An Algorithm to Translate
PARADIGM specifications to PLTL in Polynomial Time

Rodolfo Sabas Gomez * Juan Carlos Augusto Silvia Teresita Acufa
Computing Laboratory, Department of Electronics and Universidad Nacional de
Dept. of computer Science, Computer Science, Santiago del Estero,
University of Kent, University of Southampton, Avenida Belgrano (S) 1912,
CT2 7Nz Canterbury, S017 1BJ Southampton, (4200) Santiago del Estero,
Kent, United Kingdom Hampshire, United Kingdom Santiago del Estero, Argentina
+44 (0) 1227 823824 +44 (0) 23 8059 3440 +54 (0) 385 4509550
rsg2@ikc. ac. uk j ca@cs. sot on. ac. uk sil vac@nse. edu. ar
ABSTRACT We show that is possible to translate a PARADIGM model into

PARADIGM has recently emerged as a new language to de- a PLTL program, thus obtaining an executable specification. The
sign cooperative object-oriented systems. To our knowledge, resulting PLTL program will be composed by a number of logic
PARADIGM temporal aspects have not been studied before. rules implying, at any time, the current state of process execu-
.) . tions. Furthermore, these rules can be entirely generated from
Here we describe a polynpmlal a_Igorlthm to transle_tte the information provided in any PARADIGM model. This paper
PARADIGM models t_o Proposmopal Linear Temporal I_‘_Og"? focuses on the translation algorithm (a Prolog implementation is
programs. The resulting program is an executable specification yiqe sgeq in [2]). This work complements the results presented

Qf the modlelled zystlem,_swtgble f]?rhverlfylggl mor(]jel]E)roper- in [3], which was mainly concerned with translation concepts and
ties. It is also a declarative view of the model. Therefore we .o application in verification.

provide a temporal framework to understand and reason about

PARADIGM models behavior, and system development in One benefit that can be expected from such a translation is that
general. Finally, we believe this work provides further evidence the temporal logic framework allows us to prove correctness
on the benefits that PARADIGM has to offer to the Software properties about the system behavior by automatic means. Prop-
Engineering community. We complement a previous conference erties are intended to be expressed as queries to a PLTL inter-
paper which introduced the main concepts behind the translation preter (see e.g. [6]) with the logic program as a knowledge base.

process and its application in system verification. The interpreter can be also expected to be used as a simulation
tool: process executions can be traced to any situation of interest.
Keywords This feature can be useful during design stages: we can change

Distributed systems, temporal logic, Specification Languages the PARADIGM model, translate it to a logic program, and study
1. INTRODUCTION the process behavior until rgquwements hav_e been met. Fln_ally,
) the logic approach offers a different, declarative way for studying
PARADIGM [14] is a high-level, visual, object-oriented mod- . ;
.) .) PARADIGM models. It provides a possible temporal framework
elling language to design cooperative systems. Itis the SUbIan'fors stem development. We therefore aim to enhance the current
guage of SOCCA [8] used for modelling object communication, Y P '

coordination and cooperation. PARADIGM appears as a promis- knowledge on PARADIGM and its benefits in system develop-

. . ment.

ing approach to the design of complex systems (see e.qg. [15], [7],

and [1]). Paper organization: Section 2 and 3 offer the necessary
overview on PARADIGM and PLTL, respectively. Section 4
presents the concepts behind the translation algorithm, which is
roperly introduced in section 5. Section 7 shows some examples
f verification properties, and conclusions are given in section 8.

Propositional Linear Temporal Logic (PLTL) has been used both
in system specification and verification [13]. A number of tools
have been proposed to accomplish such tasks, notably STeP [4](2
and SPIN [11]. In the STeP framework the specification language
SPL (that means Simple Programming Language) can be used to2, PARADIGM

specify a system that is translated to a Fair Transition System. PARADIGM models a dynamic system as a set of parallel
Then, behavior properties expressed by temporal logic formulas processes. Processes are modelled as state transition diagrams
can be verified using a deductive approach. In the SPIN frame- (STD’s from now on), and they can be assigned a role of em-
work a system is specified using the Promela language to repre-ployees or managers. Managers coordinate their employees by
sent a system conceived through a Global State Automata. Thenprescribing them a proper set of subprocesses.

temporal logic formulas can again be verified but in this case
using the model checking technique. Other approaches to ver-
ification are based on more complex temporal assumptions like
branching time, e.g. Kronos [16], here we focus on linear time
leaving verification over branching time and other issues for fu-
ture exploration.

A subprocess is a temporal constraint placed on the employee
behavior. It is modelled as an STD which inherits a subset of
employee states and transitions, meaning that as long as this sub-
process is prescribed the employee can only achieve part of its
complete behavior. Because an employee can be controlled by
several managers, its behavior at anytime results from the com-

*The author is supported by the ORS Award Scheme, UK Uni- posite behavior assigned by each of its currently prescribed sub-
versities

processes. In other words, employee transitions can only be per-propositions whose cardinality depends on the sets of manager
formed if they are allowed in all subprocesses that are currently and employee processes. Modularity principles applied over the
prescribed to the employee in question. For simplicity, we as- PARADIGM model should keep these sets reasonably small. Fi-
sume all processes in the PARADIGM model are always active. nally, we give our temporal logic gersistence semanticgropo-
sitions preserve their truth values until it is explicitly changed by

Tr model th X ion where empl n r- Lo -
aps model those execution stages where employees need coo a rule, and, unless otherwise implied, propositions are assumed

dination. They are defined as being a subset of subprocess state% be false by default. This will be consistent with our logic pro-
Once an employee enters the first state of those defining a trap, ramming implement'ation of a PLTL interpreter

the manager which prescribed the subprocess containing that trapg
is notified, and the employee can only perform transitions within 4. THE TRANSLATION

the trap. The goal of the translation process is to produce a PLTL pro-
rﬁ{am,P, which simulates the behavior of the processes included
In the PARADIGM model. Process executions are mapped to
the state-sequence semantics of the temporal logic. We call these
states global states in contrast to state changes in STDs appear-
ing in the PARADIGM model. Every global state will be a set

of propositions of three possible different kinds: a) proposition
Manager transitions are assigned to a set of traps which must best, wherest denotes a state of a given processwill be true
entered for the transition in question to be performed. Employee anytimep remains onst, b) propositionsp, wheresp denotes a
executions cannot proceed outside of traps until the manager pre-subprocess of a given employegewill be true anytimesp re-
scribes the right set of subprocesses, thus changing their behaviomains prescribed te and c) propositiorip, wheretp denotes a
restrictions, and in the other way managers cannot proceed untiltrap of a given employee, will be true anytime e remains in-

the right employees are inside their traps. An interesting example sidetp. State changes in PARADIGM processes can be seen as
of a PARADIGM model is explained in [8]. a transformation of the global state at timeG:, into a global

3. THE TEMPORAL LOGIC state at timg + n,n € N, Gi+». Wheren € N represents the

]) . o duration of the execution of the transition being considered.
The system is thought as evolving along a (possibly finite)

sequence of states = so, s1,... wheresy is the initial state. We will assume that all propositions denoting states, sub-
Notice that no final state is enforced in that sequence of states.processes and traps are unique. For example, propo-
This allows the consideration of reactive systems which is a class Sitions cpNot Checki ng, c¢Ps3 and tcP3 denote,
of systems that PARADIGM is well equipped to deal with. Each respectively, that processcheckPI N is currently in
states; is defined as a set of atomic propositions holding at that state Not Checki ng, that subprocesscheckPl Ns3 is
execution stage. Aften steps a computation = s, ..., s, currently prescribed and thatheckPI N is currently inside
had gone througho| = n + 1 states. Time here is used to re- trapT- cP3. Rules in P will simulate PARADIGM dynamics,
fer to the stage sequence the system goes through, so it is linea@sserting or denying the truth of propositions depending on
and with future unbounded. We assume a propositional languageexecution stages. These rules will be conceptually introduced in
Lp based on the traditional temporal operatord (A is true in sections 4.1, 4.2, 4.3, 4.4 and 4.5.
some future state) andA (A is always true from the next state
on). Here we only consider the future fragment, which is enough
to highlight verification possibilities. Other well known opera-
tors like O (next),u (until) and the past fragment can be added
to the proposal in the future with interesting benefits during the
verification stage. The set of well formed formulas of the tempo-
ral language can be defined inductively as folloygs(an atomic
proposition):

Manager states are assigned to a set of subprocesses, one per e
ployee. This set is currently prescribed as long as the manager
remains in that state, but it is possible for a subprocess to be pre-
scribed in several manager states. A manager cannot prescribe
at a given time, more than one subprocess per employee.

Process transitions modify the global state in different ways, and
in turn global states impose different restrictions on employee
and manager transitions. Therefore transitions will be modelled
by rules of the form:0(Pre — < Pos), wherePre is a set of
preconditions which must hold @#: to perform the state change,
andPos is a set of postconditions holding on the new global state
G++n, after the change. So rules will only express the order in
which states can be visited. This is due to PARADIGM’s lack
b = pldld1 A da|d1 V da|d1 — 2] PO of information concerning the time that processes spend inside
states and the time that transitions require to be performed.

Formula semantics is shown below w.r.t. a paitt) where Rules composing? will be illustrated through a simpler ver-

T = 50581y- 00y 5ty- - sion of the example given in [8]. Figs. 1 to 6 show part of a
(o,t) Ep iff p € s; with p atomic PARADIGM model for an Automatic Teller Machine (see [2]
(0,t) E —¢1 iff (o,t) & ¢1 for a more detailed example). ProcedseckPI N (Fig. 1) is
(0,t) E ¢1V @2 iff (o,t) = ¢1 0r(0,t) = ¢2 responsible for checking user's PIN on his magnetic card, but
(0,t) E @1 A @2 iff (o,t) = ¢1 and(o,t) = ¢ to do this it needs to call proceseri f yAccount (Fig. 4).
(0,t) = 1 — ¢ ff (0,t) [~ ¢1 O (0,t) = ¢2 Both processes are employees of managenkConput er
(0,t) E ©o iff existss >t: (o0,s) = (Fig. 6 shows a subset of the proper STD), which coordinates the
(o,t) =0¢ iff foralls >t¢: (0,s) F ¢ caller-called relationship by prescribing each employee a differ-

ent set of subprocesses as needed. Figs. 2 and 5 show the subpro-
cesses that can be prescribed by BankComputeheck Pl N
andveri f yAccount, respectively. checkPI N is also em-
ployee of manageATM but it is not included in our example.
However it is important to show (Fig. 3) which subprocesses can
be prescribed taheck Pl Nby ATM Traps are shown as shaded
boxes.

This language provides a set of well formed formulas which is ex-
pressive enough to encode a PARADIGM model in a declarative
way. It also provides the means to express well known schema
formulas [12] used in system verification, like¢ (safety

and others from the “liveness family” like>¢ (guaranteg,
O(¢p1 — <Og¢e2) (responsiecurrencg, CO¢ (persistenceand
O0C¢; — OO¢s (progresy. The framework requires sets of

MotChecking Connected Verifying Checked

call WA storeResult

Figure 1: Employee procestheckPl N

checkPINs3
MlotChecking Connected Werifying Checked
T-cP3
checkPINs4

MotChecking Connected Werifying Checked

? ()

T-cP4

Figure 2: Sprocs. ofcheckPl N (BankConput er)
checkPINs1

MotChecking Cannected Verifying Checked

C? TwO—»O—»ﬁ)

checkPINs2
MotChecking Connected Verifying Checked

@ T-cP2 ’O ’O ’O

Figure 3: Sprocs. ofcheckPl N(ATM

4.1. Employee transitions

These kind of rule models a given transitibn; from state
st; to st; in employeee. This transition is allowed only it
is currently onst; andts;; is allowed in all subprocesses that
are currently prescribed te. This set of subprocesses cannot
be known in advance, but fortunately there is another way to ex-
press the same requirement. Bt = {m., ..., mq} be the set
of all managers foe andS, = {sp7, ..., spy, } the set of all sub-
processes which can be prescribee toy anym, € M., such
thatts;; is allowed inspy,, for all 1 < k < n. Thents;; can
be performed if, for each managet,, at least one of the sub-
processes iy, is currently prescribed. Let sefs, ..., S, de-
note the subprocesses prescribed by managers. ., m, (and
constrained as mentioned before); and suppose they are, respec-
tively: {spi,...,spt},...,{spl,...,sp?}. Finally the rule ex-
presses that after the changeill be no longer in statet; but in

Stj:

O((sts A (spT V... Vspr) A... A (spl V...V spD)
— <>(_\ Sti A St]‘))

. AccountOk

storeResult

Motyerifying @ . Encrypted

ActyA storeResult
. AccountHotOk

Figure 4: Employee proceswveri f yAccount
verifyAccountsl

ho AccountOk

T-wA1

Motverifying

AccounthotOk

verifyAccounts2

Accountdlk

. Encrypted
lotverifring

T-vA3 . AccountHotOk

Figure 5: Subprocesses oferi f yAccount

ExampPLE 1 Consider transition ¢all VA’ from
Connect ed to Veri f yi ng in checkPI N (Figs. 3 and 2). It
is allowed incheckPl N.s1 and checkPl N.s2 (prescribed
by ATM), andcheckPI N_s4 (prescribed byBank Conput er).
Therefore eithercheckPl N.s1 or checkPl N.s2, and
checkPl N.s4 must be prescribed for the transition to be
performed (“€Ps1VvcPs2)AcPs4”):

d((cpConnected A ((cPslvcPs2) A cPs4))
— O(—~cpConnected A cpVerifying)) A

Note that it is also possible that other outgoing transitions from
statest; are included in the same subprocesSes..., S;. Let
st?,st3, ..., st be the after states in question, apdhe exclu-
sive 'or’ operator A ® B = ((AA—-B)V (-mAA B))). Then the
general rule schema becomes:

O((sts A (spt V... Vspr) A... A (spl V...V sp?))
— O(— st A (st; @ st? &) st;3 D ... D sty))

4.2. Manager transitions

These kind of rule models a given transitits); from state

st; 10 st; in managerm. This transition is allowed only ifn

is currently onst; and the right employees are currently inside
the traps related withs;;. This set of subprocesses cannot be
known in advance, but fortunately there is another way to ex-
press the same requirement. The rule also expresses that after the
transition has been performed is no longer inst; but in st;,

and therefore that the set of currently prescribed subprocesses

Wialing

O(bcWai ting

werl
arifying —(cPs4 A gMs4 A pTsl A VAsl))

4.4, Traps

This kind of rule models the time employees remain inside their
traps. Specifically, for every tragp in subprocessp, wheresp

is a subprocess of employee there will be a rule expressing
Figure 6: Manager processBankConput er (fragment) that e is currently insidefp if e it is in any statestq, ..., sty

included intp. Rule is shown below:
has been (possibly) changed. In fact, it is possible that some of

those subprocesses prescribedsgrare no longer prescribed on O((sp A (st V...V stn)) — tp)
stj, or remain prescribed ost; or even that new subprocesses

are prescribed ost;.
P ! ExampPLE 4 EmployeecheckPl Nremains inside trap- cP2

Let {tp1,...,tpn} be the set of traps related withs;;, as long as it is prescribed subprocedseckPl N.s2 and re-
{sp1,...,spm} the set of subprocesses prescribedsonbut mains in state€onnect ed, Veri f yi ng or Checked:

not onst;, and{tpy, ..., tp.} the set of traps included in any

spsi, 1 < i < m. We will see that all new subprocesses that are O((cPs2 A

prescribed inst; but not inst; are handled by other kind of rule (cpConnect ed v cpVeri fyi ng vV cpChecked))
(section 4.3). Finally, those propositions denoting subprocesses — t cP2) A

that remain prescribed frost; to st; do not require any action,
i.e., they are not explicitly asserted nor denied and thus remain

true (persistence semantics). The rule is shown below: 4.5. Initial conditions
We provide a rule to set propositions at the first global state.

O((sti A (tp1 A ... Atpn)) Here we coordinate processes as starting execution in their initial

— O(= st Astj A(—mspt Ao A= Spm) states, but different rules may be provided to change the initial

A(=tpg A A S tpy))) execution conditions.
Let {sti1,...,st,} be the set of processes initial states (sub-

EXAMPLE 2 Consider the transition from Witing processes initially prescribed are inferred according to the rules
to Verifying in BankConput er (Fig. 6). of section 4.3). The translation will generate the faat t

This change cannot be performed untii both a proposition which will only hold at the initial time, and the
traps T-cP4 and T-vAl have been entered following rule:

(“tcP4 A tvAl"). Once the manager is in state
Veri fying, subprocess verifyAccount sl is
no longer prescribed and thus tra-vAl is left
("= vAsl A - tVvALY):

init —(sti A...A sty)

ExXAmMPLE 5 The rule below specify the initial states of

O((bcWaiting A tcP4 A tvAl) employees checkPI N, verifyAccount and manager
— O(— bcwaiting A bcVerifying A BankConput er:
- vAsl A = tvAl)) A
init —
Previous rules model the time each employee and manager pro-(CpNOt Checki ng A vaNot Veri fyi ng Abc\i ting) A

cess remain in their states. However, this time depends on the

dynamics of subprocesses and traps. Following rules assert that . o _ L
knowledge. Note that the assertion dfc\i ti ng as initial state implies

a set of initial subprocesse®s4, gMs4, pTsl, VvAsl by

4.3. Subprocess prescription virtue of the rule shown in example 3, and in turn, because

This kind of rule models the time subprocesses remain Of VAs1l andvaNot Veri fyi ng, this also implies that vAl
prescribed to their employees. Specifically, for every state of holds (fig. 5). Also, and according to our persistence semantics,
a manager process there will be a rule expressing the set ofall other propositions, i.e. the rest of states, subprocesses and
subprocesses that are prescribed while the manager remaingraps which are not mentioned nor implied, are assumed to be
in that state. Letst; be a manager state afdps, ..., sp,} false in the initial state.
the subprocesses which are prescribed in this state. The rule iss_ THE ALGORITHM

shown below. In this section the translation process will be described as a set

of steps that takes a PARADIGM model as input and generates
a PLTL program as output. The PARADIGM model is assumed
to be correct, and contains all the information needed by the al-

O(st;i — (sp1 A ... A spn))

EXAMPLE 3 Consider the subprocesses tiBank Conput er gorithm: processes, subprocesses, states, traps and some of their
prescribes while it is in stateMiting (Fig. 6), like relationships. This information is modelled as a collection of sets
checkPI N.s4 (“cPs4”) and verifyAccount s1 (section 5.1), which is a suitable form where future implementa-
(“vAs1"): tions can be obtained from. The algorithm itself will be described

in natural language (section 5.2).

5.1. Algorithm inputs 6. The set SPR:, of traps in every subprocess.
The sets that are shown below encode those elements of the

PARADIGM model which are needed by the translation process. SPRup = Ui, {(spi, UL, {tp;})} wheresp; denotes
We do not assume any particular tool for constructing these sets. a subprocess antp; denotes a trap ofp;. For example
For the sake of space economy, we have chosen a set of labels SPRirp, =

for denoting processes, states, subprocesses and traps which are {(cPsl, {tcP1}),

shorter than those appearing in the figures. However, these la- (cPs2, {tcP2}),

bels are quite obvious and easy to recognize. For exampsd (cPs3, {tcP3}),

denotes subprocestieck Pl N_.s4. Input sets comprise the fol- (cPs4, {tcP4}),

lowing (examples refer to the Automatic Teller Machine case (vAsl, {tvAl}),

study described in section 4): (vAs2, {tvA2, tvA3})...}

7. The set EMP,,. of subprocesses which can be

1. The setE M P of employee processes. For example,)
prescribed by every manager to every employee.

EMP = {checkPIN, verifyAccount, ...} EMPypr = i1 ;'n:1 {(ei,my, Ui=y {spe})}
wheree; denotes an employee;; denotes a manager for
2. The setM AN of manager processes. For example, e; andspy denotes a subprocesse«that can be prescribed

by m;. For example
MAN = {atm bankConputer, ...}

EMPsp, =
3. The set PRO:, of transitions in every process. {(chengl N, at m {cPs1, cPs2})
PROuws = Uini A, UL, {(sty, ste) D} (checkPI N, bankConput er, {cPs3, cPs4}),
L < k < m, wherep; denotes a process aret;, stx) (verifyAccount, bankConput er, {vAs1, vAs2})
denotes a transition from state; to statesty in p;: !
PRO;ys = 8. The setl NI, of initial states. INIsa = U], {STi}
{(checkPI N, wherest; denotes a process initial state.
{(cpNot Checki ng, cpConnect ed),
(cpConnect ed, cpVeri fyi ng), INIsta = _ o o
(cpVeri fyi ng, cpChecked), { cpNot Checki ng, vaNot Veri fyi ng, bcWai ti ng,
(cpChecked, cpNot Checki ng)}), .
(verifyAccount, 9. The sefl'RS,,. of subprocesses every employee transition

{(vaNot Veri f yi ng, vaEncr ypt ed),
(vaEncrypt ed, vaAccount OK),
(vaEncrypt ed, vaAccount Not OK),
(vaAccount OK, vaNot Ver i fyi ng)})
(vaAccount Not OK, vaNot Veri f yi ng)})

is included in.

TRSwr = U, {((sti,st;), Uy, {spx})} for some
1 < j < n, where(st,, st;) denotes a transition of a given
employeeFE from statest; to statest; and sp, denotes a
subprocess of containing such a transition. For example,

.}
4. The setM AN, of subprocesses prescribed in every man- TRSspr =
ager state. MAN,,,» = U, {(sts, ;":1 {sp;)} {((cpNot Checki ng, cpConnect ed),
where st; denotes a manager state ang; de- {cPs2, cPs3, cPs4}),
notes a subprocess prescribed dfy. For example, ((cpConnect ed, cpVeri fying),
{cPs1, cPs2, cPs4}),
MAN,,, = ((cpVeri fyi ng, cpChecked),
{(bcWi ting, {cPs4,gMs4, pTs1,VvAsl}), {cPsl1, cPs2, cPs3}),
(bcVeri fying, {cPs4, gMs4, pTs1, vAs2}) ((cpChecked, cpNot Checki ng),
) {cPs1, cPs3, cPs4}),
o ((vaNot Veri fyi ng, vaEncrypt ed), {vAs2}),
5. The set TRP., of states defining every trap. ((vaEncrypt ed, vaAccount OK) , {vAs2}),
TRPswo = UZ, {(p:,UjZ, {st;})} where tp;, ((vaEncrypt ed, vaAccount Not OK) , {vAs2}),
denotes a trap anst; denotes a state inside trap;. For ((vaAccount OK, vaNot Ver i fyi ng) , {vAs1l),
example, ((vaAccount Not OK, vaNot Veri fyi ng), {vAs1}),
TRPya = -
{(tcP1, {cpNot Checking}), 10. The set\l AN, of traps related with manager transitions.
(tcP2, MANy, = Ui, {((ste, sty), Uy, {tpx})} for some
{cpConnect ed, cpVeri fyi ng, cpChecked}), 1 < 5 < n, where(st;, st;) denotes a transition of a given
(tcP3, managerm from statest; to statest; andtp, denotes a
{cpNot Checki ng, cpConnect ed, cpChecked}), trap related with that transition. For example,
(tcP4, {cpVerifying}),
(tvAl, {vaNotVerifying}), MAN, =
(tvA2, {vaAccount OK}), {((bcWii ting, bcVerifying), {tcP4,tvAl}),
(tvA3, {vaAccount Not OK}), .

3

5.2. Algorithm steps

ating a kind of rule for the PLTL program. We assume the ex-

istence of a procedurgener at eRul e() which performs the
output of a rule to the PLTL program. All variables are consid- PROCEDURE:
ered local to each step environment. Set variables are denoted
with uppercase calligraphic letters, e4. Element variables are
denoted with uppercase italic letters, e4y. Constant elements
will be denoted with lowercase italic letters, eqg.

1) State changes in employee processes

| NPUT: EMP, PROtra,nsitions, TRSsupr‘OCESSeSv
EMPsubp'rocesses

PROCEDURE:

2l

(4]

[5]

(6]
(7l

(8]

% for each enpl oyee
Tmpl := EMP
Repeat until Tnpl = @
begi n
Let ec Tnpl
Tpl : = Trpl/ {e}
Let 7. such that (e,7c) € PROtransitions
% for each transition of this enpl oyee
Tmp2 = 7.
Generated := (
Repeat until Tnp2 = @
begin
Let (sti,stj) € Tnp2
Tmp2 : = Tmp2/ {(sti, st;)}
% S;; is the set of all subprocesses
% containing this transition
Let S;; such that:
((Sti7 St])7S’L]) S TRSsubproccsses
% S. is the set of all subprocesses
% prescribed by each manager to this
% enpl oyee
Let Se= {Sm | Ime MAN
((6, m,Sm) S EMPsuprOCeSSeS)}
% intersect each subset of S. with
% Si;, and formthe set ;.
%7 C S, expresses the optimzation
% described in sec. 4.1
Let S ={Z | 3Sm € S.
(IT=8.NSi; N ITCSm)}
Let J = {st}|((sts, st}),Si;) € TRSsubprocesses
AVI € SF(INS;; #0)}
if (sti,J,Si;) ¢ Generated
t hen
Suppose:
S ={{spt,...,spr},. . {spf, ..., sp1}}
T = {st;,st3, st} .., sth}
Gener at eRul e(
O((st; A (spt V...V sp)
AN (spl v...V sp?))
—O(stiN(st; D st? ®...Psty)))

)
Gener at ed: =Gener ated U{(st;,J,S;})}
end % {Repeat until Tnp2 = @}
end % {Repeat until Tnmpl = @}

Now we describe the translation algorithm as a set of steps, 2) State changes in manager processes
each one taking one or more input sets (section 5.1) and gener-

I NPUT MAN, PROtransitions, MANt'raps,
MANsubp'rocesses

% for each manager

1]

end % {Repeat until Tnpl = @}

Tnpl := MAN
Repeat until Trmpl = @
begin

Let me Tnpl
Trpl : = Tnpl/ {m}

% 7, is the set of transitions of this
% manager
Let 7,, be such that:
(m, Tm) € PRO¢ransitions
Tnp2 = 7,

% for each transition of 7,
Repeat until Tnp2 = @
begin

Let (sti,st;) € Tnp2

Tp2 : = Tnp2/ {(sti, st;)}

% 7;; is the set traps of this
%transition, i.e. those traps that
% must be entered for this transition
% coul d be perforned
Let 7,; be such that:

((Sti, stj),’T,'j) c MANtraps

%7 is the set of subprocesses
% prescribed in state st;
Let Z be such that:

(Sti7I) S MANsubp'r'ocesses

% J is the set of subprocesses
% prescribed in state st;
Let J be such that:

(Stj7 j) S MANsubp'rocesses
D=1I/TJ

% Tipe 1S the set of traps included
% in subprocesses of D, i.e. those
%traps that are left after the
% state change
Let Tiepe= {tp | Isp €D
((sp, Tsp) € SPRiraps Ntp € Top)}

Suppose 7;; = {tp1,...,tpn}
Suppose D = {spi,...,SPm}
Suppose Tiert = {tpg,---,tpu}
Gener at eRul e(

O((stin(tpr A ... Atpp) —

O(st Ast; A(—spr Ao A —spm)
) A(=tpg A ... A =tpu))

end % {Repeat until Tnmp2 = @}

3) Subprocess prescriptions
I NPUT: MANsubprocesses
PROCEDURE:

% for each nmanager state
Tﬂ'pl = MANsubprocesses

[1] Repeat until Tnpl = @
begin

% Sst is the set of all subprocesses
% prescribed in this state
Let (st,Sst) € Tnpl
Tnpl : = Tnpl/ {(st,Ss)}
Suppose S. = {sp1,...,SDn}
2] GenerateRul e(O(st — (sp1 A...Aspn)))
end % {Repeat until Tnpl = O}

4) Inside a trap.
I NPUT: SPRiraps, TRPstates
PROCEDURE:

% for each subprocess
Tmpl : = SPRiraps

[1] Repeat until Tnmpl = @
begin

%7 is the set of traps of this
% subpr ocess

Let (sp,7) € Tnpl

Trpl : = Tnpl/ {(sp,7T)}

% for each trap in 7

2] Repeat until 7T =0
begin
Let tpeT
T = T/{tp}

% Sip 1S the set of states defining
%this trap

3] Let S;, such that (tp,Sip) € TRPstates
Suppose Si, = {st1,...,stn}

[4] Generat eRul e(O((sp A (st1 V...V stn)) — tp))

end % {Repeat until 7 =@}
end % {Repeat until Tnpl = @}

5) Initial conditions.
I NPUT: INIstates
PROCEDURE:

CGenerateRule(init)
Suppose INIsates = {st1,...,Stn}
1] GenerateRule(init — (st1 A...Asty))

5.3. Complexity

It can be proved that our translation algorithm runs in polyno-
mial time. We will develop our complexity analysis using the
asymptotic notation often known éthe order of” or “big Oh”

(see for example [5]). Thus we will find an upper bound for the
worst-case execution time of the algorithm steps presented previ-
ously. Formally,

DEFINITION 1 Letn € N be the size of the algorithm input and
t : N — R=Y a function expressing the algorithm execution time
for inputn. Let f : N — R2 an arbitrary function, thenis “in

the order of’f iff ¢(n) € O(f(n)), where

O(f(n)) = {g: N — R="|
(3c e RT)
(Hno S N)
(Vn > no)

lg(n) < cf(n)]}

A

Therefore, we can state our claim in the asymptotic notation as:

THEOREM1 Let n be the size of a given PARADIGM model
M, i.e. the input size for the translation algorithm. L:ét)

be the function expressing the algorithm execution time. Let
St, Sp and T'p be respectively the sets of all states, subpro-
cesses and traps o¥1. Let ISi,...,IS, be the input sets
derived from M, i.e. those sets obtained as shown in sec-
tion 5.1. Thent(n) is polynomial on the size of, where

n = max(|St|, |Sp|, | Tp|, [I51], ..., |ISm|). A

We defined the model size as being the maximum cardinality
among particular sets because a) the algorithm performs its com-
putation over different input sets and b) we must operate with a
unified input size for obtaining a unique function expressing the
order of the entire algorithm.

It is also worthy to mention that some execution times are con-
sidered negligible in the broader computation. These comprise
assignments and the time that takes to remove an element from
a set once it has already been found. In addition we assume that
sets are simply implemented as lists, that all set operations are
performed as sequential searches over their data structures and
the time that takes to generate a rule is proportional to the num-
ber of propositions included in the rule schema.

The translation algorithm comprises five separate steps (see sec-
tion 5.2, all assumed to be performed sequentially. Proving that
each one of these steps runs in polynomial time allow us to in-
fer the entire algorithm is polynomial. These partial proofs refer
to some lines in the algorithm which has been marked wiih [
Functionmazx(as,...,an) returns the maximum value among
ai,...,an. |S| denotes the cardinality of sét

LEMMA 1 Rules expressing state changes in employee processes
(see step 1 in section 5.2) can be generatad(in®). A

Sketch of prool The order of step 1 is

Ostept = Lo.maz(02,03) 1)

whereL, is the number of iterations of the outer loop (line [1]),

Lo, =|Tmpl| = |EMP|<n)

andOs is the order of a search oVEYRO:ransitions (line [2]),

02 =N (3)

andOs is the order of the inner loop (line [3]),

03 = Li.mam(04, 05, 06, 077 Og) (4)
whereL; is the number of iterations of the inner loop (line [3]),

L; = |Tmp2| = |7.|, whereT, is the set of transitions in em-
ployeee,

andOy is the order of a search OVEIR Psupprocesses (line [4]),

04 =N (6)

andO:s is the order of a search OVEIM Psypprocesses (line [5]),

05 =N (7)
andQg is the order of the time that takes to composess’}ét(line

[6]), which involves an intersection-inclusion proof for every el-
ement of sesS.,

O = |Se|.maz(0On, O¢) (8)

whereOn is the order of the time that takes to perfofin N S;;,
which in turn can be bounded B, |.|S;;|. AS |Sw|is at most

the maximum number of subprocesses that can be prescribed by a

manager to a single employee, g%, | is at most the maximum
of subprocesses a given transition is part of, thgn| < n and
|SZJ‘ <n, then

On=n" 9)

andOc is the order of the time that takes to perfofmC S,
which in turn can be bounded H¥|.|S,.|. As |Z| is at most
|Sm| < m, then

OC = TL2 (10)

and|S.| is at most the maximum number of managers for a given

employee,

S| < m (11)

O refers to the se¥ of other outgoing transitions from the same

Os is the order of the time that takes to generate the rule (line
[8]). We can see the number of elements to be written in the
PLTL program is clearly dominated b@f;ﬂ, which in turn is at
most|S.| < n and then

From egs. 9, 10, 11 and 12 we have tBat= n?> (eq. 8).
From egs. 5, 6, 7 and 8 we have tiia = n* (eq. 4).
From egs. 2, 3 and 4 we have th@f:.,1 = n° (eq. 1). A

LEMMA 2 Rules expressing subprocess prescriptions in man-
ager states (see step 2 in section 5.2) can be generated in
O(n?). A

Sketch of proo2 The order of step 2 is

Ostep? = Lo~02 (13)

whereL, is the number of iterations of the outer loop (line [1]),

L, = |Tmp1| = |MANsubp'rocesses‘ S n (14)

and O is the order of the time that takes to generate the rule
(line [2]). We can see the number of elements to be written in the
PLTL program is clearly dominated by &s,—, which in turn

is at most the maximum number of subprocesses that a manager
can prescribe on a single state, and then

02 =n (15)

From egs. 14 and 15 we have ti@t;.,» = n? (eq. 13). A

LEMMA 3 Rules expressing state changes in manager processes
(see step 3 in section 5.2) can be generatad(in). A

Sketch of proo8 The order of step 3 is

Osf,epg = Lo.mam(Og, 03) (16)

whereL, is the number of iterations of the outer loop (line [1]),

Lo =|Tmpl| = |MAN|<n a7)

andO: is the order of a search oVEIRO¢ransitions (line [2]),

Os=n (18)
andOs is the order of the inner loop (line [3]),

O3 = L; maz(0y4, 05,0, 07, Os, Og) (19)
where L; is the number of itera-
tions of the inner loop (line [3]). As
L; = |Tmp2| = |T)|, where7Z,, is the set of transitions

state. This construction, and related operations like the searchin managein, then

over theGener at ed set can be proved to be subsumedhy

andOy is the order of a search ov87 AN, (line [4]),

andOs = Og is the order of a search ove ANsupprocesses
(lines [5] and [6]),

05 OG =n (22)
and Oy is the order of the time that takes to compose thelxet
which in turn involves the time that takes to perform the differ-
enceZ,,/J (line[7]). As this time is bounded byZ|.|7| and

|Z| and|J| are at most the maximum number of subprocesses

where L; is the number of iterations of the inner loop, this is
L; = |Tmp2| = |T| where|T]| is at most the maximum number
of traps in any subprocess, and then

L; <n (29)
andOs is the order of a search OV&IR Pstqates (line [3]),
O3=n (30)

and Oy is the order of the time that takes to generate the rule
(line [4]). We can see the number of elements to be written in the
PLTL program is clearly dominated B:,|, which in turn is at
most the maximum number of states defining a trap, less or equal
thann and then

that can be prescribed by a manager to a single employee, then

|Z| <nand|J| < nso

07 =n? (23)
andOs is the order of the time that takes to composeZet:
(line [8]), which involves a search ov&tP R, fOr every ele-
ment of setD. This time is bounded byD|.|SPRiraps| < 02,

From egs. 29, 30 and 31 we have that= n? (eq. 28).
From egs. 27 and 28 we have ti;.,4 = n* (eq. 26). A

LEMMA 5 Rules expressing initial conditions (see step 5 in sec-
tion 5.2) can be generated @(n). A

and then

Sketch of proob Clearly, the order of step 5 is dominated by the
generation time (line [1]) which in turn is proportional to the

number of processes in the PARADIGMmodel. As this number
is less or equal than, step 5isO(n). A

Os =n’ (24)
andOy is the order of the time that takes to generate the rule (line
[9]). We can see the number of elements to be written in the PLTL
program is clearly dominated b{f;;| 4+ |D| + |Zier¢|. These Theorems 1, 2, 3, 4 and 5 support our claim, i.e., the entire
cardinalities are at most the maximum number of employees for translation algorithm runs in polynomial time. In fact, it is at
any manager, the maximum number of subprocesses that can benostO(n°).
prescribed on a single manager state and the maximum number
of traps in the PARADIGMmodel respectively. Therefore, the

6. AN EXAMPLE

time of generation is at mo8t. yielding

Next we show a PLTL program generated by the translation of
the partial specification of the ATM case study. Also remem-
ber although manager ATM is also involved with subprocess
checkPIN, we are just focusing on manager BankComputer to
illustrate the algorithm. We remind the reader a full version of
the example and the corresponding set of rules is available in [2].

From egs. 20, 21, 22, 23, 24 and 25 we have that= n®
(eq. 19).

From egs. 17 and 18 we have tl@¢;.,3 = n* (eq. 16). A

. . % STATE CHANGES | N EMPLOYEE PROCESSES
LEMMA 4 Rules expressing state changes in manager processes

(see step 4 in section 5.2) can be generated(in®). A
% in checkPl N()
Sketch of proo# The order of step 4 is
O((cpChecked A cPsl) —
Osteps = Lo.O; (26) &O(— cpChecked A cpNot Checki ng))

O((cpNot Checking A cPs2) —
&(— cpNot Checki ng A cpConnect ed))
O((cpVerifying A cPs3)
O(— cpVerifying A cpChecked))

whereL, is the number of iterations of the outer loop (line [1]),

—

- . O((cpConnected A cPs4) —
Lo = [Tmpl| = |SPRiraps| < n @7 O(— cpConnected A cpVerifying))
andO; is the order of the inner loop (line [2]),
Oi = Li.ma;v(037 04) (28)

% in verifyAccount ()

O((vaAccount OK A VvAsl) —
<&(— vaAccount OK A vaNot Veri fying))
O((vaAccount Not OK A vAsl) —

O(— vaAccount Not OK A vaNot Veri fyi ng))

O((vaNot Verifying A vVAsS2) —
O(— vaNot Verifying A vaEncrypted))
O((vaEncrypted A VAs2) —
<&(- vaEncrypted
A
(vaAccount K ¢ vaAccount Not OK)))

% SUBPROCESS PRESCRI PTI ONS

% by manager BankConput er

O(bcVWaiting — (cPs4 A gMs4 A pTsl A VvAsl))
O(bcVerifying — (cPs4 A gMs4 A pTsl A VAs2))

% STATE CHANGES | N MANAGER PROCESSES

% i n BankConput er

O((bcVaiting A tcP4 A tVvAL) —
<& (- bcWaiting A bcVerifying A
- VAsl A - tVvAl))

% | NSI DE TRAPS

% bel ongi ng to checkPl N()

O((cPs1 A cpNot Checking) — tcPl)

O((cPs2 A
(cpConnected Vv cpVerifying Vv cpChecked)
— tcP2)
O((cPs3 A
(cpNot Checki ng v cpConnected Vv cpChecked))
— tcP3)

O((cPs4 A cpVerifying) — tcP4)

% bel ongi ng to verifyAccount ()

O((vAsl A vaNot Verifying) — tvAl)
O((vAs2 A vaAccount OK) — tvA2)
O((vAs2 A vaAccount Not OK) — tVvA3)

% | NI TI AL CONDI TI ONS

init
init —

(cpNot Checki ngAvaNot Veri fyi ngAbcVai tingA...)

7. MODEL VERIFICATION

This section shows that is possible to link the PLTL program
resulting from the translation, to a verification procedure about
correctness in the initial PARADIGM model. We show that well-
known properties in the system verification literature [12] can be
naturally expressed in the PLTL program. Further research is
needed to link these notions to the already available tools SPIN
and STeP.

EXAMPLE 6 (safety property) “Any account can be either
accepted or rejected, but it can never be in both states”

O —(vaAccount K A vaAccount Not OK) A

EXAMPLE 7 (guaranteeproperty)‘It is possible for the ATM to
report a PIN as checked while BankComputer is still verifying it

O(cpChecked A VAs2) A

ExamPLE 8 (responseproperties)“All PIN verifications will
eventually end”

O(cpVerifying — < cpChecked)

“If ATM requests BankComputer to verify a PIN, it always gets
an answetr, either positive or negative”

O(tcP4 — O(tvA2 v tvA3))
A

EXAMPLE 9 (response/recurrenceproperty) “The stage of
verifying account implies to check if the account is acceptable or
not. After that step the process is re-started”

O(vaNot Verifying —
O((vaAccount OK @ vaAccount Not OK)
A
<& vaNot Veri fyi ng))

A

ExamPLE 10 A recurrenceproperty: “The process of checking
a PIN can be cyclically invoked”

O(©cpNot Checki ng A O—cpNot Checki ng)

However, some readers may find the following two rules easier
to understand:

O(< (cpNot Checki ng A ©&—=cpNot Checki ng))
O(< (— cpNot Checking A <&cpNot Checki ng)) A

It can be seen that the verification process can be set, either at [3] Juan C. Augusto and Rodolfo S6@ez. A temporal logic

the more general level of the functionality of the system (ex-

amples 6 and 9) or at a subtler level of traps and subprocesses

(examples 7 and 8). Our PLTL translation can be coupled more
or less easily with a PLTL interpreter to verify temporal proper-

ties. Other alternatives includes the consideration of systems like
STeP and SPIN. As mentioned earlier, SPIN is based on model

view of paradigm specifications. Rmoceedings of
Fourteenth International Conference on Software
Engineering and Knowledge Engineering (SEKE®@2ges
497-503, Ischia, Italy, July 2002.

] N. Bjorner, A. Browne, M. Colon, B. Finkbeiner,

checking. Because in this technique the space of possible states

of the global automata is explored the tool is restricted to finite
state systems. On the other hand highly efficient algorithms made
this tool very successful for industrial applications. STeP instead
is a collection of tools mainly focused on a deductive approach
to verification, although also provides model checking support.
Being a deductive system it can deal with infinite state specifica-
tions and hence, providing better scalability than tools centered

on state-exploration like SPIN.

As our work addresses some temporal aspects implicit in
PARADIGM specifications, it may help to encode these notions
in Fair Transition Systems, in the case of STeP, or global
automata, in the case of SPIN. We also believe that our specifi-
cation language may be linked to other verification frameworks.
Indeed, Etessami [9] discusses a translation of an extended

version of Linear Temporal Logic (LTL) to iEchi Automata.

8. CONCLUSIONS

We have introduced a translation process that takes a
PARADIGM model and generates a PLTL program which ex-

(5]

(6]

(7]

(8]

presses, from a declarative approach, the dynamic behavior of [9]

described by the model. This program can be used to trace pro-
cess interactions and verify, to a certain extent, correctness prop-

erties. For example, classical properties such as guarantee, per-
sistence, response and others can be queried to verify correctness

of PARADIGM models.

We focused on a polynomial translation algorithm (a Prolog
We complement a pre-
vious conference paper ([3]) which introduced the main con-
cepts behind the translation process and its application in sys-
tem verification. This work is certainly worth to be compared
with [10], where a transition-like operational semantics is con-

implementation is discussed in [2]).

(10]

sidered. However algorithms and verification possibilities are not [11]

addressed in depth.

Further work is needed to link PARADIGM with verification
tools like Step and SPIN, but nevertheless we have revealed
some important insights on the dynamic aspects of PARADIGM
This will hopefully encourage further research on

models.
verification of PARADIGM-modelled systems.

9. REFERENCES
[1] T. Arai and F. Stolzenburg. Multiagent Systems
Specification by UML Statecharts Aiming at Intelligent
Manufacturing. Technical report, Univerdit
Koblenz-Landau, December, 2001.

[2] J. C. Augusto and R. S.@nez. A Procedure to Translate

Paradigm Specifications to Propositional Linear Temporal
Logic and its Application to Verification. Technical report,

Department of Electronics and Computer Science,
University of Southampton, U.K., 2002. 42 pages,
available at

http://ww. ecs. soton. ac. uk/ ~j ca/ Par 2PLTL. pdf .

(12]

(13]

(14]

(15]

(16]

Z. Manna, B. Sipma, and T. Uribe. Verifying Temporal
Properties of Reactive Systems: A STeP Tutofarmal
Methods in System Desigh999.

G. Brassard and P. Bratlelfundamentals of Algorithmics
Prentice Hall, 1996.

M. L. Cobo and J. C. Augusto. Logical Foundations and
Implementation of an Extension of Temporal Prolddne
Journal of Computer Science and Technology (JCS&T),
sponsored by ISTEC (Iberoamerican Science &
Technology Education Consortiuni)2):22—-36, 1999.

T. de Buntje, G. Engels, L. Groenewegen, and

A. Matsinger. Industrial Maintenance Modelled in
SOCCA. InRijn-beek, editokourth International
Conference on the Software Process. Proceedipages
13-26. IEEE Computer Society Press, 1996.

J. Ebert, L. Groenewegen, and Rit&nbach. A
Formalization of SOCCA. Technical Report 10-99,
Universitat Koblenz-Landau, 1999.

K. Etessami. Stutter-invariant languages, omega-automata,
and temporal logic. IRroceedings of 11th International
Conference on Computer-Aided Verification (CAV;99)
pages 236-248, 1999.

L. Groenewegen and E. de Vink. Operational Semantics
for Coordination in Paradigm. InFarhad Arbab and
Carolyn L. Talcott, editorCoordination Models and
Languages, 5th International Conference,
COORDINATION 2002, YORK, UK, April 8-11, 2002,
Proceedingsvolume 2315 ot.ecture Notes in Computer
Sciencepages 191-206. Springer, 2002.

G. Holzmann. The Model Checker SPINEEE
Transactions on Software Engineerjr&g(5), 1997.

Z. Manna and A. PnueliThe Temporal Logic of Reactive
and Concurrent Systems (SpecificatioBjpringer Verlag,
1992.

A. Pnueli. Deduction is forever. An invited talk. Farmal
Methods’99 Toulouse, France, September, 1999.

M. van Steen, L. Groenewegen, and G. Oosting. Parallel
Control Processes: Modular Parallelism and
Communication. InHertzberger and Groen, editors,
Proceedings Intelligent Autonomous Systepages
562-579, Amsterdam, The Netherlands, 1987.

A. Wulms. Blackboard Systems Modelled in SOCCA.
Master’s thesis, Universit at Koblenz-Landau, 1997.

S. Yovine. Kronos: A Verification Tool for Real-Time
Systems . Springer International Journal of Software Tools
for Technology Transfed997.

