= φ

This language provides a set of well formed formulas which is ex-
pressive enough to encode a PARADIGM model in a declarative
way. It also provides the means to express well known schema
formulas [12] used in system verification, like2φ (safety)
and others from the “liveness family” like3φ (guarantee),
2(φ1 → 3φ2) (response/recurrence), 32φ (persistence) and
23φ1 → 23φ2 (progress). The framework requires sets of

propositions whose cardinality depends on the sets of manager
and employee processes. Modularity principles applied over the
PARADIGM model should keep these sets reasonably small. Fi-
nally, we give our temporal logic apersistence semantics: propo-
sitions preserve their truth values until it is explicitly changed by
a rule, and, unless otherwise implied, propositions are assumed
to be false by default. This will be consistent with our logic pro-
gramming implementation of a PLTL interpreter.

4. THE TRANSLATION
The goal of the translation process is to produce a PLTL pro-

gram,P, which simulates the behavior of the processes included
in the PARADIGM model. Process executions are mapped to
the state-sequence semantics of the temporal logic. We call these
states global states in contrast to state changes in STDs appear-
ing in the PARADIGM model. Every global state will be a set
of propositions of three possible different kinds: a) proposition
st, wherest denotes a state of a given processp, will be true
anytimep remains onst, b) propositionsp, wheresp denotes a
subprocess of a given employeee, will be true anytimesp re-
mains prescribed toe and c) propositiontp, wheretp denotes a
trap of a given employeee, will be true anytime e remains in-
sidetp. State changes in PARADIGM processes can be seen as
a transformation of the global state at timet, Gt, into a global
state at timet + n, n ∈ N, Gt+n. Wheren ∈ N represents the
duration of the execution of the transition being considered.

We will assume that all propositions denoting states, sub-
processes and traps are unique. For example, propo-
sitions cpNotChecking, cPs3 and tcP3 denote,
respectively, that processcheckPIN is currently in
state NotChecking, that subprocesscheckPIN s3 is
currently prescribed and thatcheckPIN is currently inside
trap T-cP3. Rules in P will simulate PARADIGM dynamics,
asserting or denying the truth of propositions depending on
execution stages. These rules will be conceptually introduced in
sections 4.1, 4.2, 4.3, 4.4 and 4.5.

Process transitions modify the global state in different ways, and
in turn global states impose different restrictions on employee
and manager transitions. Therefore transitions will be modelled
by rules of the form:2(Pre → 3Pos), wherePre is a set of
preconditions which must hold onGt to perform the state change,
andPos is a set of postconditions holding on the new global state
Gt+n, after the change. So rules will only express the order in
which states can be visited. This is due to PARADIGM’s lack
of information concerning the time that processes spend inside
states and the time that transitions require to be performed.

Rules composingP will be illustrated through a simpler ver-
sion of the example given in [8]. Figs. 1 to 6 show part of a
PARADIGM model for an Automatic Teller Machine (see [2]
for a more detailed example). ProcesscheckPIN (Fig. 1) is
responsible for checking user’s PIN on his magnetic card, but
to do this it needs to call processverifyAccount (Fig. 4).
Both processes are employees of managerBankComputer
(Fig. 6 shows a subset of the proper STD), which coordinates the
caller-called relationship by prescribing each employee a differ-
ent set of subprocesses as needed. Figs. 2 and 5 show the subpro-
cesses that can be prescribed by BankComputer tocheckPIN
andverifyAccount, respectively. checkPIN is also em-
ployee of managerATM, but it is not included in our example.
However it is important to show (Fig. 3) which subprocesses can
be prescribed tocheckPIN by ATM. Traps are shown as shaded
boxes.



Figure 1: Employee processcheckPIN

checkPINs3

checkPINs4

Figure 2: Sprocs. ofcheckPIN (BankComputer)

checkPINs1

checkPINs2

Figure 3: Sprocs. ofcheckPIN (ATM)

4.1. Employee transitions
These kind of rule models a given transitiontsij from state

sti to stj in employeee. This transition is allowed only ife
is currently onsti and tsij is allowed in all subprocesses that
are currently prescribed toe. This set of subprocesses cannot
be known in advance, but fortunately there is another way to ex-
press the same requirement. LetMe = {m1, . . . , mq} be the set
of all managers fore andSr = {spr

1, . . . , sp
r
n} the set of all sub-

processes which can be prescribed toe by anymr ∈ Me, such
that tsij is allowed inspr

k, for all 1 ≤ k ≤ n. Thentsij can
be performed if, for each managermr, at least one of the sub-
processes inSr is currently prescribed. Let setsS1, . . . , Sq de-
note the subprocesses prescribed by managersm1, . . . , mq (and
constrained as mentioned before); and suppose they are, respec-
tively: {sp1

1, . . . , sp
1
r}, . . . , {sp

q
1, . . . , sp

q
s}. Finally the rule ex-

presses that after the changee will be no longer in statesti but in
stj :

2((sti ∧ (sp1
1 ∨ . . . ∨ sp1

r) ∧ . . . ∧ (spq
1 ∨ . . . ∨ spq

s))
→ 3(¬ sti ∧ stj))

Figure 4: Employee processverifyAccount

verifyAccounts1

verifyAccounts2

Figure 5: Subprocesses ofverifyAccount

EXAMPLE 1 Consider transition “call VA” from
Connected to Verifying in checkPIN (Figs. 3 and 2). It
is allowed incheckPIN s1 and checkPIN s2 (prescribed
byATM), andcheckPIN s4 (prescribed byBankComputer).
Therefore either checkPIN s1 or checkPIN s2, and
checkPIN s4 must be prescribed for the transition to be
performed (“(cPs1∨cPs2)∧cPs4”):

2((cpConnected ∧ ((cPs1∨cPs2) ∧ cPs4))
→ 3(¬cpConnected ∧ cpVerifying))

M

Note that it is also possible that other outgoing transitions from
statesti are included in the same subprocessesS1, ..., Sq. Let
st2j , st

3
j , ..., st

u
j be the after states in question, and⊕ the exclu-

sive ’or’ operator (A⊕B ≡ ((A∧¬B)∨ (¬A∧B))). Then the
general rule schema becomes:

2((sti ∧ (sp1
1 ∨ . . . ∨ sp1

r) ∧ . . . ∧ (spq
1 ∨ . . . ∨ spq

s))
→ 3(¬ sti ∧ (stj ⊕ st2j ⊕ st3j ⊕ . . . ⊕ stu

j )))

4.2. Manager transitions
These kind of rule models a given transitiontsij from state

sti to stj in managerm. This transition is allowed only ifm
is currently onsti and the right employees are currently inside
the traps related withtsij . This set of subprocesses cannot be
known in advance, but fortunately there is another way to ex-
press the same requirement. The rule also expresses that after the
transition has been performedm is no longer insti but in stj ,
and therefore that the set of currently prescribed subprocesses



Figure 6: Manager processBankComputer (fragment)

has been (possibly) changed. In fact, it is possible that some of
those subprocesses prescribed onsti are no longer prescribed on
stj , or remain prescribed onstj or even that new subprocesses
are prescribed onstj .

Let {tp1, . . . , tpn} be the set of traps related withtsij ,
{sp1, . . . , spm} the set of subprocesses prescribed onsti but
not onstj , and{tpq, . . . , tpu} the set of traps included in any
spi, 1 ≤ i ≤ m. We will see that all new subprocesses that are
prescribed instj but not insti are handled by other kind of rule
(section 4.3). Finally, those propositions denoting subprocesses
that remain prescribed fromsti to stj do not require any action,
i.e., they are not explicitly asserted nor denied and thus remain
true (persistence semantics). The rule is shown below:

2((sti ∧ (tp1 ∧ . . .∧ tpn))
→ 3(¬ sti ∧ stj ∧ (¬ sp1 ∧ . . .∧ ¬ spm)

∧ (¬ tpq ∧ . . .∧ ¬ tpu)))

EXAMPLE 2 Consider the transition from Waiting
to Verifying in BankComputer (Fig. 6).
This change cannot be performed until both
traps T-cP4 and T-vA1 have been entered
(“tcP4 ∧ tvA1”). Once the manager is in state
Verifying, subprocess verifyAccount s1 is
no longer prescribed and thus trapT-vA1 is left
(“¬ vAs1 ∧ ¬ tvA1”):

2((bcWaiting ∧ tcP4 ∧ tvA1)
→ 3(¬ bcWaiting ∧ bcVerifying ∧

¬ vAs1 ∧ ¬ tvA1))
M

Previous rules model the time each employee and manager pro-
cess remain in their states. However, this time depends on the
dynamics of subprocesses and traps. Following rules assert that
knowledge.

4.3. Subprocess prescription
This kind of rule models the time subprocesses remain

prescribed to their employees. Specifically, for every state of
a manager process there will be a rule expressing the set of
subprocesses that are prescribed while the manager remains
in that state. Letsti be a manager state and{sp1, . . . , spn}
the subprocesses which are prescribed in this state. The rule is
shown below:

2(sti → (sp1 ∧ . . .∧ spn))

EXAMPLE 3 Consider the subprocesses thatBankComputer
prescribes while it is in stateWaiting (Fig. 6), like
checkPIN s4 (“cPs4”) and verifyAccount s1
(“vAs1”):

2(bcWaiting
→(cPs4 ∧ gMs4 ∧ pTs1 ∧ vAs1))

M

4.4. Traps
This kind of rule models the time employees remain inside their
traps. Specifically, for every traptp in subprocesssp, wheresp
is a subprocess of employeee, there will be a rule expressing
that e is currently insidetp if e it is in any statest1, . . . , stn

included intp. Rule is shown below:

2((sp ∧ (st1 ∨ . . .∨ stn)) → tp)

EXAMPLE 4 EmployeecheckPIN remains inside trapT-cP2
as long as it is prescribed subprocesscheckPIN s2 and re-
mains in statesConnected, Verifying or Checked:

2((cPs2 ∧
(cpConnected ∨ cpVerifying ∨ cpChecked))
→ tcP2)

M

4.5. Initial conditions
We provide a rule to set propositions at the first global state.

Here we coordinate processes as starting execution in their initial
states, but different rules may be provided to change the initial
execution conditions.

Let {st1, . . . , stn} be the set of processes initial states (sub-
processes initially prescribed are inferred according to the rules
of section 4.3). The translation will generate the factinit,
a proposition which will only hold at the initial time, and the
following rule:

init→ (st1 ∧ . . .∧ stn)

EXAMPLE 5 The rule below specify the initial states of
employees checkPIN, verifyAccount and manager
BankComputer:

init→
(cpNotChecking ∧ vaNotVerifying ∧ bcWaiting )

M

Note that the assertion ofbcWaiting as initial state implies
a set of initial subprocessescPs4, gMs4, pTs1, vAs1 by
virtue of the rule shown in example 3, and in turn, because
of vAs1 andvaNotVerifying, this also implies thattvA1
holds (fig. 5). Also, and according to our persistence semantics,
all other propositions, i.e. the rest of states, subprocesses and
traps which are not mentioned nor implied, are assumed to be
false in the initial state.

5. THE ALGORITHM
In this section the translation process will be described as a set

of steps that takes a PARADIGM model as input and generates
a PLTL program as output. The PARADIGM model is assumed
to be correct, and contains all the information needed by the al-
gorithm: processes, subprocesses, states, traps and some of their
relationships. This information is modelled as a collection of sets
(section 5.1), which is a suitable form where future implementa-
tions can be obtained from. The algorithm itself will be described
in natural language (section 5.2).



5.1. Algorithm inputs
The sets that are shown below encode those elements of the

PARADIGM model which are needed by the translation process.
We do not assume any particular tool for constructing these sets.
For the sake of space economy, we have chosen a set of labels
for denoting processes, states, subprocesses and traps which are
shorter than those appearing in the figures. However, these la-
bels are quite obvious and easy to recognize. For example,cPs4
denotes subprocesscheckPIN s4. Input sets comprise the fol-
lowing (examples refer to the Automatic Teller Machine case
study described in section 4):

1. The setEMP of employee processes. For example,

EMP = {checkPIN, verifyAccount, . . .}

2. The setMAN of manager processes. For example,

MAN = {atm, bankComputer, . . .}

3. The set PROtrs of transitions in every process.
PROtrs =

⋃n

i=1
{(pi,

⋃m

j=1
{(stj , stk)})},

1 ≤ k ≤ m, wherepi denotes a process and(stj , stk)
denotes a transition from statestj to statestk in pi:

PROtrs =
{(checkPIN,

{(cpNotChecking, cpConnected),
(cpConnected, cpVerifying),
(cpVerifying, cpChecked),
(cpChecked, cpNotChecking)}),

(verifyAccount,
{(vaNotVerifying, vaEncrypted),
(vaEncrypted, vaAccountOK),
(vaEncrypted, vaAccountNotOK),
(vaAccountOK, vaNotVerifying)})
(vaAccountNotOK, vaNotVerifying)})

. . .}

4. The setMANspr of subprocesses prescribed in every man-
ager state. MANspr =

⋃n

i=1
{(sti,

⋃m

j=1
{spj})}

where sti denotes a manager state andspj de-
notes a subprocess prescribed insti. For example,

MANspr =
{(bcWaiting, {cPs4, gMs4, pTs1, vAs1}),
(bcVerifying, {cPs4, gMs4, pTs1, vAs2})

. . .}

5. The set TRPsta of states defining every trap.
TRPsta =

⋃n

i=1
{(tpi,

⋃m

j=1
{stj})} where tpi,

denotes a trap andstj denotes a state inside traptpi. For
example,

TRPsta =
{(tcP1, {cpNotChecking}),
(tcP2,
{cpConnected,cpVerifying,cpChecked}),
(tcP3,
{cpNotChecking,cpConnected,cpChecked}),
(tcP4, {cpVerifying}),
(tvA1, {vaNotVerifying}),
(tvA2, {vaAccountOK}),
(tvA3, {vaAccountNotOK}),
. . .}

6. The set SPRtrp of traps in every subprocess.

SPRtrp =
⋃n

i=1
{(spi,

⋃m

j=1
{tpj})} wherespi denotes

a subprocess andtpj denotes a trap ofspi. For example
SPRtrp =

{(cPs1, {tcP1}),
(cPs2, {tcP2}),
(cPs3, {tcP3}),
(cPs4, {tcP4}),
(vAs1, {tvA1}),
(vAs2, {tvA2, tvA3}). . .}

7. The set EMPspr of subprocesses which can be
prescribed by every manager to every employee.
EMPspr =

⋃n

i=1

⋃m

j=1
{(ei, mj ,

⋃q

k=1
{spk})}

whereei denotes an employee,mj denotes a manager for
ei andspk denotes a subprocess ofe that can be prescribed
by mj . For example

EMPspr =
{(checkPIN,atm,{cPs1,cPs2}),
(checkPIN,bankComputer,{cPs3,cPs4}),
(verifyAccount,bankComputer,{vAs1,vAs2})
. . .}

8. The setINIsta of initial states. INIsta =
⋃n

i=1
{STi}

wheresti denotes a process initial state.

INIsta =
{ cpNotChecking,vaNotVerifying,bcWaiting,
. . .}

9. The setTRSspr of subprocesses every employee transition
is included in.
TRSspr =

⋃n

i=1
{((sti, stj),

⋃m

k=1
{spk})} for some

1 ≤ j ≤ n, where(sti, stj) denotes a transition of a given
employeeE from statesti to statestj andspk denotes a
subprocess ofe containing such a transition. For example,

TRSspr =
{((cpNotChecking,cpConnected),

{cPs2,cPs3,cPs4}),
((cpConnected,cpVerifying),

{cPs1,cPs2,cPs4}),
((cpVerifying,cpChecked),

{cPs1,cPs2,cPs3}),
((cpChecked,cpNotChecking),

{cPs1,cPs3,cPs4}),
((vaNotVerifying,vaEncrypted),{vAs2}),
((vaEncrypted,vaAccountOK),{vAs2}),
((vaEncrypted,vaAccountNotOK),{vAs2}),
((vaAccountOK,vaNotVerifying),{vAs1}),
((vaAccountNotOK,vaNotVerifying),{vAs1}),
. . .}

10. The setMANtrp of traps related with manager transitions.
MANtrp =

⋃n

i=1
{((sti, stj),

⋃m

k=1
{tpk})} for some

1 ≤ j ≤ n, where(sti, stj) denotes a transition of a given
managerm from statesti to statestj and tpk denotes a
trap related with that transition. For example,

MANtrp =
{((bcWaiting,bcVerifying),{tcP4,tvA1}),
. . .}



5.2. Algorithm steps
Now we describe the translation algorithm as a set of steps,

each one taking one or more input sets (section 5.1) and gener-
ating a kind of rule for the PLTL program. We assume the ex-
istence of a proceduregenerateRule() which performs the
output of a rule to the PLTL program. All variables are consid-
ered local to each step environment. Set variables are denoted
with uppercase calligraphic letters, e.g.A. Element variables are
denoted with uppercase italic letters, e.g.A. Constant elements
will be denoted with lowercase italic letters, e.g.a.

1) State changes in employee processes

INPUT: EMP, PROtransitions, TRSsubprocesses,
EMPsubprocesses

PROCEDURE:

% for each employee
Tmp1 := EMP

[1] Repeat until Tmp1 = Ø
begin

Let e ∈ Tmp1
Tmp1 := Tmp1/{e}

[2] Let Te such that (e, Te) ∈ PROtransitions

% for each transition of this employee
Tmp2 := Te

Generated := ∅
[3] Repeat until Tmp2 = Ø

begin
Let (sti, stj) ∈ Tmp2
Tmp2 := Tmp2/{(sti, stj)}
% Sij is the set of all subprocesses
% containing this transition

[4] Let Sij such that:
((sti, stj),Sij) ∈ TRSsubprocesses

% Se is the set of all subprocesses
% prescribed by each manager to this
% employee

[5] Let Se = {Sm | ∃m ∈ MAN
((e, m,Sm) ∈ EMPsubprocesses)}

% intersect each subset of Se with
% Sij, and form the set Sm

ij .
% I ⊂ Sm expresses the optimization
% described in sec. 4.1

[6] Let Sm
ij = {I | ∃Sm ∈ Se

(I = Sm ∩ Sij ∧ I ⊂ Sm)}
[7] Let J = {st′j |((sti, st

′
j),S

′
ij) ∈ TRSsubprocesses

∧∀I ∈ Sm
ij (I ∩ S ′

ij 6= ∅)}
if (sti,J ,Sm

ij ) /∈ Generated
then
Suppose:

Sm
ij = {{sp1

1, . . . , sp
1
r}, . . . , {sp

q
1, . . . , sp

q
s}}

J = {stj , st
2
j , st

3
j , ..., st

u
j }

[8] GenerateRule(
2((sti ∧ (sp1

1 ∨ . . .∨ sp1
r )

∧ . . .∧ (spq
1 ∨ . . .∨ spq

s))
→3(¬sti∧(stj ⊕ st2j ⊕ . . . ⊕ stu

j )))
)

Generated:=Generated ∪{(sti,J ,Sm
ij )}

end % {Repeat until Tmp2 = Ø}
end % {Repeat until Tmp1 = Ø}

2) State changes in manager processes.

INPUT: MAN, PROtransitions, MANtraps,
MANsubprocesses

PROCEDURE:

% for each manager
Tmp1 := MAN

[1] Repeat until Tmp1 = Ø
begin
Let m ∈ Tmp1
Tmp1 := Tmp1/{m}

% Tm is the set of transitions of this
% manager

[2] Let Tm be such that:
(m, Tm) ∈ PROtransitions

Tmp2 := Tm

% for each transition of Tm

[3] Repeat until Tmp2 = Ø
begin

Let (sti, stj) ∈ Tmp2
Tmp2 := Tmp2/{(sti, stj)}

% Tij is the set traps of this
% transition, i.e. those traps that
% must be entered for this transition
% could be performed

[4] Let Tij be such that:
((sti, stj), Tij) ∈ MANtraps

% I is the set of subprocesses
% prescribed in state sti

[5] Let I be such that:
(sti, I) ∈ MANsubprocesses

% J is the set of subprocesses
% prescribed in state stj

[6] Let J be such that:
(stj ,J ) ∈ MANsubprocesses

[7] D = I/J

% Tleft is the set of traps included
% in subprocesses of D, i.e. those
% traps that are left after the
% state change

[8] Let Tleft = {tp | ∃sp ∈ D
((sp, Tsp) ∈ SPRtraps ∧ tp ∈ Tsp)}

Suppose Tij = {tp1, . . . , tpn}
Suppose D = {sp1, . . . , spm}
Suppose Tleft = {tpq, . . . , tpu}

[9] GenerateRule(
2((sti∧(tp1 ∧ . . . ∧ tpn) →

3(¬sti ∧ stj ∧(¬sp1 ∧ . . . ∧ ¬spm)
∧(¬tpq ∧ . . . ∧ ¬tpu)))

)
end % {Repeat until Tmp2 = Ø}

end % {Repeat until Tmp1 = Ø}



3) Subprocess prescriptions

INPUT: MANsubprocesses

PROCEDURE:

% for each manager state
Tmp1 := MANsubprocesses

[1] Repeat until Tmp1 = Ø
begin

% Sst is the set of all subprocesses
% prescribed in this state
Let (st,Sst) ∈ Tmp1
Tmp1 := Tmp1/{(st,Sst)}
Suppose Sst = {sp1, . . . , spn}

[2] GenerateRule( 2(st → (sp1 ∧ . . . ∧ spn)) )
end % {Repeat until Tmp1 = Ø}

4) Inside a trap.

INPUT: SPRtraps, TRPstates

PROCEDURE:

% for each subprocess
Tmp1 := SPRtraps

[1] Repeat until Tmp1 = Ø
begin

% T is the set of traps of this
% subprocess
Let (sp, T ) ∈ Tmp1
Tmp1 := Tmp1/{(sp, T )}

% for each trap in T
[2] Repeat until T = Ø

begin
Let tp ∈ T
T := T /{tp}

% Stp is the set of states defining
% this trap

[3] Let Stp such that (tp,Stp) ∈ TRPstates

Suppose Stp = {st1, . . . , stn}
[4] GenerateRule(2((sp ∧ (st1 ∨ . . . ∨ stn)) → tp))

end % {Repeat until T = Ø}
end % {Repeat until Tmp1 = Ø}

5) Initial conditions .

INPUT: INIstates

PROCEDURE:

GenerateRule( init )
Suppose INIstates = {st1, . . . , stn}

[1] GenerateRule( init → (st1 ∧ . . . ∧ stn) )

5.3. Complexity
It can be proved that our translation algorithm runs in polyno-
mial time. We will develop our complexity analysis using the
asymptotic notation often known as“the order of” or “big Oh”
(see for example [5]). Thus we will find an upper bound for the
worst-case execution time of the algorithm steps presented previ-
ously. Formally,

DEFINITION 1 Let n ∈ N be the size of the algorithm input and
t : N → R

≥0 a function expressing the algorithm execution time
for inputn. Let f : N → R

≥0 an arbitrary function, thent is “in
the order of”f iff t(n) ∈ O(f(n)), where

O(f(n)) = {g : N → R
≥0|

(∃c ∈ R
+)

(∃n0 ∈ N)
(∀n ≥ n0)
[g(n) ≤ cf(n)]}

M

Therefore, we can state our claim in the asymptotic notation as:

THEOREM 1 Let n be the size of a given PARADIGM model
M, i.e. the input size for the translation algorithm. Lett(n)
be the function expressing the algorithm execution time. Let
St, Sp and Tp be respectively the sets of all states, subpro-
cesses and traps ofM. Let IS1, . . . , ISm be the input sets
derived fromM, i.e. those sets obtained as shown in sec-
tion 5.1. Thent(n) is polynomial on the size ofn, where
n = max(|St|, |Sp|, |Tp|, |IS1|, . . . , |ISm|). N

We defined the model sizen as being the maximum cardinality
among particular sets because a) the algorithm performs its com-
putation over different input sets and b) we must operate with a
unified input size for obtaining a unique function expressing the
order of the entire algorithm.

It is also worthy to mention that some execution times are con-
sidered negligible in the broader computation. These comprise
assignments and the time that takes to remove an element from
a set once it has already been found. In addition we assume that
sets are simply implemented as lists, that all set operations are
performed as sequential searches over their data structures and
the time that takes to generate a rule is proportional to the num-
ber of propositions included in the rule schema.

The translation algorithm comprises five separate steps (see sec-
tion 5.2, all assumed to be performed sequentially. Proving that
each one of these steps runs in polynomial time allow us to in-
fer the entire algorithm is polynomial. These partial proofs refer
to some lines in the algorithm which has been marked with [n].
Functionmax(a1, . . . , an) returns the maximum value among
a1, . . . , an. |S| denotes the cardinality of setS.

LEMMA 1 Rules expressing state changes in employee processes
(see step 1 in section 5.2) can be generated inO(n5). N



Sketch of proof1 The order of step 1 is

Ostep1 = Lo.max(O2, O3) (1)

whereLo is the number of iterations of the outer loop (line [1]),

Lo = |Tmp1| = |EMP | ≤ n (2)

andO2 is the order of a search overPROtransitions (line [2]),

O2 = n (3)

andO3 is the order of the inner loop (line [3]),

O3 = Li.max(O4, O5, O6, O7, O8) (4)

whereLi is the number of iterations of the inner loop (line [3]),
Li = |Tmp2| = |Te|, whereTe is the set of transitions in em-
ployeee,

Li ≤ n (5)

andO4 is the order of a search overTRPsubprocesses (line [4]),

O4 = n (6)

andO5 is the order of a search overEMPsubprocesses (line [5]),

O5 = n (7)

andO6 is the order of the time that takes to compose setSM
ij (line

[6]), which involves an intersection-inclusion proof for every el-
ement of setSe,

O6 = |Se|.max(O∩, O⊂) (8)

whereO∩ is the order of the time that takes to performSm ∩Sij ,
which in turn can be bounded by|Sm|.|Sij |. As |Sm| is at most
the maximum number of subprocesses that can be prescribed by a
manager to a single employee, and|Sij | is at most the maximum
of subprocesses a given transition is part of, then|Sm| ≤ n and
|Sij | ≤ n, then

O∩ = n2 (9)

andO⊂ is the order of the time that takes to performI ⊂ Sm,
which in turn can be bounded by|I|.|Sm|. As |I| is at most
|Sm| ≤ n, then

O⊂ = n2 (10)

and|Se| is at most the maximum number of managers for a given
employee,

|Se| ≤ n (11)

O7 refers to the setJ of other outgoing transitions from the same
state. This construction, and related operations like the search
over theGenerated set can be proved to be subsumed byO6.

O8 is the order of the time that takes to generate the rule (line
[8]). We can see the number of elements to be written in the
PLTL program is clearly dominated by|SM

ij |, which in turn is at
most|Se| ≤ n and then

O8 = n (12)

From eqs. 9, 10, 11 and 12 we have thatO6 = n3 (eq. 8).
From eqs. 5, 6, 7 and 8 we have thatO3 = n4 (eq. 4).
From eqs. 2, 3 and 4 we have thatOstep1 = n5 (eq. 1). M

LEMMA 2 Rules expressing subprocess prescriptions in man-
ager states (see step 2 in section 5.2) can be generated in
O(n2). N

Sketch of proof2 The order of step 2 is

Ostep2 = Lo.O2 (13)

whereLo is the number of iterations of the outer loop (line [1]),

Lo = |Tmp1| = |MANsubprocesses| ≤ n (14)

andO2 is the order of the time that takes to generate the rule
(line [2]). We can see the number of elements to be written in the
PLTL program is clearly dominated by —Sst—, which in turn
is at most the maximum number of subprocesses that a manager
can prescribe on a single state, and then

O2 = n (15)

From eqs. 14 and 15 we have thatOstep2 = n2 (eq. 13). M

LEMMA 3 Rules expressing state changes in manager processes
(see step 3 in section 5.2) can be generated inO(n4). N

Sketch of proof3 The order of step 3 is

Ostep3 = Lo.max(O2, O3) (16)

whereLo is the number of iterations of the outer loop (line [1]),

Lo = |Tmp1| = |MAN | ≤ n (17)

andO2 is the order of a search overPROtransitions (line [2]),

O2 = n (18)

andO3 is the order of the inner loop (line [3]),

O3 = Li.max(O4, O5, O6, O7, O8, O9) (19)

where Li is the number of itera-
tions of the inner loop (line [3]). As
Li = |Tmp2| = |Tm)|, whereTm is the set of transitions
in managerm, then



Li ≤ n (20)

andO4 is the order of a search overMANtraps (line [4]),

O4 = n (21)

andO5 = O6 is the order of a search overMANsubprocesses

(lines [5] and [6]),

O5 = O6 = n (22)

andO7 is the order of the time that takes to compose the setD,
which in turn involves the time that takes to perform the differ-
enceIm/J (line[7]). As this time is bounded by|I|.|J | and
|I| and |J | are at most the maximum number of subprocesses
that can be prescribed by a manager to a single employee, then
|I| ≤ n and|J | ≤ n so

O7 = n2 (23)

andO8 is the order of the time that takes to compose setTleft

(line [8]), which involves a search overSPRtraps for every ele-
ment of setD. This time is bounded by|D|.|SPRtraps| ≤ n2,
and then

O8 = n2 (24)

andO9 is the order of the time that takes to generate the rule (line
[9]). We can see the number of elements to be written in the PLTL
program is clearly dominated by|Tij | + |D| + |Tleft|. These
cardinalities are at most the maximum number of employees for
any manager, the maximum number of subprocesses that can be
prescribed on a single manager state and the maximum number
of traps in the PARADIGMmodel respectively. Therefore, the
time of generation is at most3n yielding

O9 = n (25)

From eqs. 20, 21, 22, 23, 24 and 25 we have thatO3 = n3

(eq. 19).
From eqs. 17 and 18 we have thatOstep3 = n4 (eq. 16). M

LEMMA 4 Rules expressing state changes in manager processes
(see step 4 in section 5.2) can be generated inO(n3). N

Sketch of proof4 The order of step 4 is

Ostep4 = Lo.Oi (26)

whereLo is the number of iterations of the outer loop (line [1]),

Lo = |Tmp1| = |SPRtraps| ≤ n (27)

andOi is the order of the inner loop (line [2]),

Oi = Li.max(O3, O4) (28)

whereLi is the number of iterations of the inner loop, this is
Li = |Tmp2| = |T | where|T | is at most the maximum number
of traps in any subprocess, and then

Li ≤ n (29)

andO3 is the order of a search overTRPstates (line [3]),

O3 = n (30)

andO4 is the order of the time that takes to generate the rule
(line [4]). We can see the number of elements to be written in the
PLTL program is clearly dominated by|Stp|, which in turn is at
most the maximum number of states defining a trap, less or equal
thann and then

O4 = n (31)

From eqs. 29, 30 and 31 we have thatOi = n2 (eq. 28).
From eqs. 27 and 28 we have thatOstep4 = n3 (eq. 26). M

LEMMA 5 Rules expressing initial conditions (see step 5 in sec-
tion 5.2) can be generated inO(n). N

Sketch of proof5 Clearly, the order of step 5 is dominated by the
generation time (line [1]) which in turn is proportional to the
number of processes in the PARADIGMmodel. As this number
is less or equal thann, step 5 isO(n). M

Theorems 1, 2, 3, 4 and 5 support our claim, i.e., the entire
translation algorithm runs in polynomial time. In fact, it is at
mostO(n5).

6. AN EXAMPLE
Next we show a PLTL program generated by the translation of
the partial specification of the ATM case study. Also remem-
ber although manager ATM is also involved with subprocess
checkPIN, we are just focusing on manager BankComputer to
illustrate the algorithm. We remind the reader a full version of
the example and the corresponding set of rules is available in [2].

% STATE CHANGES IN EMPLOYEE PROCESSES

% in checkPIN()

2((cpChecked ∧ cPs1) →

3(¬ cpChecked ∧ cpNotChecking))
2((cpNotChecking ∧ cPs2) →

3(¬ cpNotChecking ∧ cpConnected))
2((cpVerifying ∧ cPs3) →

3(¬ cpVerifying ∧ cpChecked))
2((cpConnected ∧ cPs4) →

3(¬ cpConnected ∧ cpVerifying))



% in verifyAccount()

2((vaAccountOK ∧ vAs1) →

3(¬ vaAccountOK ∧ vaNotVerifying))
2((vaAccountNotOK ∧ vAs1) →

3(¬ vaAccountNotOK ∧ vaNotVerifying))
2((vaNotVerifying ∧ vAs2) →

3(¬ vaNotVerifying ∧ vaEncrypted))
2((vaEncrypted ∧ vAs2) →

3( ¬ vaEncrypted
∧

(vaAccountOK ⊕ vaAccountNotOK)))

% SUBPROCESS PRESCRIPTIONS

% by manager BankComputer

2(bcWaiting → (cPs4 ∧ gMs4 ∧ pTs1 ∧ vAs1))
2(bcVerifying → (cPs4 ∧ gMs4 ∧ pTs1 ∧ vAs2))

% STATE CHANGES IN MANAGER PROCESSES

% in BankComputer

2((bcWaiting ∧ tcP4 ∧ tvA1 ) →

3 (¬ bcWaiting ∧ bcVerifying ∧

¬ vAs1 ∧ ¬ tvA1))

% INSIDE TRAPS

% belonging to checkPIN()

2((cPs1 ∧ cpNotChecking) → tcP1)
2((cPs2 ∧

(cpConnected ∨ cpVerifying ∨ cpChecked)
→ tcP2)

2((cPs3 ∧

(cpNotChecking ∨ cpConnected ∨ cpChecked))
→ tcP3)

2((cPs4 ∧ cpVerifying) → tcP4)

% belonging to verifyAccount()

2((vAs1 ∧ vaNotVerifying) → tvA1)
2((vAs2 ∧ vaAccountOK) → tvA2)
2((vAs2 ∧ vaAccountNotOK) → tvA3)

% INITIAL CONDITIONS

init

init →

(cpNotChecking∧vaNotVerifying∧bcWaiting∧. . .)

7. MODEL VERIFICATION
This section shows that is possible to link the PLTL program

resulting from the translation, to a verification procedure about
correctness in the initial PARADIGM model. We show that well-
known properties in the system verification literature [12] can be
naturally expressed in the PLTL program. Further research is
needed to link these notions to the already available tools SPIN
and STeP.

EXAMPLE 6 (safety property) “Any account can be either
accepted or rejected, but it can never be in both states”

2 ¬(vaAccountOK ∧ vaAccountNotOK) M

EXAMPLE 7 (guaranteeproperty)“It is possible for the ATM to
report a PIN as checked while BankComputer is still verifying it.”

3(cpChecked ∧ vAs2) M

EXAMPLE 8 (responseproperties)“All PIN verifications will
eventually end”

2(cpVerifying → 3 cpChecked)

“If ATM requests BankComputer to verify a PIN, it always gets
an answer, either positive or negative”

2(tcP4 → 3(tvA2 ∨ tvA3))

M

EXAMPLE 9 (response/recurrenceproperty) “The stage of
verifying account implies to check if the account is acceptable or
not. After that step the process is re-started.”

2(vaNotVerifying →
3((vaAccountOK ⊕ vaAccountNotOK)

∧
3 vaNotVerifying))

M

EXAMPLE 10 A recurrenceproperty:“The process of checking
a PIN can be cyclically invoked”

2(3cpNotChecking ∧ 3¬cpNotChecking)

However, some readers may find the following two rules easier
to understand:

2(3 (cpNotChecking ∧ 3¬cpNotChecking))

2(3 (¬ cpNotChecking ∧ 3cpNotChecking)) M



It can be seen that the verification process can be set, either at
the more general level of the functionality of the system (ex-
amples 6 and 9) or at a subtler level of traps and subprocesses
(examples 7 and 8). Our PLTL translation can be coupled more
or less easily with a PLTL interpreter to verify temporal proper-
ties. Other alternatives includes the consideration of systems like
STeP and SPIN. As mentioned earlier, SPIN is based on model
checking. Because in this technique the space of possible states
of the global automata is explored the tool is restricted to finite
state systems. On the other hand highly efficient algorithms made
this tool very successful for industrial applications. STeP instead
is a collection of tools mainly focused on a deductive approach
to verification, although also provides model checking support.
Being a deductive system it can deal with infinite state specifica-
tions and hence, providing better scalability than tools centered
on state-exploration like SPIN.

As our work addresses some temporal aspects implicit in
PARADIGM specifications, it may help to encode these notions
in Fair Transition Systems, in the case of STeP, or global
automata, in the case of SPIN. We also believe that our specifi-
cation language may be linked to other verification frameworks.
Indeed, Etessami [9] discusses a translation of an extended
version of Linear Temporal Logic (LTL) to B̈uchi Automata.

8. CONCLUSIONS
We have introduced a translation process that takes a

PARADIGM model and generates a PLTL program which ex-
presses, from a declarative approach, the dynamic behavior of
described by the model. This program can be used to trace pro-
cess interactions and verify, to a certain extent, correctness prop-
erties. For example, classical properties such as guarantee, per-
sistence, response and others can be queried to verify correctness
of PARADIGM models.

We focused on a polynomial translation algorithm (a Prolog
implementation is discussed in [2]). We complement a pre-
vious conference paper ( [3]) which introduced the main con-
cepts behind the translation process and its application in sys-
tem verification. This work is certainly worth to be compared
with [10], where a transition-like operational semantics is con-
sidered. However algorithms and verification possibilities are not
addressed in depth.

Further work is needed to link PARADIGM with verification
tools like Step and SPIN, but nevertheless we have revealed
some important insights on the dynamic aspects of PARADIGM
models. This will hopefully encourage further research on
verification of PARADIGM-modelled systems.
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