
A NEW BLUEPRINT FOR NETWORK QOS

a thesis submitted to
The University of Kent at Canterbury
in the subject of computer science

for the degree
of doctor of philosophy.

By
David C. Reeve
August 2003



Abstract

In this thesis we present a new approach to the provisioning and delivery of Quality of Service in
packet switched data networks. Such networks are endeavoring to support an increasing range of
applications. For an application to deliver a successful outcome to its user it requires statistical
guarantees of data transport performance from the network. These guarantees must be 'strong' in
the sense that they hold over short timescales. With such a statistically strong approach to the
planning, provisioning and delivery, it becomes possible to bridge the gap between the performance
aspirations of applications (and hence their users) and the operational performance of the network.
This thesis is founded upon the following ontological basis. Finite queues have two degrees of freedom
in the three parameters throughput, loss and delay; any QoS scheme must account for this fact at
all its stages to be successful. All network elements have a �nite capacity and, as they process the
load o�ered to them, introduce quality degradation. They possess an 'intrinsic' quality, which can
only be shared among their customers. It is the con�guration and management of this sharing that
delivers di�erential quality of service. Ultimately delivering quality of service is assuring a bound
on the degradation experienced.
Using this basis we develop a methodology for creating and reasoning about statistically multiplexed
data networks. In these networks the operational behavior can be made to mirror the mathematical
foundations of queuing theory more closely than is commonly believed. We illustrate how the
provisioning, design and implementation process can be approached in a consistent fashion, using
new packet handling mechanisms which have evolved from the ontological basis.
We demonstrate the use of this approach by con�guring examples of multi-service networks and
demonstrating that their target properties are achieved through simulation.

ii



Contents

Abstract ii

List of Tables xiii

List of Figures xvi

Glossary xvii

Acknowledgements xix

Dedication xx

1 Introduction 1

1.1 The Current Internet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 Resource Sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Resource Provisioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.3 Economic Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Multi-Service Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.1 Why MSNs ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.2 Flexibility and Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.3 Support for New Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Meeting Users' Expectations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3.1 Utilities and Expectations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

iii



1.3.2 Networks and Expectations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3.3 The Internet and Expectations . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Internet Infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4.1 Connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4.2 Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.5 Thesis Aims and Road-map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Previous Research 13

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Tra�c Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 Self-Similar Tra�c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.2 Poisson Approximations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.3 Implications for QoS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Application Behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.1 Connection Lengths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.2 Inter-Connection Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.3 Inter-Packet Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.4 Aggregation E�ects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 TCP Behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4.1 Models of TCP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4.2 TCP Tra�c Generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5 Fluid Flow Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.5.1 E�ective Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.5.2 Bandwidth Sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.6 Network Calculi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.6.1 Jackson and BCMP Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.6.2 Mean Value Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

iv



2.6.3 Min-Plus Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.7 A Quality-Centric Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.7.1 Two Degrees of Freedom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.7.2 The Loss-Delay Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.7.3 Markovian Shaping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.8 Current �Best� Practise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.8.1 Requirements Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.8.2 Under-utilisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.8.3 Measure and Improve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.8.4 Delay Minimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.8.5 Bandwidth Policing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3 Understanding QoS 39

3.1 A Perspective on QoS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.1.1 The User Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.1.2 The Management Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.1.3 The Administrative Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 A Management Methodology for QoS . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2.1 What is Quality? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2.2 Framework Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.2.3 Criteria for Success . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2.4 Approach Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

v



4 Methodology 47

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2 De�ning the network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.3 Intrinsic Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.4 Network Quality Invariants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.5 Quality Degradation Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.6 Instantaneous Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.7 Trade-o�s and Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.7.1 Packet Size E�ects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.7.2 Bu�er Size E�ects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5 The Model 59

5.1 Applying the Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.2 Exponential Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.3 Composing Queues in a Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.4 Modelling Variable Sized Packets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.4.1 Using the M/M/1/k Queue . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.4.2 The M/G/1 Priority Queue . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.4.3 Using the M/G/1 queue as an approximation . . . . . . . . . . . . . . . . . . 67
5.4.4 Using the M/G/1/k Priority Queue . . . . . . . . . . . . . . . . . . . . . . . 68

5.5 Performing the Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.6 Modelling Burst Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

vi



6 The Testing System 75

6.1 A Haskell Packet Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.1.2 Time Dependent Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.1.3 Simulating Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.1.4 Generating Packets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.1.5 Queueing Packets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.1.6 Calculating Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.1.7 Pulling it Together . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.2 A QoS Test System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.2.2 Scenario Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.2.3 Results Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.3 The Scenario Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.3.1 The Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.3.2 The Loader . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.4 The Flow Calculator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.4.1 Evaluating the Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.4.2 QDFs and Degradation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.5 The Flow Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.5.1 The Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.5.1.1 Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.5.1.2 The Timer Queue . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.5.1.3 The Pins Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.5.2 The Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.5.2.1 Generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.5.2.2 Adaptive Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

vii



6.5.2.3 Queues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.5.2.4 Tracers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.5.2.5 Continuous Tracers . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.5.3 The Processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.5.4 Random Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.6 The Comparator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7 Predicting Networks 103

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
7.2 Expected Outcome and Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
7.3 Testing Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.3.1 Subject of the Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
7.3.2 Aims and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
7.3.3 Criteria for Success . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
7.3.4 Expectations and Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.4 Test Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
7.4.1 Chains of Queues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
7.4.2 Crossing Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
7.4.3 Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.5 Packet Point Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
7.5.1 Queue Chains, 10 Bu�ers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
7.5.2 Queue Chains, 100 Bu�ers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
7.5.3 Cross Flows, 10 bu�ers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
7.5.4 Cross Flows, 100 bu�ers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
7.5.5 Correlation Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.6 Fixed Packet Sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

viii



7.7 Mixed Packet Sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
7.8 Interpreting the Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.8.1 Errors in the mean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
7.8.2 Resulting Bias in Queueing Formula . . . . . . . . . . . . . . . . . . . . . . . 123
7.8.3 Explaining the Deviation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
7.8.4 The e�ect of packet size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
7.8.5 Link service rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

8 Quality Requirements 128

8.1 Cherish and Urgency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
8.2 QoS and Router Flap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

8.2.1 Causes of Router Flap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
8.2.2 RIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
8.2.3 OSPF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
8.2.4 QoS Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

8.3 NTP and QoS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
8.4 VoIP and QoS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
8.5 HTTP and QoS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
8.6 IP ToS Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

8.6.1 Setting the ToS bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
8.6.2 ToS to Loss-Delay Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
8.6.3 Important Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

8.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

ix



9 Di�erential Quality 141

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
9.2 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

9.2.1 Tra�c Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
9.2.2 Tra�c Loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
9.2.3 Fixed Tra�c and Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
9.2.4 Packetisation and Transmission Costs . . . . . . . . . . . . . . . . . . . . . . 143
9.2.5 The tra�c is well behaved . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

9.3 Trade-o�s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
9.3.1 MTU Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
9.3.2 Bu�er Sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

9.4 The Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
9.5 Simulation Tra�c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

9.5.1 VoIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
9.5.2 NTP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
9.5.3 RIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
9.5.4 HTTP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

9.6 FIFO Queueing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
9.7 Di�erential Queueing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

9.7.1 Fair Queueing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
9.7.2 Loss-Delay Queueing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

9.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

x



10 Modelling Real Networks 155
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
10.2 Terminals and Endpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
10.3 Network Links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
10.4 Routers and Switches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

10.4.1 Output queueing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
10.4.2 Input Queueing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
10.4.3 Combined Input and Output Queueing . . . . . . . . . . . . . . . . . . . . . . 160

10.5 Performance and Modelling Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
10.5.1 Output Queueing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
10.5.2 Input Queueing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
10.5.3 Combined Input and Output Queueing . . . . . . . . . . . . . . . . . . . . . . 163

10.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

11 Conclusion 165
11.1 Aims and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
11.2 Summary of Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
11.3 Major Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
11.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

11.4.1 Modelling Mixed Packet Sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
11.4.2 Burst-loss Probabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
11.4.3 Laplace Convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
11.4.4 Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
11.4.5 Bu�er Size E�ects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
11.4.6 Adaptive Source Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
11.4.7 Changing Topology and Load . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
11.4.8 Correlation and Multicast Modelling . . . . . . . . . . . . . . . . . . . . . . . 175
11.4.9 Shared Media and Switching Fabrics . . . . . . . . . . . . . . . . . . . . . . . 176
11.4.10Provisioning using Loss-Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
11.4.11Loss-delay implementation for NS2 . . . . . . . . . . . . . . . . . . . . . . . . 177

11.5 Final Words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

xi



A Queueing Theory in Brief 180

A.1 Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
A.2 About Queueing Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
A.3 Well Known Queues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

A.3.1 The M/M/1 Queue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
A.3.2 The M/M/1/K Queue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
A.3.3 The M/G/1 Class Queue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

A.4 Markov Chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

B The Simulator Queue Model 186

Bibliography 191

xii



List of Tables

7.1 Absolute Errors for Fixed Packet and Point Process tests . . . . . . . . . . . . . . . 119
7.2 Absolute Errors for Mixed Packets Tests . . . . . . . . . . . . . . . . . . . . . . . . . 120
7.3 Link Service Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

8.1 RFC1060 ToS Mappings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

9.1 Results for FIFO Queueing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
9.2 Results for Di�erential Queueing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

xiii



List of Figures

2.1 A Time Scale of Teletra�c Research . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 2◦ of Freedom Triangle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3 Partial Bu�er Sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.4 Loss-Delay Markov Chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1 Change in Quality over a network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.1 Probability of loss in an m/m/1/k queue . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2 Length of an m/m/1/k queue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.3 Time spent in an m/m/1/k queue . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.4 ∆Q Being Composed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.5 Quality Degradation Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.6 Instantaneous Quality Markov Chain . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.7 Failure of VoIP calls with independent loss . . . . . . . . . . . . . . . . . . . . . . . 56

5.1 M/M/1/k Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.2 M/M/1/k Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.3 M/G/1 Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.4 M/G/1 Delay, with �nite bu�ers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.5 M/G/1/k Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.6 M/G/1/k Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.7 Two Class Markov Chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

xiv



5.8 M/M/1/k Loss Chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.9 Full M/M/1/k Loss Chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.10 VoIP Failure Probabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.1 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

7.1 Queue Chain Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
7.2 Queue Chain Test Predictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
7.3 Cross Flows Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
7.4 Cross Flows Test Predictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
7.5 Correlation Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
7.6 Queue Chain Delay, 10 bu�ers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
7.7 Queue Chain Loss, 10 bu�ers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
7.8 Queue Chain Delay, 100 bu�ers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
7.9 Queue Chain Loss, 100 bu�ers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
7.10 Cross Flow Delay, 10 bu�ers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
7.11 Cross Flow Loss, 10 bu�ers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
7.12 Cross Flow Delay, 100 bu�ers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
7.13 Cross Flow Loss, 100 bu�er . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
7.14 Correlation Delay, 10 bu�ers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
7.15 Correlation Loss, 10 bu�ers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
7.16 Cross Flows 10 bu�ers large Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
7.17 Cross Flows 100 bu�ers large Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
7.18 Bias in Delay Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

8.1 Cherish Urgency Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
8.2 Basic OSPF Exchanges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
8.3 Loss-Delay ToS Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

xv



9.1 The Network Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

10.1 A Simple Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
10.2 A Network Link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
10.3 Modelling Output Queueing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
10.4 Input/Output Queueing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
10.5 Input and Output Queueing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

11.1 The philosophy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

A.1 A Queue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
A.2 A Simple Markov Chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

xvi



Glossary

ADSL Asynchronous Digital Subscriber Line
ARIMA Autoregressive Integrated Moving-Average
BCMP Baskett, Chandy, Muntz and Palacios
BGP Border Gateway Protocol
BOOTP Boot Protocol
CPR Constant Packet Rate
DDoS Distributed Denial of Service
Di�Serv Di�erentiated Services
DNS Domain Name System
DRR De�cit Round Robin
DTD Data Type De�nition
DoS Denial of Service
FFQ Fluid-Fair Queueing
FQ Fair Queueing
GHC Glasgo Haskell Compiler
GPRS General Packet Radio Service
GPS Generalised Processor Sharing
HTTP Hypertext Transfer Protocol
HOL Head-of-Line
ICMP Internet Control Message Protocol
IETF Internet Engineering Task Force
IMAP Internet Message Access Protocol
IntServ Integrated Services
IP Internet Protocol
IPT Inter-packet Time
ISDN Integrated Services Digital Network
ISP Internet Service Provider
MSN Multi-Service Network
MSS Maximum Segment Size

xvii



MTU Maximum Transmission Unit
MVA Mean Value Analysis
NBMA Non-Broadcast Multiple Access
NNTP Network News Transport Protocol
NTP Network Time Protocol
OSPF Open Shortest Path First
PGPS Packetised Generalised Processor Sharing
QDF Quality Degradator Function
QoS Quality of Service
RED Random Early Drop
RTT Round Trip Time
RTP Real-Time Protocol
SCED Service Curve-based Earliest Deadline
SCFQ Self-Clocked Fair Queueing
SDSL Synchronous Digital Subscriber Line
SLA Service Level Agreement
SNMP Simple Network Management Protocol
SSN Single Service Network
STFQ Start-Time Fair Queueing
TCP Transmission Control Protocol
TDM Time Devision Multiplexing
ToS Type of Service
UDP Unreliable Data Protocol
VC Virtual Clock
VoIP Voice over IP
WFQ Weighted Fair Queueing
WLAN Wireless LAN
WRR Weighted Round Robin

xviii



Acknowledgements

This thesis has been funded by the Engineering and Physical Sciences Research Council (EPSRC);
thank you for your support. I would also like to thank the University of Kent, the Conseil European
pour la Recherché Nucleaire (CERN) and U4EA Technologies; to all of whom I owe a debt of
gratitude for supporting my work.
I would like to thank Ian Utting and Peter Linington for supervising me at the University of Kent
and Gerald Tripp for his helpful comments in my panel. I would also like to thank Bob Dobinson
and Brian Martin (for his words of encouragement) at CERN, and the people of U4EA Technologies;
all of whom have helped, encouraged and supported me. Thanks also to Paul Thomas for patiently
proof reading my work.
On a personal level I would like to thank my friends and family for supporting me throughout my
thesis. Thanks to Fred Barnes for his hospitality, support and encouragement. Thanks to Jude for
putting up with me on a day to day basis. Finally I would like to thank my mentor Neil Davies,
who's support and encouragement on a professional and personal level has much to do with the
completion of my thesis.

xix



Dedication

This thesis is dedicated to my mother � without who's tireless support I would never have gone to
university, let alone have completed this thesis.

xx



Chapter 1

Introduction

Providing consistent and controllable quality is a prerequisite to the creation of di�erential services
on IP networks. This chapter outlines the issues that are involved in delivering consistent quality
to a number of subscribers in the presence of varying load.

1.1 The Current Internet

Today the Internet is becoming a key underpinning of the modern world. Since its conception in the
early 80's the number of users has been growing steadily, and this shows no sign of slowing down. It
has been estimated that the peak-to-mean ratio of demand for bandwidth is approaching thousands
to one [25]; this is placing an enormous strain on the Internet's infrastructure. This is important
as providers want high utilisation (as that is what de�nes their monetary return) and users want
a service that has no bottlenecks and is reliable and predictable. The key is exploiting statistical
multiplexing without loss of quality to the applications that need it.

1.1.1 Resource Sharing

The Internet can be viewed as one large communications resource that is shared between all its
users. It allows any user to exchange data with any connected users. The level of service that you,
the user, are likely to receive is highly variable as the Internet is based on �best-e�ort� service. This
means that the network will attempt to deliver data packets to their destination as fast as it can
and with as little loss as possible.
Resource sharing on this best-e�ort basis provides you with no guarantees; this means that you
have no way of knowing how long your data will take to arrive at their destination, nor even the

1



CHAPTER 1. INTRODUCTION 2

likelihood of their eventual arrival. The level of service that you receive will be highly dependent
on the load that other users are placing on the network - amongst other factors.
There are a number of projects underway [47, 46] that aim to support di�erent levels of service
on the Internet. The motivation for this is simple; applications place di�erent requirements on the
Internet, requiring di�erent levels of service. These ideas are in stark contrast to those of best-e�ort,
where everyone receives the same level of service.

1.1.2 Resource Provisioning

The purpose of resource provisioning is to ensure that you have enough capacity to satisfy your
customers' requirements. A classic example of the application of provisioning can be found in the
way the telephone system is managed. Here the telephone company attempts to make sure that
they have enough trunk line capacity at any given time to satisfy the customer's demands [37, 38].
However at peak times there is a small possibility that some customers will be refused, but this
value can be calculated.
On the Internet, the currency of consumption is bandwidth. It is this that backbone providers sell
to Internet Service Providers (ISP), and then they sell on to end users. The problem that exists in
this area is one of availability of bandwidth. Users of the same ISP contend for resources to reach
the core of the ISP's backbone, and from there they must then contend for resources to reach other
parts of the network. At peak times these problems become more acute. Another problem is the
provision of a �xed bandwidth between two points, which may be hard to sustain at peak times.
As we have already shown telephone networks allocate to their expected peak call loads. They can
do this because the peak-to-mean ratio of calls is about 5:1. However on the Internet it has been
estimated as being more like 1000:11 [25]. Installing a thousand times more bandwidth than the
average is clearly uneconomical, and prohibitively expensive. However, as the Internet is predomin-
antly best-e�ort based, this is not necessarily a problem; the performance a user receives will simply
degrade at peak times. The users' experience of the network will be entirely dependent on how
badly this drop in performance a�ects them.
Backbone providers need the ability to guarantee some level of service between two points in their
network. They sell this service to companies that want to implement Virtual Private Networks
(VPNs), for example to an ISP that wants a guaranteed level of service across a transatlantic link.
Currently bandwidth guarantees can only be provided in some circumstances; for example, where
the network is underutilised. Even here the service that will be received will still be best-e�ort;
although the bandwidth may be guaranteed, and indeed supplied, the delay and loss characteristics

1It is not known if this is the upper bound on the ratio. Installing even more capacity does not bring with it any
feelings of con�dence that there will be enough resource to go round.



CHAPTER 1. INTRODUCTION 3

may still be unacceptable and are not guaranteed. If the backbone is highly loaded then the level
of service that the end user will receive will be lower than when the network is unloaded.
One approach taken today for guaranteeing quality is to directly measure the quality that a network
provides. This involves injecting packets into the network and measuring their loss and delay at
the edges of the network. The problem is that accumulating statistically accurate results can take
a number of days2. Once this has been done, bandwidth can only be allocated if spare capacity has
been observed. However, this approach relies on the fact that past behaviour is a good indicator of
future behaviour and this may not be the case. If conditions change dramatically on the network
during the measurement period, the results are unreliable.

1.1.3 Economic Factors

If the Internet is to become a commodity utility then it must �nd ways of supporting itself in the
long term. This will involve new ways of selling and managing the use of the Internet. We will now
explore some of the economic problems in more depth.
Currently bandwidth is the primary measure of capacity on the Internet. It is this that backbone
provides sell to ISPs and ISPs sell to end-users. The problem comes in being able to satisfy everyone's
short-term demands for bandwidth. This is especially di�cult with the massive peak-to-mean tra�c
loads that are observed on the Internet. With the drive to provide di�erentiated services the problem
is exacerbated.
Each user connected to the Internet purchases a given amount of bandwidth from their provider;
however, they do not use all of this bandwidth all of the time. When it comes to peak times this
is, of course, di�erent and the load placed on the upstream links increases signi�cantly. It is this
increased loading that leads to the degradation of service at peak times. As the measure of quality
is currently bandwidth, we cannot ever satisfy the user's demands.
A method of managing peak to mean tra�c ratios is required, given the problem outlined above.
Traditionally in other businesses, economic methods are used to time-shift the load. For example
7-11 electricity deals, or o�-peak phone calls, use economic reward to shift the load to other times
of the day where there is less demand for the resource.
Time-shifting could be used as a method of managing peak loads on the Internet. Di�erent time-
zones have a small e�ect, but the US tends to dominate [95]. Either monetary reward for using
bandwidth at quiet times, or reducing the quality of connection during peak times, would be possible
answers. However, the ability to accurately control the quality that a given subscriber receives will
be key in managing this problem.

2This is for accurate answers; the measurement period can be lowered where the resolution is 'good enough'.



CHAPTER 1. INTRODUCTION 4

1.2 Multi-Service Networks

A Multi-Service Network (MSN) is a network designed to carry tra�c from more than one applic-
ation. This is in contrast to Single-Service Networks (SSN), such as the Telephone system, which
can only carry, broadly speaking, one application. Although the Internet can be carried over the
telephone system, we do not view this as a MSN, as it was not designed with this end in mind.

1.2.1 Why MSNs ?

Today there are a number of large networks in existence; for example, the Internet, the telephone
system, the GSM telephone system, and the cable TV network. Most of these networks are able to
carry each others tra�c. The phone system carries phone calls natively, and can support Internet
connectivity through various mechanisms, including modems and leased lines. The Internet can
carry voice calls using Voice-over-IP (VoIP). Currently neither is well suited to carrying the other.
It is the author's view that the Internet is the most likely candidate for supporting a MSN. The
Internet deals with all data in small units, called packets. This allows it to make decisions at a
�ne granularity. The phone system, on the other hand, can only deal with connections of a �xed
bandwidth between two physical points. Both technologies use statistical multiplexing, one at a
packet level and the other at the connection level. If the bandwidth provided by the phone system
is not used then it cannot be used by another consumer3, this represents a lost opportunity for the
telephone company.
Conversely, on the Internet, this spare capacity is available to anyone else who requires it. This
ability to share resources at the lowest possible level leads to higher utilisation. The di�erence
between these two systems is that one is circuit-switched and the other, the Internet, is packet-
switched. The bene�t of packet-switched networks is that they are, or should be, able to gain higher
rewards from statistical multiplexing; that is using the �spare� capacity of one connection to service
other connections.
A correctly implemented MSN can also be more cost e�ective. Simply put, one network costs4 less to
install and maintain than two. The potential savings for an individual organisation are substantial,
let alone the savings that could be made nationally or internationally. These cost savings are made
by increased utilisation of the network infrastructure, delivering the maximum return on investment.

3This may not be true of an ATM core; however, the statistical multiplexing gains may not be as high.
4Cost as used here is an accountancy view, once the 'value' has been written o� the equipment 'costs' nothing. It

is this zero cost of the existing telephony infrastructure that represents the largest barrier to the converged network;
telephony does not have to re-coup the capital charges as they have already been written o�.



CHAPTER 1. INTRODUCTION 5

1.2.2 Flexibility and Expansion

A true MSN is capable of natively supporting a number of di�erent applications; by de�nition this
makes it more �exible. Underpinning this is the ability to provide di�ering levels of service to
di�erent applications. These can even be adjusted through the day or week to meet the needs of
the users.
For example, let us consider an IP based MSN carrying predominantly VoIP, e-mail and World
Wide Web (WWW) tra�c. The amount of resources allocated to each of these applications can be
adjusted throughout the day. In the morning most people check their e-mail, making it the most
important type of tra�c to carry. For the remainder of the day VoIP calls are more important, so
they get a higher share. Finally at lunchtime WWW tra�c is predominant. Our aim is to keep the
network fully utilised at all times, while still providing the required level of service to the users.
Using this style of provisioning we can go some way towards controlling the peak-to-mean ratio of
the Internet. This scenario is equally applicable to a single organisation as it is to an ISP or a
backbone provider. Changing the performance of the network can be especially powerful if the user
is aware of when they are likely to receive a better level of service. We may, for example, choose to
lower bulk data transfers during the day, to encourage users to do such tasks at o�-peak times such
as overnight5. This is analogous to 7-11 electricity deals, as introduced previously.
Another important bene�t of MSNs is their capacity for expansion. Where there are capacity
problems, more can be added simply. The advantage is that this increased capacity can be used
by any of the applications carried by the network, depending on the policies. In contrast, adding
more capacity to a SSN only increases availability to the application in question, and cannot be
redistributed as needed later on.

1.2.3 Support for New Applications

A correctly designed MSN will be able to carry new applications, perhaps not even in existence
when the network was conceived. Indeed this is one of the key ideas behind MSNs; invest in one
network which you can upgrade later. This is made possible through di�erentiated servicing and
provisioning.
There are a large number of new applications that can be provided by a MSN. These will be covered
in later chapters. An example of such an application would be Video conferencing. This is currently
possible on the Internet (where it is of highly variable quality) and the telephone network (where it is
of high cost). As technological advances are made these applications will become more widespread.

5These are all non-interactive processes and can be automated, all that is required is the right software. Why
don't they exist? There is currently no economic pressure to create them.



CHAPTER 1. INTRODUCTION 6

1.3 Meeting Users' Expectations

One of our main aims in creating a MSN is to meet users' expectations. By this we mean creating a
consistent experience for the user over any given period. To do this we will view a MSN as a utility.
Then we will explore some of the key aspects of meeting the users' expectations.

1.3.1 Utilities and Expectations

What is a utility6? A utility is a service upon which you rely to support your day to day business;
moreover, it is something that you use and trust in your daily life. This would seem consistent with
the way the Internet is evolving. Many people use the WWW today for shopping, managing their
banks accounts and entertainment. Should we not therefore view the Internet as a utility?
We have already mentioned a few example uses of the Internet. How do these compare to their
high-street equivalent? If you arrived at a shop or a bank during normal o�ce hours it would be
quite surprising to �nd them closed. Similarly you would also be quite surprised if you arrived home
from work to �nd that the TV was not working. However when web-sites don't work we are not all
that surprised, but unhappy that we cannot perform the task we set out to do.
When things don't work as we expect we are disappointed; they do not meet our expectations. In
the above examples we would probably be inclined to complain, either in person or via the mail.
However when it comes to the Internet we accept this as a fact of life. It seems unlikely that this
trend will continue inde�nitely, especially given the increased reliance of business on the Internet.
One of the �rst properties that utilities have is predictability. Di�erent utilities have di�erent time-
scales over which they operate. They will give the same level of service, or a de�ned level, when
they are operating. Here are a few examples:
Electricity, Gas and Water. We expect these services to be available 24 hours a day, 7 days a week,
no matter what7. If they fail it is unacceptable, although we accept that from time to time there are
technical problems. We also expect to receive the same level of service over the same time-scales.
For example it would be unacceptable for the electricity board to deliver you 50% of the normal
voltage one day; yet, we accept a 50% reduction in the speed of downloads in peak times on the
Internet.
Shops and Banks. We expect shops and banks to be open in normal o�ce hours, and it is unusual
for this not to be the case. It is accepted that occasionally they do not have the goods or services

6Webster's Revised Unabridged Dictionary de�nes utility as: �The quality or state of being useful; usefulness;
production of good; pro�tableness to some valuable end; adaptation to satisfy the desires or wants; intrinsic value.�

7Excluding acts of god like �re, �ood, drought, etc.



CHAPTER 1. INTRODUCTION 7

we require, and that next time they probably will. This is, of course, less of an inconvenience than
having no electricity or water.
Pizza delivery. This is probably not what most people would expect to be a utility, students being
perhaps an exception to this. When you phone for pizza delivery one of two things could happen.
If you live within range you expect your pizza to arrive within about 30 minutes. If you are not in
range then you will be told that delivery will not be possible. Both of these outcomes are acceptable,
even if we don't receive a pizza.

1.3.2 Networks and Expectations

The �rst and most important requirement of an ideal Internet connection is that it be available at
all times. This means both connection to an ISP and connectivity of the network as a whole. In
terms of the telephone we should always be able to connect to the local exchange, as well as any
exchange in the world.
The level of service that we receive should be predictable. It is likely that there will be on-peak
and o�-peak times. During peak times we would expect some service to be degraded, for example
bulk data transfers. We may even be able to negotiate a Service Level Agreement (SLA) with
our provider to meet our particular needs. In this context we take predictable to mean the users'
experience will be the same as it was at a similar point in time.
Managing users' expectations is an important aspect of delivering a service to the user. Users
become accustomed to levels of service, and will expect these levels of service to be available in the
future. Take for example our pizza delivery utility. If you phoned them up last week and they took
20 minutes to deliver the pizza, you would be quite surprised if this week they took an hour to
deliver. Similarly, if a user gets a high-speed down-load one week he is going to be unhappy if he is
unable to receive the same the next week.
The provider can overcome this problem by explicitly managing this expectation, lowering connection
speeds, or acceptance rates, to some acceptable level. This level is then maintained even if the
network is capable of delivering more. This is essentially the opposite of best-e�ort. The levels
can be changed depending on the time of day (time-shifting). For example, bulk �le transfers are
reduced during peak times and increased during o�-peak times. The user then receives a more
consistent experience.
It is important that the network make good its commitments to the user. If a particular application
is expected to work correctly at a given time, then the user should generally �nd this to be the
case. This is similar to the way we treat shops as a utility, we expect them to be open during o�ce
hours and to be capable of providing the goods we require. For example, it might be expected that



CHAPTER 1. INTRODUCTION 8

VoIP works during o�ce hours. Conversely these applications may be throttled during other times
to allow for other services. Again what we are attempting to do is provide a consistent experience
to the user.
There will always be more services than we support; this means that some services are going to
be unsupported. In this case they are likely to be treated as best-e�ort, the level of service they
will receive is unde�ned and highly variable. As we have already stated, we need to manage users'
expectations. Tra�c that is best-e�ort is therefore likely to be limited to prevent varying levels of
service. Unsupported may also mean un-subscribed; for example a user may have a connection with
out the provision for VoIP, when VoIP is used it is treated as best-e�ort and will always get a lower
level of service than a subscribed version (it may not work at all depending on the policy of the
network). Essentially it is important to ensure that the user is unable to defraud the cost model in
use by the network.
Cost will also be an important factor in users' expectations. Price is known to be a key factor in
driving the development of broadband Internet access. When the cost is relatively high there are
always a number of early adopters. For the Internet to become a ubiquitous utility a low cost, basic
rate access is required. This may only provide the user with a best-e�ort based connection.
It is likely that some services will cost more to support that others. In this case the user should
have the possibility to subscribe to additional services to meet their needs. The revenue from
these services can then be used to fund the network. This is similar to the way traditional airline
companies split the cost of a �ight between economy, business and �rst class, where an economy
class seat costs less to the consumer than it does to the airline to provide; however this is balanced
by the higher cost of business and �rst class.
The prerequisite to all of these points is predictability. To meet users' expectations requires avail-
ability, price and performance to be carefully controlled. Out of these we believe that performance,
in terms of quality, is the key problem.

1.3.3 The Internet and Expectations

How does the current provision of Internet services compare to those outlined above? The answer
is that it compares badly, it fails to tackle adequately most of the previously made points.
Connection availability from the point of the user is highly variable, and most de�nitely is not always
on. Modem users are accustomed to busy signals during peak Internet access times. Even ADSL
and Cable Modem users �nd that connection availability is less than 24 hours a day, 7 days a week.
If your electricity supply failed as often as you are unable to connect to the Internet you would be
unhappy.



CHAPTER 1. INTRODUCTION 9

Once you are connected to your ISP there is no guarantee that you will be able to connect to all
points in the network. Router �ap (See section 8.2) is one well know cause of this problem. If you do
connect to a remote machine the level of service that you receive will be dependant on the loading
of the network, at peak times you are likely to experience degraded performance. Some applications
like VoIP are likely to work poorly at best.
As the Internet is predominately best-e�ort based, it therefore makes no commitments regarding the
level of service that you will receive. As such, it is not surprising that some applications function
poorly. However at times these applications will work as expected. Unfortunately this does not
manage users' expectations of the network, and it is easy to become frustrated as �it worked �ne
last night�. What is more frustrating is that there is no way to upgrade your level of service to meet
these demands at the moment. You pay a �at fee and get whatever level of service is available.
As there is no capacity to deliver di�ering levels of service, managing when users perform certain
tasks becomes di�cult. Telephone companies make heavy use of time-shifting to lower the peak-to-
mean ratio on their network. They do this by o�ering the user an incentive to use their service at
a less loaded time. A similar technique could be adopted on the Internet.

1.4 Internet Infrastructure

This section outlines the current �nature� of the Internet. Firstly we consider the physical equipment
that makes up the core infrastructure of the Internet. Then we will outline the protocols used on
the Internet, and their current shortcomings. Finally we will look at the applications in use on the
Internet.

1.4.1 Connectivity

The Internet is composed of a set of interconnected networks. These networks are composed of
switching elements, called routers, connected together with physical links. These links allow the
data to be transported between the routers. These data are assembled into variable sized units
called packets. Packets contain, at a minimum, information about their source and their intended
destination.
Links allow packets to be transported from one switch to another. They always service packets at
a �xed rate, called the line speed. When a link is fully utilised it will transfer packets as fast as it
possibly can. Each link places a physical limit between the two routers it connects, and this cannot
be exceeded. There is also a delay associated with this transfer, called the transmission delay, and
a probability of data corruption - the loss probability. These three parameters will limit any tra�c
that traverses the link.



CHAPTER 1. INTRODUCTION 10

Packets arrive at the router through its input ports. The packet is then examined to determine its
destination, then sent to the appropriate output port. Packets are usually bu�ered inside a router
while a decision is being made; there exists the possibility that there will be insu�cient bu�er space
to contain the packet, in which case it will be discarded. The speed at which a router can forward
packets is restricted both by the output link speed, and the speed at which it can make its decisions.
This causes packets to experience a delay when traversing the router.
Routers gain their knowledge of where to send packets by two methods. The �rst is static routing,
where an administrator enters a directive telling the router where to send the packet. The second is
dynamic routing. Here the router communicates with other routers on the network to gain knowledge
of where various addresses can be found. We will cover this in more detail later.
The key points here are as follows. All data are transfered in units called packets. As packets
traverses a link or a router they will experience a delay. There is a small, almost negligible, possibility
that a packet will be corrupted and therefore lost when traversing a link8. Packets are far more
likely to be lost due to lack of bu�er space caused by congestion. There is a �xed rate at which
packets can be sent, imposed by the link speed.

1.4.2 Protocols

The networks that come together to form the Internet have one thing in common; they all use the
same protocol suite. The TCP/IP protocol suite is a de-facto standard, de�ned in the Internet
Request for Comments (RFCs). It de�nes a set of layered protocols which broadly correspond to
groups of layers from the OSI seven layer reference model [35].
On the Internet all machines are identi�ed by a globally unique number called an IP address. To
communicate with another machine on the Internet all you need to know is its address, as well
as having an address of your own. The Internet Protocol (IP) [84] is a connection-less datagram
protocol. Its main function is to provide a way of addressing a packet, so that intermediate routers
can decide where to send it. IP is not usually used in isolation, as it is simply a way of addressing
a packet. However, it provides a carrier for higher protocol layers to use.
There are a large number of protocols that make use of IP as a carrier. The most common of
these are the Internet Control Message Protocol (ICMP) [79], the User Datagram Protocol (UDP)
[78] and the Transmission Control Protocol (TCP) [83]9. TCP provides the user with a connection
orientated reliable data stream connection, whereas UDP provides the user with a datagram based
unreliable connection.

8We do not class loss due to contention on a shared link, such as shared Ethernet segments, as corruption; we
model this explicitly as part of the service facility of the queue.

9This is by no means an exhaustive list, please refer to the Assigned Numbers RFC [88] for a complete list.



CHAPTER 1. INTRODUCTION 11

Both TCP and UDP make use of port numbers. Port numbers are used to identify the application
responsible for handling a particular connection. When establishing a connection to a remote ma-
chine (the server), the client chooses an arbitrary source port number with which to communicate
(ephemeral port). The port at the remote end is usually a well know number, also de�ned in [88].
Thus, port numbers can be used to identify well known applications.
The Internet provides a vehicle for supporting a diverse set of applications. We will now take a brief
look at some of the more common ones.
As we have already stated the Internet is comprised of a set of interconnected routers. These
routers can dynamically update their routes by communicating with each other. To do this they
use a number of UDP based protocols, including BGP [87], RIP [48] and OSPF [72]. Each router in
the network uses one of these protocols to send information about known destinations to its peers.
This is a key idea in Internet technology. By using this method no global knowledge of the network
is required to route packets.
Another key part of the architecture is name resolution. The Domain Name Service (DNS) [70] allows
natural names to be converted into IP addresses, thus preventing users from having to remember long
strings of numbers. Both DNS and the routing protocols are part of the core Internet architecture;
without them the Internet will not work correctly.
Next we have some traditional TCP based applications. These include theWorldWideWeb (WWW)
[41], remote sessions (TELNET [81], SSH [106]), �le transfer (FTP [82]) and email (SMTP [80],
POP3 [73], IMAP [28]). These applications are known to work well in a best-e�ort environment,
but can become slow at peak times.
Finally there are new applications such as voice and video conferencing and streaming. These
applications generally have real time constraints that need to be met by the network. As such their
performance is heavily dependant on the load of the network. Both TCP and UDP are used to
support these applications, and in many cases RTP [90] is used as well. These applications are likely
to become more widespread as the popularity of the Internet increases.

1.5 Thesis Aims and Road-map

This thesis was motivated by the lack of a broad and self-consistent framework for reasoning about
Quality of Service on packet-switched networks. Our aims during this thesis are as follows:

• Develop fundamental quality axioms that exist on all packet-switched networks, to provide us
with a basis for further work.



CHAPTER 1. INTRODUCTION 12

• Develop a framework for the planning, delivery and management of QoS enabled packet-
switched networks.

• Develop an example operational model, based on our framework, which will illustrate how to
meet users' requirements.

The thesis is organised as follows: In chapters one and two we outline the area of Quality of Service
and look at the previous research in this area. In chapter three we examine how the expression
of requirements for QoS systems change depending on your viewpoint. In chapter four we outline
some of the fundamental quality constraints of packet-switched networks. In chapters �ve and six
we document, respectively, the queueing theory and simulation system used in the thesis. In chapter
seven we produce a comparison between our mathematical predictions and simulation. In chapters
eight and nine we expand our work to look at di�erential quality systems. In chapter ten we look
at the areas that this thesis omits. Finally in chapter eleven we conclude our discourse.



Chapter 2

Previous Research

2.1 Introduction

In this chapter we will cover the previous research in the area of Teletra�c engineering. Throughout
we will look at this research and its ability to provide us with useful information to help engineer
an e�ective scheme for Quality of Service support.
Any scheme for QoS support should be simple to understand. Without this simplicity wide scale ad-
option of any QoS scheme becomes unlikely. Ultimately it is wide scale adoption that will determine
if a QoS scheme is successful.
Given the vast body of literature we provide a simple classi�cation of where this research sits. To
achieve this we use the notion of timescale of operation; �gure 2.1 shows this graphically. At di�erent
time scales di�erent areas of research become relevant. This classi�cation is meant to be a guide
only, it provides us with a simple way of positioning the various research in this area.
Over the timescale of seconds quality delivery and tra�c patterns are important. Quality delivery
covers any packet handling mechanism, or associated theory, that makes low level decisions on a per
packet basis. This, for example, includes Weighted Fair Queueing (WFQ) [75] and its variants. Also
at this time scale are tra�c patterns, which we take to mean distribution of inter-packet times. In
general we do not consider connection arrival rates and connection durations at this level of detail;
these are considered as tra�c trends.
Over the timescale of minutes, tra�c trends, admission control and quality signalling are import-
ant. We have already noted that tra�c trends encompass information about the rate of arriving
connections and their duration. Quality signalling covers protocols that are designed to convey the
quality requirements of an application to the network; this includes RSVP [46] and IP ToS �elds

13



CHAPTER 2. PREVIOUS RESEARCH 14

Quality Signaling

Traffic Patterns
Quality Delivery

Admission Control
Traffic Trends

User Trends
Provisioning

Planning

Mins

Hours

Weeks

Secs

Figure 2.1: A Time Scale of Teletra�c Research

[4]. At this time-scale we also �nd admission control algorithms, which are responsible for making
decisions about acceptance of �ows with di�ering quality constraints.
Admission control and quality signalling are usually done in the context of a framework. The IETF
have proposed two such frameworks, Di�Serv [47] and IntServ [13], which use IP ToS �elds and
RSVP respectively to signal their requirements. IntServ works by an application asking each router
along a path to reserve a given amount of capacity; if there is su�cient capacity then the router
remembers the �ow. Di�Serv works by marking packets to place them in a prede�ned class of
service (see section 8.6). IntServ is therefore more �exible as it allows the application to specify
its requirements more accurately; however, it pays the price for having to maintain more state and
therefore does not scale as well. Di�Serv on the other hand places �ows into pre-de�ned classes,
but does not prescribe an admission control algorithm. It is generally accepted that Di�Serv will be
used in the core of the Internet with IntServ around the edges for admission control and charging,
since the classes are determined on entry.
Over the time scales of hours, weeks and greater, user trends, provisioning and planning become
important. User trends capture information about busy periods and peak hours; these are then used
to provision and plan for the future. Most of the literature in this area concentrates on empirical
measurements of network tra�c, and less on detailed methodologies about provisioning or planning.
In this thesis we are mostly concerned with timescales in the seconds and milliseconds; as such our
focus here is on tra�c patterns and quality delivery methods. We will however make reference to
other parts of the literature when necessary. In the rest of this chapter we will look predominately
at this area of the literature.



CHAPTER 2. PREVIOUS RESEARCH 15

2.2 Tra�c Observations

In this section we will review some of the previous literature on tra�c observations and modelling.
There is a large body of this literature [1, 17, 5, 8, 12, 18, 23, 77, 39, 57, 20, 24, 66, 74, 76, 16, 61, 103,
85, 32, 33, 95, 71, 53] that has measured, classi�ed, and modelled Internet tra�c in a wide variety of
situations. All of this literature has a common theme; measurements of real tra�c have been taken,
their statistical properties have been measured and models of the tra�c have then been proposed.
Simulations have often then been used to demonstrate the validity of the models that have been
produced. We start by looking at self-similar tra�c which has been observed on many places on
the Internet. Next we see that we cannot use Poisson tra�c models on the Internet because of the
emergence of self-similar tra�c. Finally we look at the implications for QoS that self-similar tra�c
causes.

2.2.1 Self-Similar Tra�c

The main �ndings from the literature in this area, as �rst highlighted by Leland and Willinger et.
al. in [61], is that tra�c exhibits self-similar or fractal behaviour. In layman's terms this means
that the tra�c is �bursty� at all time scales and there is no natural length of a burst; in e�ect at
any instant of time it is impossible to predict if a burst will occur, and if it does, how long that
burst will last.
Self-similar tra�c has an underlying dependence structure which exhibits long-range dependence
(ie., hyperbolic decay of autocorrelations with increasing time separation). This is in contrast to
classical tra�c models, such as Poisson, which exhibit short-range dependence (ie., exponentially
decaying autocorrelations). Self-similar tra�c may also exhibit short-range dependence, but this is
on it's own insu�cient to accurately parametrise the tra�c.
A common measure of self-similarity is the Hurst parameter, H. It is essentially a measure of the
range divided by the sample standard deviation for a given duration; this is commonly displayed as
a variance-time plot. This provides us with a measure of the long-range dependence of a stochastic
process. When this parameter is between 0.5 and 1 the tra�c is said to be self-similar, that is it
exhibits long-range dependence. As H approaches 1 the degree of self-similarity increases. For more
information about estimations of the Hurst parameter see [85]. The Hurst parameter was developed
by Harold Hurst in 1965 while studying water storage.
Studying self-similar tra�c requires models for analytical work and generators for simulation. Hav-
ing generating algorithms that closely re�ect real tra�c is important as they allow us to perform
simulations that are as close as possible to the real network tra�c. Without this the results from
simulations would not accurately re�ect the results that would be expected in the real world.



CHAPTER 2. PREVIOUS RESEARCH 16

There are two common families of self-similar generators: fractional Gaussian noise and fractional
ARIMA processes; in the Teletra�c literature the former is more prevalent. Fractional Gaussian
noise, as shown in [103], is produced when a number of on-o� sources are multiplexed together.
Each source is either sending tra�c at a constant rate, in the on state, or sending no tra�c at all,
in the o� state. The amount of time spent in each state is heavy tailed; commonly with the Pareto
distribution, with �nite mean and in�nite variance, is used to model this. We shall see later, in
Section 2.3, that this explanation for the emergence of self-similar tra�c is highly likely.

2.2.2 Poisson Approximations

Poisson modelling has been used in the area of Teletra�c engineering for a number of years. It
provides a simple and trivially tractable model for reasoning about network tra�c. However, as is
apparent by the results of studies of real network tra�c, it is a poor approximation. As reported in
[77] Poisson models seriously underestimate the burstieness of aggregated network tra�c.
Before we proceed we require a better de�nition of what is bursty and what is smooth. For our
purposes we will follow the de�nition in [71]: If the variance and mean have a linear relationship
then the tra�c is smooth (ie. Poisson-like), if the variance and mean have a quadratic relation the
tra�c is bursty (e.g. like Self-similar). The consequence of this is that any analytical model based
on smooth tra�c will produce incorrect conclusions when used to model bursty tra�c. This is why
we cannot safely use Poisson based models to investigate real aggregated Internet tra�c.
The heavy tra�c approximation [57] tells us that waiting times for service will increase exponentially
as the load on a queue approaches 100%. Additionally recent research [16], based on measurement,
also shows that Internet tra�c tends to Poisson when the load on a queue approaches 100%. Both
of these pieces of research are appealing as they would allow us to return to simple Poisson models
of networks; however, they seem to be at odds with �ndings of various papers on self-similar tra�c.
A uni�ed framework [53] based on Wavelet Models shows us that the behaviour of the tra�c is
dependent on the load it places on a queue, as well as the period of observation. The bursty nature
of self-similar tra�c and the smooth nature of tra�c at high loads are in fact a continuum of
behaviour. The major �nding of this work is that tra�c tends to be smooth when it is measured
over a long time period or the load placed on a queue is high or low. Additionally this work shows
that the burstieness is at its worst when the queue is moderately (50%) loaded; which is where most
measurements of self-similar tra�c have been performed1.
As a result modelling today's Internet using Poisson tra�c is inadequate. While we may be able to
model congested queues using Poisson arrivals, we cannot safely model the majority of moderately
loaded queues.

1Which is no coincidence as network upgrades are performed when nodes become overloaded. As a result meas-
urement are likely to be performed on nodes that are moderately loaded.



CHAPTER 2. PREVIOUS RESEARCH 17

2.2.3 Implications for QoS

The presence of self-similar tra�c has a profound e�ect on our ability to provide QoS support on
the Internet. The main reason for this is the lack of a simple way of predicting the behaviour of the
network. We will now have a brief look at why this behaviour makes QoS support so di�cult.
Packets can arrive in unpredictably long bursts; when there is insu�cient bu�er capacity packets are
simply dropped. As these bursts are long, and unpredictably so, it is di�cult to predict the loss that
an individual �ow will experience when multiplexed with a number of sources. The problem arises
as the burst is generated by a small number of sources over a short time period, yet the congestion
is created by a larger number of sources over a longer time period. Schemes such as RED [62] and
ABE [50] have been proposed. RED goes some way towards making loss fair, by weighting loss on
queue occupancy. However, if the queue occupancy is highly variable, RED may not perform as well
as predicted. ABE attempts to assure low delay by bounding queue length, hence introducing loss;
however, the amount of loss, and hence delay, depends on the arrival of packet bursts.
For queues that are moderately loaded the occupancy of the queue tends to oscillate between full
and empty; this is due to the unpredictable nature of the bursts. As a result the waiting time, and
its variance, will �uctuate wildly. This makes prediction of delay and jitter di�cult.
We know that such predictions can be performed when the network is lightly loaded, as the mean-
variance relation is linear. However, underutilisation of the network to provide QoS guarantees is
not cost e�ective in the long run. In other circumstances guarantees can be given, but not with any
great accuracy. Admission control algorithms based on this concept tend to be very conservative in
their nature.
Current networks are based on work-conserving deterministic service. For every packet in a given
�ow we attempt to keep the loss and delay for every packet below some prede�ned value. This is
contrasted to stochastic service, where we provide a probability of the loss and delay being below
some prede�ned value. The latter is able to better exploit statistical multiplexing, and hence can
achieve higher utilisation. The problem with deterministic service is that it is hard to provide
accurate guarantees for loss and delay where the network utilisation is high. In [102] a comparison
between deterministic and stochastic service for strict priority queues is presented. It highlights
the sensitively of deterministic schedulers to bursts, and the e�ect on end-to-end delay and loss
guarantees.

2.3 Application Behaviour

Understanding the behaviour of the Internet is an extremely complex task. As we have already seen
some substantial e�ort has been expended in measuring and modelling aggregated Internet tra�c. In



CHAPTER 2. PREVIOUS RESEARCH 18

this section we will take a look at tra�c observations of some important individual applications. As
with research on aggregated Internet tra�c, much of this data has been produced by measurement,
modelling, simulation and �nally comparison. Ultimately this means that simulation results based
on parameters from previous research are only valid while the parameters accurately re�ect current
network behaviour, i.e. if we perform a simulation using parameters from a previous measurement
the results are only valid if the parameters are still accurate.
Before looking at the studies in more detail it is important to understand the kind of information
that we are likely to obtain. In general most works classify application behaviour using one or more
probability distributions. As we have already mentioned the parameters of these distributions have
been determined by empirical measurement. For our purposes there are three important measures
that are used to capture an application's behaviour: inter-connection time, connection duration
and inter-packet time. These measure respectively: how often new connections start, how long a
connection lasts for, and within a connection how often packets arrive.
Most of the heuristics that we use here are derived from TCPLib [33]. This provides a set of
generator functions for various types of Internet style tra�c based on empirical measurement. We
also refer to [77] for details about TELNET and FTP tra�c and [17, 24] for HTTP tra�c. While
this is perhaps a small set of literature it is representative of the general �ndings in this area.

2.3.1 Connection Lengths

When looking at connection lengths we general �nd that they follow a heavy tailed distribution,
such as the Pareto distribution with 0.5 ≤ α ≤ 1. This means that there will be a wide variation in
the length of a connection, and connections that are longer will tend to be disproportionally long in
relation to the mean. This is especially prevalent for HTTP tra�c, where the average �le size has
shown to be heavy-tailed.

2.3.2 Inter-Connection Times

It is important to understand that inter-connection and user activity are di�erent. A number of
connections can be generated by a single piece of user activity. A good example of this is HTTP
tra�c, where a user looking at a web page will usually generate a number of connections to download
the various objects in the page. Clearly such an actively would also likely generate DNS requests as
well. In this section we concentrate on the aggregated e�ect of user activity and the inter-connection
times that it generates.
When looking at inter-connection times we �nd that there are broadly three types of distribution:
deterministic, Poisson, and heavy-tailed. Deterministic inter-connection times are generated by



CHAPTER 2. PREVIOUS RESEARCH 19

applications such as NNTP which use periodic times to send information to their neighbours. Such
timer based applications start at times that are not determined by user activity; however, the length
of the connection may still be a�ected by user activity. NNTP for example may send information
to its neighbours, but the amount of information it sends is dependent on how much 'news' the
users have generated. Poisson distributed inter-connection times are the result of some sorts of user
activity. Telnet in [77] has been shown over one hour periods to exhibit this behaviour.
Finally we come to heavy-tailed inter-connection times. Applications such as HTTP and FTP exhibit
this behaviour. What we will see is a burst of activity followed by a quiet period (determined by
the heavy-tail). This, in the case of HTTP, is due to the number of objects that have to be fetched
for a single web-page to be displayed by a browser2. FTP data connections have also been shown
to exhibit this behaviour.

2.3.3 Inter-Packet Times

Inter-packet times, for a single connection, are perhaps the hardest to quantify and model. The
reason for this is predominately due to the inherent feedback mechanisms of protocols such as TCP.
To attempt to unravel this a little we will start by looking at some empirical measurements, and
then at the intended behaviour of TCP itself. In reality the behaviour of a real application is likely
to lie somewhere between the two.
In [77] TELNET tra�c is shown to have a heavy-tailed Pareto distribution of inter-packet times.
To the eye it appears that bursts of packet arrivals occur, followed by a somewhat larger gap in
activity. Intuitively this would seem to correspond to the way people use computers, that is type
a clump of data followed by a variable length thinking time. The paper also shows how a Poisson
distributed arrival process grossly underestimates the burstieness of this type of tra�c.
TELNET is an interesting example because it disables Nagle's algorithm [94], resulting in packets
being sent as soon as possible. Other applications, such as HTTP and FTP, are bulk transfer
applications from the point of view of TCP; as such they follow the more general rules for TCP
behaviour. TCP has been designed to attempt to use as much available capacity in the network
as possible. To achieve this it clocks packets, by the use of acknowledgements, into the network
at a constant rate. The rate at which it does this is intended to stabilise such that little packet
loss occurs, and the bu�ers in the bottleneck router are fully utilised. Generally most �ows on the
Internet see only one congested router. TCP adapts to the capacity of this router; as a result some
of the other routes may be underutilised.

2However this may be harder to model as of HTTP 1.1, which allows more than one object to be retrieved with a
single connection.



CHAPTER 2. PREVIOUS RESEARCH 20

Ignoring the slow start algorithm3 TCP can be viewed, at least theoretically, as a constant rate
packet sending process. This is perhaps a bit of a gross simpli�cation, as the actual performance of
TCP is determined by the level of packet loss that it sustains. Indeed, real measurements of TCP
inter-packet times have show that its behaviour is far from deterministic [32].
Other applications such as VoIP, streaming audio and video, are more usually based on UDP. These
types of applications are usually rate based senders; that is, they send packets at �xed intervals of
time. Where the application has an adaptive codec this rate may change over time to accommodate
changing network conditions. Again ultimately we can simplify this type of application to constant
rate senders.

2.3.4 Aggregation E�ects

If we use our constant rate model of Inter-packet times we �nd that it is not hard to see how
applications such as HTTP would lead to self-similar tra�c when aggregated. If TCP is a constant
rate source, and there are a number of TCP connections with a long-tailed arrival and duration then
the e�ect is fractional Gaussian noise; which is self-similar. This idea is not new, a clear speculation
of this process can be found in [77]. We will use HTTP as our example for the explanation of
emergence of self-similar tra�c mainly because HTTP tra�c is one of the dominant tra�c types
found on the Internet [24]4.
We know that HTTP connection start times and durations are heavy-tailed, the former being due
to the number of objects per page, and the latter to the range of �le sizes found on the Internet. We
also assume that TCP sends data at a constant rate. As shown in [103] fractional Gaussian noise is
produced when a number of on-o� sources, which produce constant work while on and have Pareto
state transitions, are superimposed.

2.4 TCP Behaviour

In this section we will look at some of the research relevant to TCP. We have already seen that
merged TCP streams are one possible cause for the emergence of self-similar tra�c. This makes the
investigation of TCP important to an understanding how networks will behave. Here we will look
at two areas of TCP research. The �rst is the modelling of TCP throughput where the network
conditions, such as round trip time (RTT) and loss rates, as known. The second is models for
generating TCP-like tra�c which also exhibits behaviour similar to tra�c found on the Internet.

3Which as noted in [52] is not all that slow, and lasts for only a small fraction of time. However, it is only a small
fraction for connections of signi�cant lifetime. Most connections are quite short (just a few packets), and may never
get out of slow start [24].

4Although this may now have been overtake by peer-to-peer applications.



CHAPTER 2. PREVIOUS RESEARCH 21

2.4.1 Models of TCP

Modelling TCP is important as it is used by the majority of applications on the Internet today. In
this section we are interested in predicting the behaviour of TCP when the network conditions are
well known. There are two aspects of TCP performance that we are interested in: throughput and
latency. As TCP is a reliable transport protocol we do not measure the loss performance; however,
in TCP loss in the underlying network causes retransmissions which lead to latency and reduced
throughput. Loss is not the only factor the e�ects the throughput, the RTT also has an e�ect on
the speed of data transmission.
TCP is a complex protocol to model; it has many states of operation which, depending on the
situation, can e�ect its performance. In this section we do not explain the behaviour of TCP in any
great detail; however, we do assume a familiarity with its operation. For detailed information about
TCP see [94].
The majority of TCP models �t into two categories. The �rst considers long running connections,
such as �le transfers, where the sender always has data to send. The second considers short lived
connections, such as WWW transfers, where the sender has a �xed amount of data to send. In these
two cases di�erent aspects of TCP behaviour are important. In the former the congestion avoidance
mechanisms of TCP dominate. In the latter the startup three way handshake and slow start tend
to dominate.
In [74] a model of TCP throughput as a function of loss rate and RTT is proposed. The sender
is assumed to be saturated, and as such always has data to send. This work extends previous
works to include the e�ect of TCP fast retransmit and timeout mechanisms. The authors model
TCP's congestion avoidance behaviour in terms of a number of rounds. Each round corresponds to
a window of packets to be sent back-to-back; it begins with the transmission of the �rst packet in
the round and ends with the receipt of the �rst acknowledgement of a packet in this round. Lost
packets, detected by duplicate ACKs or by timeout, cause the window size to be modi�ed, thus,
adjusting the throughput. This model of TCP assumes that losses are correlated, that is any packet
dropped in a round causes all subsequent packets in the same round to be dropped. This assumption
is motivated by the drop-tail behaviour of FIFO queues; as packets in a round are sent back-to-back
if they arrive at a full FIFO queue they will be dropped in a burst. Clearly this assumption, as the
authors note, will not hold when using RED [62] queues.
Within the assumptions made the methods proposed in [74] can predict the throughput of TCP.
However, its accuracy is dependent on the distribution of losses, which may not always be bursty in
nature. In addition this method does not take into account the actions of fast retransmit and fast
recovery. In [5] another model of TCP, using stochastic processes, is presented. This paper models
loss in a more generic way, assuming that the loss process is only stationary and erodic. The model
requires the user to choose a loss process, for which the authors present deterministic, Poisson,



CHAPTER 2. PREVIOUS RESEARCH 22

general renewal and Markovian examples. This allows TCP to be modelled in situations that have
very di�erent loss processes, such as tail-drop FIFO and RED. In addition using this method it is
possible to calculate the �rst (average) and second moments of the throughput.
In [105] a model of TCP behaviour over a di�erentiated services network is presented. This model
can predict the throughput of TCP when there is a maximum bandwidth allocation imposed on
a TCP �ow. The network is assumed to mark packets with a drop precedence, with two (in/out
of contract) and three (green/amber/red) levels of marking. At each point in the network RED is
used to make drop decisions, this assumptions makes the modelling of loss far easier. The results
from this work make it possible to calculate the throughput of TCP given a allocated bandwidth,
or expressed another way the ability to calculate the correct bandwidth allocation for a target TCP
throughput. This work produced accurate results within the assumptions of the network presented.
However, it was noted by the authors that the assumptions about packet loss under RED are only
valid when the network is under-subscribed; where the network is over-subscribed loss occurs in
bursts due to full bu�ers, a situation where RED cannot make drop decisions.
Finally, in [18] a model of TCP latency is presented. This model di�ers from the ones we have
presented so far in that it is concerned with the time it takes to transfer a �xed amount of data
over a TCP connection; whereas before we were concerned with the steady state throughput. This
model extends [74] and incorporates the behaviour of the initial three way handshake and slow-start
algorithms. This method again uses the concept of rounds when modelling TCP, where packet loss
in a round causes the remaining packets in the round to be lost. When compared to a number of
WWW traces this approach proved accurate in approximating the latency of the transfer.
The models that we have presented here are able to calculate the throughput or latency of TCP.
These models are limited by two factors: an accurate model of the loss process, and an accurate
model of the RTT. The former has been investigated in much more detail as it tends to dominate the
behaviour of TCP. However, it should be noted that a highly variable end-to-end delay could also
cause inaccuracies. Overall we can see that it is possible to calculate the performance of TCP over
a packet switched network so long as we know the loss and delay behaviour of the network. This is
a major motivation for developing networks where this behaviour is well understood (predictable).

2.4.2 TCP Tra�c Generators

In this section we will take a look at some TCP tra�c generators. The purpose of these generators
is to produce an arrival pattern of tra�c that resembles that which would be found on the Internet,
so that they can be used for network simulation. The bene�t of having accurate tra�c models is
that it is possible to measure the performance of the network under a realistic load. Where the
loss and delay (or latency) are measured in such simulations it is possible to calculate the resulting
performance of individual streams, using the techniques presented in the previous section.



CHAPTER 2. PREVIOUS RESEARCH 23

In this area of research HTTP has received the most attention; this is not surprising since it is one
of the most common applications in use on the Internet. There are other works such as TCPLib [33]
which can model a variety of applications. In this section we will look at two types of HTTP model:
the �rst models the behaviour of a single �web browser� and the second models the behaviour of an
aggregated �ow of HTTP tra�c.
The �rst approach to modelling HTTP involves capturing the behaviour of an individual web
browser. By measuring traces of real web tra�c parameters that classify the behaviour can be
extracted. These parameters include: request length, reply length, �les per request, thinking time
and concurrent retrievals. In [66] web traces were collected and then used to create a set of cumulat-
ive distribution lookup tables, which were then used to create a tra�c generator. A similar approach
was also taken by [20]; however, the traces where matched with well known distributions to produce
the generator. For example, it has been shown that �le sizes tend to be Pareto distributed, and
thinking times Poisson distributed. The bene�t of this approach is the level of parametrisation, it
allow the models to be adapted as browsing patterns change. It also allows individual connections
to be simulated, which is useful when exact models for HTTP behaviour is required. When aggreg-
ated these approaches resulted in tra�c that exhibited self-similar behaviour. A down side of this
approach is that when used to create an aggregate �ow of tra�c the simulator has to maintain state
for each of the browsers, increasing the complexity and speed of the simulation.
In [1] a less detailed approach to modelling HTTP behaviour is taken. The concept of a user click
is used (which is similar to the notion of a web-request presented in [20]) as a basis for the model.
A click results in a given amount of data being transfered, these data can include a number of
web pages as well as any objects (such as images) that are included in the pages. Between clicks
there is a variable amount of thinking time, which is intended to capture the time taken to read
the web-page and any time where the user is performing some other task. This model therefore has
two parameters, the distribution of reply size and the distribution of thinking time. To produce
synthetic tra�c the packet traces were again used to produce a set of lookup tables used by the
generator. When aggregated this model again produces tra�c that exhibits self-similar properties.
This approach is much less complex that the previous two, making it much easier to use for simulation
purposes. However, it may su�er from inaccuracies if used to model HTTP transfers rather than
the behaviour of the network under HTTP tra�c.
The �nal approach we are going to look at involves generating HTTP tra�c that is representative of
a number of users. In [8] a model for generating HTTP tra�c is presented. Like other models this is
based on the behaviour of an individual web browser, using parameters similar to those in [66]. This
model is speci�cally designed to generate a set of aggregated HTTP tra�c that is representative of
a number of users. While the model uses empirically derived distributions, for the behaviour of an
individual browser, it only requires a number of users to simulate. Each user is modelled as a on-o�
process, which could easily be implemented using threads in a simulator.
The choice of a model for HTTP tra�c depends on the level of detail required. For simulations



CHAPTER 2. PREVIOUS RESEARCH 24

who's aim is to look at the performance of individual HTTP transfers models such as [66, 20] are
appropriate; this is because they model individual browsers accurately. For simulations which create
synthetic tra�c then [8] would be a good choice. Overall, one of the key requirements of all these
models is to generate self-similar tra�c; although HTTP is just one application that uses TCP such
models are good for generating self-similar tra�c for simulation purposes.

2.5 Fluid Flow Models

There is a large body of literature based on what is called �Fluid Flow Approximations�. These
consider the bandwidth of network tra�c, modelling packet switched networks as �uid like �ows
of data. Here we present two pieces of interesting research in this �eld. The �rst is E�ective
Bandwidth, which gives a statistical measure of the bandwidth used by a number of distributions.
The second is bandwidth sharing mechanisms, such as WFQ [36, 75], which divide the available
network bandwidth between a number of classes.

2.5.1 E�ective Bandwidth

E�ective bandwidth is a simple metric that can be used to describe the statistical properties of a
wide variety of tra�c sources over di�erent time and space scales. The individual sources can, in
many situations, be poorly parametrised and still be modelled using e�ective bandwidth. Kelly
[56] provides an excellent summary of all the important �ndings in this area of research. E�ective
bandwidth attempts to give a measure of the amount of bandwidth that a given source will use over
a given time period; essentially is is a parametrised average bandwidth.
E�ective bandwidth is used in a number of areas, namely: network provisioning, connection ad-
mission and network charging. For provisioning and admission decisions e�ective bandwidths can
be summed, thus allowing a decision to be made as to whether enough network capacity exists to
carry the tra�c. E�ective bandwidth is also used in the area of network charging. Here it is used to
calculate the amount of bandwidth a source will use, and then the source is charged appropriately.
The de�nition of e�ective bandwidth, α, is as follows. Let X[0, t] be the amount of work that arrives
from a source in the interval [0, t]. E[x] is the expected mean of the distribution function x. Assume
that X[0, t] has stationary increments. The de�nition of e�ective bandwidth is therefore:
α(s, t) = 1

st logE[esX[0,t]]

When used for the analysis of a multiplexer that guarantees some level of QoS the parameters s,
called the space parameter, and t, called the time parameter, characterise the context of the source.
This includes the multiplexer resources (capacity and bu�er), scheduling discipline, and QoS. The



CHAPTER 2. PREVIOUS RESEARCH 25

parameter s indicates the degree of statistical multiplexing: Large values of s indicate a low degree of
statistical multiplexing; such is the case when multiplexed streams with peak rates not much smaller
than the link capacity. On the other hand, small values of s indicate a large degree of statistical
multiplexing; such is the case when we multiplex streams with peak rates much smaller than the
link capacity. When s is set to in�nity this corresponds to the case of deterministic multiplexing,
where is there is zero probability of bu�er over�ow. A more mathematical interpretation is the
following: over the busy period preceding a bu�er over�ow the amount of work produced by a
stream is exponentially tilted, with tilt parameter s.
The parameter t corresponds to the duration of a bu�er busy period prior to over�ow. Hence, it
indicates the time scales that are important for over�ow: A small value of t indicates that small
time periods are responsible for bu�er over�ow, whereas a large value of t indicates that large
time periods of congestion are responsible for bu�er over�ow. Furthermore, parameter t shows the
minimum time granularity that traces must have in order to capture the statistical properties that
a�ect bu�er over�ow.
It is possible to calculate the e�ective bandwidth for a large number of tra�c sources, including
but not limited to: periodic sources, Markovian and general on-o� sources, normally distributed
Gaussian sources, and Levy processes. The e�ective bandwidth tells us how much bandwidth is
required, over a given time period for a given size, to bound the work a source will produce within
a given probability. For some sources the e�ective bandwidth is not dependent on the time period,
this covers any source that displays Markovian properties, ie. X[0,t] has independent increments.
However for the majority of sources in the literature this is not the case.
An important usage of e�ective bandwidth is in admission control. For each source arriving at a
multiplexing point we have an e�ective bandwidth; in addition we also have a constraint. This
constraint speci�es the acceptance region for which this source will receive an acceptable delay and
packet loss rate. Using the total e�ective bandwidth and capacity of the queueing algorithm in
terms of e�ective bandwidth it is possible to calculate if the speci�ed constraints are satis�able.
This is then used as the basis for an admission control decision.
An interesting e�ect of the time dependent nature of e�ective bandwidths can be observed by
looking at on-o� sources. These sources produce work at a �xed rate during the on period, and no
work during the o� period. The e�ective bandwidth requirement increases when the time scaling
parameter is less than the period of the source or the interval during which the source remains 'on'
or 'o�'. As the time scaling increases the e�ective bandwidth tends towards a mean value.
The implication of this is that choosing an appropriated value for the time scaling is important. If
you use a short time scale then you are likely to over estimate the bandwidth required in the long
term, yet if you use a long time scale you may underestimate the bandwidth required over short time
periods (due to bursts). There is then the possibility that you will incorrectly estimate the e�ective



CHAPTER 2. PREVIOUS RESEARCH 26

bandwidth of a on-o� source; clearly this has implications for admission control mechanisms. This
is of course unsurprising given the bursty nature of on-o� sources.
These estimation errors can be removed, but only when the tra�c source is not dependent on the
time scaling. This restricts the arriving tra�c to only those distributions that are memory-less,
Poisson being the only distribution with this property. Unfortunately, as we already know, self-
similar tra�c is very time dependent this would essentially cause the same problems in estimation
as that for on-o� sources.
E�ective bandwidth, as we have shown it here, can be used to perform allocation to peak. Given
that we have a number of multiplexed sources we can calculate the e�ective bandwidth, and hence
know the peak. We can then ensure that a contention point can supply enough service such that it
does not become too backlogged, which would cause excessive loss and delay. This approach hinges
on choosing the correct model for a source, as well as the space and time parameters used to calculate
the e�ective bandwidth; incorrect choices lead to loss of accuracy. The problem with this approach
is that choosing a correct source model is hard, as we have seen from the work on self-similar tra�c.
In addition choosing the correct time and space scaling is also hard, and is usually based upon
measurement; this relies on historical data being a good approximation of future behaviour, and
this may not necessarily be the case.

2.5.2 Bandwidth Sharing

In this section we will review some of the fundamental packet scheduling mechanisms that share the
bandwidth of an outgoing link. These are used to allocate a minimum bandwidth to each �ow that
crosses a link, as well a providing a delay bound.
Much of this work is based on Generalised-Processor-Sharing (GPS) [75] a general form of the head-
of-line processor sharing service discipline. In GPS packets are considered to be in�nitely divisible,
this is why this is considered a �uid-model. GPS is sometimes called Fluid Fair Queueing (FFQ) as
a result. As packets can be serviced in small quanta GPS has ideal fairness and isolation properties.
Each �ow passing through a GPS server is allocated a minimum bandwidth, the sum of all these
allocations being that of the outgoing link. If there is spare capacity then it is shared between the
backlogged �ows with respect to their weight. Due to the in�nitely divisible nature of GPS it is
impossible to implement in practice, this has given birth to a large number of queueing disciplines
based upon it.
Packet-by-Packet Generalised-Processor-Sharing (PGPS) [75] and Weighted-Fair-Queueing (WFQ)
[36] are the approximations of GPS scheduling; they are essentially the same but were developed
independently5. WFQ does not assume that packets are in�nitely divisible, therefore it is possible

5We use the term WFQ to refer to this discipline.



CHAPTER 2. PREVIOUS RESEARCH 27

to implement in practice. A hypothetical GPS server is used to calculate the virtual departure time
of each packet; this is the time when the tail of the packet would have departed in a GPS queue.
Packets are then serviced in departure time order, leading to an approximation of GPS. The problem
with WFQ is the computational and space overhead. For each packet a departure time is calculated,
with respect to GPS, and a sorted list of departures is also maintained. These two combined make
WFQ ine�cient for real world implementation.
The problems with WFQ have lead to a large number of alternative implementations, all of which
attempt to reduce the complexity of WFQ. We do not cover them in any depth here, as we are
more interested in their ideal properties. A few notable alternatives are: Self-Clocked Fair Queueing
(SCFQ) [43] which uses an alternative algorithm to calculate the departure time, reducing the
complexity. Start-Time Fair Queueing (STFQ) [44] considers start and �nish times in order to
address the short term unfairness of SCFQ. Worst-case Fair Weighted Fair Queueing (WF2Q) [10]
is another approximation to GPS, however, it only considers packets that have started or possibly
�nished service to reduce complexity.
A simple approximation to GPS is Weighted Round Robin (WRR) [55]. WRR services packets from
a �ow depending on a weight. If all �ows have the same weight then the server acts like a classical
round robin server, �ows with a higher weighting will be serviced more in a given round. The
problem with WRR is that it does not take into account packet sizes, so a �ow with larger packet
sizes will gain a higher share of the bandwidth. Clearly this is not a problem if all the �ows have
the same packet size, but this is unlikely. To address this the weighting is normalised by dividing
the weight by the packet size for each �ow. Unfortunately this requires knowing the packet size in
advance, which is unlikely. As a result WRR does not have good fairness properties, although it is
simple to implement and maintain.
De�cit Round Robin (DRR) [93] attempts to address the fairness problems of WRR. To do this
during a round each �ow is allocated a number of tokens, usual measured in bytes or bits, per
round. Depending on the weight of a �ow more or less tokens are added to each �ow. A packet is
sent from each �ow when there are su�cient tokens to send the packet at the head of its queue. Once
a packet has been sent the size of the packet is subtracted from the tokens, or if the packet can not be
sent the tokens accumulate for the next round. DRR has good longer term fairness properties, but
may be unfair for measurement periods less than a round trip time. DRR is commonly implemented
due to its simplicity and good complexity properties.
One �nal bandwidth sharing mechanism is Virtual Clock (VC) [107]. Instead of emulating GPS, VC
emulates time devision multiplexing (TDM). The bene�t of doing this is that it makes calculating
the virtual departure time much simpler, although a sorted list of departure times still needs to be
maintained. VC has comparable fairness properties to WFQ when fully loaded.



CHAPTER 2. PREVIOUS RESEARCH 28

2.6 Network Calculi

In this section we will take a look at some of the literature on network calculi. A network calculus
is essentially a method for calculating the performance of a network under a given set of conditions.
It is able to yield information about the expected performance of the network. A successful calculus
should be able to accurately predict the behaviour of the network, within useful bounds. In general
all of the approaches that we will cover have a sound mathematical basis, from which the performance
can be calculated.

2.6.1 Jackson and BCMP Networks

The �rst example of a network calculus, commonly referred to as 'Jackson Networks', was presented
by Jackson [51] in 1957. This calculus deals with separable or product form networks, which are
essentially a set of interconnected queues. It uses, as its mathematical basis, queueing theory;
predominately based upon Markovian service facilities. Using this calculus it is possible to calculate
the transit time of customers passing through the system. When this is applied to a packet switched
network it is possible to calculate the expected delay of packets traversing the network. In Jackson
Networks queues are modelled as M/M/n queues (in�nite bu�ering), this allows the queues to be
convolved as the departure tra�c pattern is still Poisson. One of the restrictions is that the level
of demand for each service facility must be less than it's capacity; thus insuring that the in�nite
bu�ers do not �ll. As a result this calculus is unable to model loss, in fact it avoids the issue by
ensuring that it cannot occur in the �rst place.
In [9] Baskett, Chandy, Muntz and Palacios present a generalisation of Jackson Networks called
BCMP Queueing Networks. The theory behind this calculus is much the same as Jackson, but has
been extended. BCMP networks can model customers that have di�ering service requirements; this
is the beginning of a model that can support multi-service networks. They also model a number
of di�erent queueing disciplines, and not just FIFO as presented in Jackson's work. However, the
restriction that demand cannot exceed capacity still remains.

2.6.2 Mean Value Analysis

In [65] a method for calculating the performance of Jackson or BCMP networks is presented. Solving
product form networks has traditionally been accomplished by constructing and solving balance
equations. The problem with such an approach is that it is computationally ine�cient and usually
produces more information that is required. To address this problem Mean Value Analysis (MVA)
deals directly with the quantities that are required, such as mean transit time and queue length,
while being less computationally expensive.



CHAPTER 2. PREVIOUS RESEARCH 29

MVA is a method for recursively calculating the performance of a network. We know that the mean
time a customer stays at a service facility equals its own mean service time plus the mean backlog
on arrival. This simply allow us to calculate the delay a customer experiences over a single service
facility. By adding the mean time a customer spends at each of the service facilities together it is
possible to calculate the mean time spent in the network. Essentially it adds us the mean delay at
each stage in the network.
There have been many [27, 26, 59, 21, 64, 63] re�nements of MVA in terms of performance and
accuracy. Overall it has been shown that it is possible to calculate average delays across a network
using this approach. However, as is common with these approaches the network of queues is seen
as lossless.

2.6.3 Min-Plus Algebra

In [31] Cruz presents the beginning of a network calculus. This work introduces the concept of a
'service curve'; a service curve is a mapping between an arrival process and a departure process. It
can be used to represent the service over a single queue, or the service over a number of queues.
Service curves can be convolved, allowing networks of queues to be represented as a single service
curve. From a service curve it is possible to extract a bound (min or max) on the expected level of
service.
In [29, 30, 2] Cruz et. al. presents a calculus using service curves. This calculus, know as the Min-
Plus algebra, is able to calculate end-to-end network delays. By using service curves this calculus
can yield detailed information about the probability distribution of delays. As a whole the calculus
can capture a variety of network elements, including: schedulers, links and regulators (shapers).
A speci�c scheduling algorithm, Service Curve-based Earliest Deadline First (SCED) [89], has also
been proposed to be used in conjunction with this work.
The Min-Plus algebra is in some respects a re�nement of the original work by Jackson - in that it can
yield detailed probability distributions, without the restrictive requirement of Markovian servicing.
It is more complex than the simple MVA approach that we also looked at. One aspect that the
Min-Plus algebra does share in common with Jackson, BCMP and MVA is that it does not explicitly
model loss. The author believes that such an admission limits both the accuracy of the results and
the applicability of these methods.

2.7 A Quality-Centric Model

In this section we explore some new research into QoS, and the e�ects it has on current thinking.
Our main focus is on the following paper [34]. This paper outlines a method for servicing di�erent



CHAPTER 2. PREVIOUS RESEARCH 30

�ows of tra�c with di�ering service requirements in a single queue. This approach has the following
properties:

• Management of di�erent classes of service in a single queue.
• Can operate in saturation, where the o�ered load is greater than the service capacity.
• It can provide strong statistical bounds on loss and delay of �ows.
• Provides a method to allow end-to-end quality calculation.

In order to deliver these promises there are a number of assumptions. If these assumptions are met
with relative con�dence then it is possible to implement this approach. It is assumed that:

• Loss is mainly due to bu�er over�ow and not transmission corruption.
• Packets can be marked so that they can be associated with a class of service.
• Flows of packets are well behaved, i.e.. they are within a contract6.
• The contracted maximum bandwidth of a �ow is �xed for the duration of the connection.

To achieve this a Loss/Delay model of packet servicing is outlined. This is based on a fundamental
property of �nite queues, in that they have two degrees of freedom in three parameters. The three
parameters are throughput, loss and delay. So if the throughput is �xed a relationship between loss
and delay is created.

2.7.1 Two Degrees of Freedom

Current approaches to providing QoS support are based around bandwidth requirements. This
includes all packet scheduling algorithms that are based on Generalised Processor Sharing (GPS)
[75] such as WFQ [36]. These approaches are based on a bandwidth driven model of networks which
assumes the existence of in�nite bu�ering. It is possible to calculate waiting times (i.e. delay) for
these models, but unfortunately in such models the loss rates are zero.
Some applications can tolerate loss, either by ignoring it or by retransmission, while others stall or
su�er latency due to end-to-end retransmission. It is clear that sensitivity to loss is entirely applic-
ation dependent, and as such it should be possible to provision for di�erent loss rates. Approaches
based on bandwidth driven models are ill suited to this. Loss is an unavoidable phenomena of packet
switched networks and should therefore always be considered when modelling such networks.

6It is assumed that �ows are policed at the edges of the network.



CHAPTER 2. PREVIOUS RESEARCH 31

Throughput

DelayLoss

Figure 2.2: 2◦ of Freedom Triangle

Attempts have been made to remove loss from networks by using large bu�ers; this simply will not
work. Under overload the bu�ers will always �ll, as long as this situation is sustained long enough
(most likely a few seconds). In this case the loss will not be avoided and extremely large delays will
be introduced.
In any queueing system there is a relationship between throughput, loss and delay [34]. If there is
in�nite bu�er capacity then loss is impossible; in such a situation the delay is determined entirely
by the throughput. Where there is �nite bu�er capacity the following relationships exist:

1. For a �xed loss rate, reducing the throughput will cause the delay to reduce.
2. For a �xed throughput, reducing the mean delay (i.e.. number of bu�ers) will cause an increase

in loss.
3. For a �xed delay, reducing the loss will reduce the available throughput.

Figure 2.2 shows this relationship. Any approach to providing QoS support must model these
relationships; failure to do this will make it impossible to model the real behaviour of a system.
An important implication of this work is that any scheduling algorithm based on a bandwidth driven
model is unlikely to be successful at managing di�erentiated classes of service7, especially when the
queue is pushed into overload. The major shortcoming is the inability to model loss, and hence
provide predictions for the loss that would be experienced. This results in inaccurate predictions
for delay, as delay is related to loss and throughput, not just throughput. In some situations, such
as when the network is underutilised, this is not the case; but in such a situation loss is unlikely so
the in�nite bu�er models are applicable.

2.7.2 The Loss-Delay Model

It is well known that applications have di�ering requirements for loss, delay and throughput. In [34]
a model for classifying and servicing �ows with di�ering loss and delay requirements is presented.

7We are assuming the absence of a feedback mechanism which would prevent overload.



CHAPTER 2. PREVIOUS RESEARCH 32

Empty Full

Mark 1 Mark 2

Figure 2.3: Partial Bu�er Sharing

This approach allows trading within the two degrees of freedom found in �nite queueing systems.
As such it can address loss and delay requirements with con�dence.
This method provides a way of controlling the two competitions that packets are subjected to in a
�nite queueing system. These are:

1. Competition to enter the queue. Failure to do so results in loss.
2. Competition to leave the queue. Failure to do so results in delay.

The loss-delay model classi�es tra�c in two dimensions: cherish and urgency. Cherish is the desire
to experience less loss, so the higher the cherish level the less loss we would expect to su�er. Urgency
is the desire to experience less delay, the higher the urgency the lower the delay should be. The
motivation for this two dimensional classi�cation is to capture the trading that occurs due to the
two competitions in the queue.
The loss-delay model can be viewed as partial bu�er sharing with strict priority. When packets
arrive at the queue, they are admitted if there is free space in their portion of the bu�er. Figure 2.3
shows a diagram of a bu�er, which has been shared out between three classes of tra�c. The �rst
class has the lowest cherish and the third class the highest cherish. When the bu�er is empty all
three classes can be admitted. When the contents passes the �rst water mark (Mark 1) then only
the second and third classes are admitted. Finally when the contents passes the second water mark
(Mark 2) then only the third class will be admitted. Once a packet is in the bu�er it is serviced
in strict priority order, that is packets with a higher urgency will always be serviced before packets
with a lower urgency.
To solve the loss-delay model a Markov chain is used. Figure 2.4 shows a Markov chain for a queue
of two bu�ers with two levels of cherish and urgency. As we progress to the right the bu�er �lls, and
after we have more than two items (the cherish limit) in the queue we no longer admit uncherished



CHAPTER 2. PREVIOUS RESEARCH 33

Represents Poisson arrivals of
urgent traffic that includes both
levels of cherished traffic

Represents Poisson arrivals of

levels of cherised traffic
not urgent traffic that includes both

Represents Poisson arrivals of

only cherished arrivals
not urgent traffic that includes

<0,0> <1,0>

<1,1>

<2,0>

<2,1>

<2,2>

<3,0>

<3,1>

<3,2>

<3,3>

<4,0>

<4,1>

<4,2>

<4,3>

<4,4>

Represents Poisson arrivals of

only cherished arrivals
urgent traffic that includes

<x,y>
in the system, y is the number that
x represents the number of  packets

are urgent packets

Figure 2.4: Loss-Delay Markov Chain



CHAPTER 2. PREVIOUS RESEARCH 34

tra�c. Through the methods outlined in the paper [34] it is possible to calculate the waiting time
and loss rate for each class.
Additionally, we can also calculate the standard deviation in order to have a measure of the reliability
of the results. It is possible, by following the derivation, to increase the number of classes to an
arbitrary number if this is required.
Overall [34] presents a new type of queue which allows loss-delay trading to take place. Flows are
marked with a cherish and urgency to indicate what service they would like to receive. The queue
is modelled as a Markov chain, assuming Poisson inputs and service, allowing stochastic loss and
delay predictions to be calculated. Given that the queue can trade in loss and delay it can provide
better di�erentiated service than classical bandwidth based queues, which only trade in throughput
leaving the relationship between loss and delay unmanaged.
There are two shortcomings of this model as presented. Firstly, it is assumed that the arriving
tra�c is Poisson distributed; this is unlikely in any real network. Secondly, packet lengths are not
considered when modelling the servicing process or the queue admission process8. This means that
the predictions presented may not accurately re�ect that of real tra�c. However, the �rst can be
overcome by use of shaping and the second by a more complete model with bounds on the delivered
service.

2.7.3 Markovian Shaping

The use of the loss-delay model, as has been presented, relies on tra�c arriving with a Poisson
distribution; to do this requires the tra�c to be shaped. As presented in [15] shaping can be
obtained using standard queues, but this itself creates problems.
A naive way of shaping is to use a queue with an extremely large bu�er, serviced in a Markovian
way. The service rate of the queue can then be adjusted to ensure that the queue rarely empties.
As the bu�ers are large the possibility of loss is reduced. The problem with this method is that the
delay introduced will most likely be unacceptably high.
Any shaper must attempt to keep its bu�ers non-empty for as much time as possible. When the
queue is empty the output can be considered to be non-Markovian. An arrival after this point
triggers the re-sampling of the server and the process continues. If the bu�ers �lls then the output
is still Markovian but loss will be introduced, this clearly being undesirable. Ultimately we wish the
shaper to avoid either condition occurring. As you can see, any shaper has to be optimised in two
dimensions. Firstly it must chose a bu�er size that does not introduce huge delays or high losses.
Secondly it must service the queue fast enough to prevent loss, yet slow enough not to exhaust the
packets in the bu�ers.

8It is assumed that one packet occupies one bu�er



CHAPTER 2. PREVIOUS RESEARCH 35

One possible solution to this problem uses dummy packets to keep the server process running, and
hence the output Markovian. When the server process �nds the queue empty it creates a dummy
packet to service, once the service for the dummy packet has completed the queue is examined again.
As many dummy packets are created as is necessary to keep the server process running. While the
authors of [15] do note that this is an area for future work, it does appear to be a promising solution
to Markovian tra�c shaping as it keeps the server process running; hence, keeping the shaped tra�c
as close to Markovian as possible.

2.8 Current �Best� Practise

In this section we will examine some of the current approaches to implementing QoS solutions. Here
we are concerned with how people currently capture and implement QoS in their network. We show
that these are far from ideal solutions to the problem.
There are, in general, four approaches to running a network today to provide QoS support. They
can be used in combination for greater e�ect. However none of these adequately addresses all of the
concerns that will be highlighted in the next chapter. In the general case it is also hard to predict
what the performance of the con�guration will be.

2.8.1 Requirements Capture

Requirements are generally expressed as Service Level Agreements (SLAs) between a provider and
a consumer. These are used extensively on the Internet between backbone providers and Internet
Service Providers (ISPs) as well as ISPs and end users. They agree how the tra�c between the two
entities will behave.
Unfortunately most SLAs fail to capture adequately the requirements that the user asked for. To
illustrate this point we will use an example of an organisation that wishes to run VoIP between two
of their sites. To do this they negotiate an SLA with an intermediate service provider that on the
surface appears to satisfy their needs.
The ISP promises for each VoIP call to deliver 99.9% of packets in a month with a delay less than
100ms. The organisation also agrees to stay within a pre-determined bandwidth limit. The SLA is
valid for a whole year, and the link is to be used 24 hours a day for the whole year. Both parties
keep to their respective agreements. The loss and the delay are low enough for near perfect audio
quality; but is this guarantee su�cient for VoIP?
Using this SLA it is possible to deliver no packets for nearly 45 minutes a month, or 2628 seconds
to be precise. It would be possible for the ISP to unplug the link for 30 minutes and still maintain



CHAPTER 2. PREVIOUS RESEARCH 36

their guarantee. This is clearly an extreme case and such an event would clearly be unlikely. Even if
we were to evenly distribute these failure seconds, in one second bursts, throughout the working day
it still may not provide acceptable quality for all applications. We investigate these issues further
is section 4.6.

2.8.2 Under-utilisation

The �rst method of supporting applications that require QoS support is underutilisation. Here the
network is not used at anywhere approaching its full capacity, in many cases less than 2% of the
overall bandwidth available is utilised.
This method is generally successful, and this is not surprising. Firstly packets arriving at a switching
element see an empty queue, and as such they see a small delay due to queueing. Secondly, because
the queue is generally empty, the probability of loss is small. There are problems as a result of
packet bursts, but this is minimised due to the general under-utilisation.
Unfortunately this is an extremely wasteful approach to providing QoS support. In some situations,
such as Local Area Networks (LANs), it is acceptable, as the cost of providing excess bandwidth is
not prohibitive. For the wide area Internet, where links between remote sites are expensive and it is
important to utilise these links fully, it is most certainly not a cost e�ective solution. That is not to
say that such networks do not exist. In the long-run, return on investment is important; more users
will likely be added to recoup the costs of developing the network. As this happens the network will
no longer be underutilised and QoS provision will become harder.

2.8.3 Measure and Improve

Another even more common solution [42] is to measure an existing network to see if it is capable of
supporting a particular application. This may be done by literally injecting packets into the network
and measuring the result, or by simply attempting to use a given application. Where a problem
occurs, more capacity can be added; this is e�ectively underutilisation again.
The same source suggests building a parallel network solely for the purpose of testing the performance
of the real network. This is unbelievably wasteful, and most likely extremely expensive. Again such
approaches are adopted by a number of people despite this fact, but only where there is a su�cient
amount of resource to justify the approach.



CHAPTER 2. PREVIOUS RESEARCH 37

2.8.4 Delay Minimisation

For some applications, such as VoIP, low delay is critical to its correct functionality. These critical
applications can be improved by giving them preferential treatment over other applications. Priority
queueing is one such method of implementing this approach, there are many more, including [40, 99].
Unfortunately delay minimisation fails to properly manage the two degrees of freedom inherent in
queues [34]. This means that the loss is hard to determine beforehand. Clearly the loss could be
measured to see if it is acceptable, or the network could be designed so that it is grossly underutilised
so that the problem is less apparent. While both of these approaches will work they are not ideal,
especially if you wish to fully utilise your network.
A side issue with priority queueing is Denial of Service (DoS) attacks. If an attacker was to �ll the
highest class with bogus tra�c then the lower classes would be denied service. This is especially
harmful when the lower classes contain tra�c such as routing information - the result being router
�ap. Bandwidth policing could be used to alleviate this problem; care would need to be taken not
to over-police and deny legitimate tra�c from the class.

2.8.5 Bandwidth Policing

The �nal approach to QoS provisioning is to use bandwidth policing [36, 10, 75, 93]. Here each class
of tra�c is assigned a rate at which its tra�c is sent. The classes are then serviced in some order
depending on the exact servicing discipline in use.
Managing only bandwidth fails to control loss and delay; again this does not manage the two degrees
of freedom. Where the arriving tra�c is bursty it becomes extremely hard to determine what the
loss and delay of a class will be. One solution to this is to ensure that the arriving tra�c is shaped
and policed to the correct bandwidth.

2.9 Conclusions

In this chapter we have seen that tra�c measured on the Internet has self-similar properties [61].
This would seem to suggest that using Poisson based models to reason about Internet performance
are inadequate [77]. However, recent work [53] has shown that self-similar and Poisson-like models
are in fact a continuum of behaviour. Poisson models can be used but they are restricted to limited
regions (light or heavy loading).
Research into application behaviour [77, 33, 24] has shown that the majority of applications have
heavy-tailed connection lengths and inter-connection times. The emergence of self-similar behaviour



CHAPTER 2. PREVIOUS RESEARCH 38

can be explained [103] by multiplexing together a number of on-o� sources with heavy-tailed 'on' or
'o�' periods. This explanation relies on the 'on' periods producing work at a constant rate; TCP
could be seen to produce such behaviour, although in practise it does not.
Self-similar tra�c causes problems in providing QoS support due to its bursty nature. Bursts arrive
at unpredictable intervals and last for unpredictable lengths. This a�ects the length of queues and
as a result loss probabilities, and waiting times, become unpredictable. This lack of predictability
makes it hard to make QoS guarantees with any accuracy, unless the network is underutilised.
Much of the work on QoS support has concentrated on bandwidth sharing [75, 36, 43, 44, 10, 55,
93, 107]. These scheduling disciplines attempt to emulate the behaviour of the ideal GPS discipline.
Depending on the implementation gains in computational simplicity of fairness are made. GPS is
based on the notion of a �uid-�ow model, where packets are in�nitely divisible. It is assumed that
there is in�nite bu�er capacity, as such loss is not considered.
E�ective bandwidth [56] provides a way of characterising a number of diverse sources. It can be
used to calculate the amount of bandwidth that has to be delivered to a �ow in order to meet its
quality requirements. However, its accuracy is dependent on the correct choice of s and t parameters
which is non-trivial.
Recent research [34] has shown that �nite queues have two degrees of freedom. That is they can
manage throughput, loss or delay by managing the other two parameters. By de�nition scheduling
disciplines based solely on bandwidth are unable to manage the relationship between loss and delay,
making them unsuitable for QoS support. To take advantage of this fact the loss-delay queueing
model was developed to enable throughput to be managed by controlling loss and delay.



Chapter 3

Understanding QoS

3.1 A Perspective on QoS

We shall start our discussion by taking a high-level view of a network and examining what its stake-
holders are concerned with and what they expect an ideal network to provide. Here we are mainly
concerned with the networks ability to support QoS. However this is not the only consideration;
networks exist to support some activity, and it is this activity that de�nes how the QoS is delivered.
Delivering QoS is the process of assuring that the experienced quality degradation is within es-
tablished bounds. Understanding how each stake-holder views the activity is key to producing a
framework that addresses all of their needs.

3.1.1 The User Perspective

Networks exist to support the activities of users; ultimately it is their experience that we are trying
to control. A successful network will manage the network to meet the users expectations.
In general, users are not interested in how a network functions, so long as it allows them to accomplish
the task in hand. This means that they will express their requirements in terms of the activity that
they are performing. We can understand a great deal about the aspirations of users by �nding out
what they do not like about the performance of current networks. For example:

• Web-pages take so long to load here; they do not at home.
• File downloads seem to progress at unpredictable rates.
• I have tried to use voice conferencing but the quality is dreadful.

39



CHAPTER 3. UNDERSTANDING QOS 40

• It takes a long time to connect to my mail server.
• Parts of the Internet appear to be disconnected at times.

All of these statements point us to some aspirations the user has about how the network should
behave. It is easy to convert these into high-level requirements that the network should honour.
What is important is that if we were able to meet these aspirations, at acceptable cost, the user
would see the network as a success. It would be even better if the user was simply unaware that it
could behave in any other way.
Making users unaware of the di�ering behaviour of the network is an extremely important point.
Taking the �le download as an example; if the user had never experienced fantastically fast down-
loads, do you think they would be unhappy with slower ones? The answer is probably no; [92]
provides some interesting insights into this area. This is what it means to manage users' expecta-
tions. We could choose to slow down fast downloads so that users are unaware that fast downloads
are possible. Or even better make downloads fast at de�ned times of the day that are well known
to the user.
We can rewrite the user's complaints into requirements in language they can understand. By doing
this the user can easily evaluate the performance of the network, and even participate in setting the
requirements. Taking the above bullet points we can rewrite them as follows:

• Web-pages will load in under 10 seconds[19].
• File downloads will be between 100-150Kbps during the working day.
• Voice conferencing will always provide acceptable audio quality
• Connections to local mail servers will succeed in under a second.

While the statements above may look like a speci�cation, they are not. What we have captured here
is the user's qualitative aspirations. For example, research has shown that users lose interest in a
website if they have to wait more than 10 seconds for the page to load. So it is the aspiration of the
user, or at least the inferred aspiration, that the page should load in under 10 seconds. Clearly this
depends on the size of the page; however, this is taken into account when mapping the aspirations
into a con�guration. What we have started to do here is to convert the users qualitative statements
into a quantitative speci�cation.
The last point �Parts of the Internet appear to be disconnected at times� is a harder problem, as it
requires management of the Internet as a whole. The cause of such problems is usually router �ap.
One cause of this is when a number of routing messages get lost in a row, usually due to over utilised
links. When these messages are lost, the routes that they advertise get removed from the routing



CHAPTER 3. UNDERSTANDING QOS 41

table, and it is this that causes the disconnection of parts of the network. The author believes that
this could, in principle, be solved by using QoS in the Internet core (see section 8.2).
Packet loss is not the only cause of router �ap. Today the number of routes that have to be stored
by core routers is expanding; older routers may not have enough memory to store this information,
causing some routes to be dropped, again leading to router �ap. Another cause of router �ap is
convergence problems with BGP, the most common of inter-domain routing protocols used on the
Internet; [45] provides a good overview of these issues.
Understanding the users' perspective and capturing their requirements informally, in their language,
are relatively straight forward. Next these requirements can be formalised and turned into a spe-
ci�cation. However, this process is extremely hard to do well. We shall cover this process and
provide a method to deliver the requirements in later chapters.

3.1.2 The Management Perspective

Managers oversee both the users and the administrators. They are concerned with the general
operation of their organisation. In a positive way, they wish to enable the administrators to support
the users, where this is consistent with the organisational needs.
Managers can examine the high-level user aspirations to see if they are important to the business.
For example, they may decide that having web-pages loading in under 10 seconds is too broad, they
may restrict this to only those sites that they deem important to the business. They may also decide
that VoIP is critically important, and hence should be treated in preference to web-pages.
This process of re�nement is important to both the users and administrators. To the users it provides
a clear statement of what will and will not be supported, and to the administrators a clear set of
goals to reach. It is relatively trivial to capture these requirements, and it is essential that it is
done in a language that in understandable to the management and the other stake holders with a
non-technical background. For example:

• VoIP is critically important to expansion. It should work reliably with acceptable audio quality
during the working day.

• Websites that are critical (such as suppliers and customers pages) should load in under 10s.
During lunchtime this may apply to all websites.

• Connections to mail servers should be given preference at peak times, such as morning and
the end of the working day.

• File transfers are unimportant, and should be treated as such.



CHAPTER 3. UNDERSTANDING QOS 42

As you can see these aims are a clear statement of what a user of a QoS enabled network should
experience, it is this which we wish to deliver. It would be desirable to have con�dence in the
network. The choice of technology should ensure that the network is dependable and fault tolerant.
This is increasingly important, given most organisation's dependence on networking technology.
Managers are concerned with a view of the system as a whole. This means that they are more
interested in the overall e�ciency of the network, than they are in an individual user's experience
of the network. This view a�ects the choice of technology; ideally the technology should also focus
on overall e�ciency and not the treatment of an individual �ow.
The �nal requirement of management, who in our model are responsible for purchasing decisions,
is that the network should be cost e�ective. To this end, it is desirable to pick a technology that
allows for the maximum utilisation possible while still meeting the goals that have been set.

3.1.3 The Administrative Perspective

Administrators are responsible for the smooth running of the network from a technical perspective.
Their job is to con�gure and run the network to meet the goals that have been set by the users and
management. To perform their function they have to have access to the aspirations of their masters
in a form that allows them to produce a con�guration.
Networks are a collection of switching devices connected together by physical links. It is likely that
this infrastructure already exists. The administrators are able to control the con�guration of these
devices, and have a choice of a wide variety of queueing and bu�ering semantics. Their problem is
how to best con�gure their infrastructure to meet the constraints placed upon them, and where to
increase capacity in future expansions.
In order for them to produce the con�guration they need to capture the requirements in their own
language. This is di�erent from the language of the users; it is more concerned with measurable
properties of the network. The �rst tool that they require is a method of translating the high level
requirement into a more solid mathematical representation. This is, in fact, more di�cult than it
may �rst appear, as we will show later.
Given a solid set of requirements the next task is to produce a con�guration. This again is no simple
task. To produce such a con�guration it is essential to understand how the choice of bu�ering
semantics and queueing disciplines will behave in the con�guration. Without this, it becomes a
continual process of recon�guration and testing. While this may lead to success in a number of
situations, it is not an ideal solution.
Gathering statistics on the behaviour of the network is another common task for administrators. It
can help to highlight problems in the current con�guration. It would be desirable to have a method



CHAPTER 3. UNDERSTANDING QOS 43

Network

∆Q

Figure 3.1: Change in Quality over a network

for the administrators to provision the usage of their network and to plan for future expansions.
Again statistics gathering helps with this process; it highlights what the current usage patterns are.
This can then be compared to the management aspirations to see if the con�guration is successful.
However, without understanding how a change to the con�guration will a�ect the problem, it is
hard to �nd a solution quickly. In many instances the answer is simply to add more bandwidth, or
buy improved equipment.

3.2 A Management Methodology for QoS

In this section we will examine what a QoS Management methodology should incorporate, making
reference to the di�erent perspectives of the network. To do this we will take a brief look at the low
level QoS parameters of a network. Next we will show what the requirements of the methodology
are. Finally we will identify what the criteria for success are of both the framework and the network.

3.2.1 What is Quality?

The idea of what quality is depends on your perspective. As such it is hard to quantify in general.
However from both the users' and managers' perspectives quality is attained when the network
meets the requirements that have been placed upon it.
Here we will concentrate on what quality is to the administrator. To do this we will use an abstract
change in quality we call ∆Q. This quantity represents how quality degrades from its source to its
destination. Figure 3.1 shows a digram of this.
It is possible to measure the performance of a network using a relatively small number of parameters.
In general we will restrict ourselves to the following:



CHAPTER 3. UNDERSTANDING QOS 44

• Throughput
• Loss Rate
• Delay
• Jitter

We have chosen to normalise these quantities to bytes and seconds through the rest of this document
for convenience. The time scale that these quantities are measured over, and hence averaged, depends
on the guarantee that we are trying to meet. All of these parameters form part of our concept of
∆Q.
When packets traverse a network the �ow that they belong to is degraded; this means that a number
of the quality parameters of that �ow will be modi�ed. We call this change in quality ∆Q. It can
be measured between any two points in a network in which a �ow traverses.

3.2.2 Framework Application

A QoS framework needs to encompass all the perspectives of the network into a coordinated approach
to providing a QoS solution. Applying the framework should involve executing the following steps,
targeted at your particular choice of networking technology.

1. Capture the users' aspirations and check that they are aligned with the needs of the organisa-
tion. These should then be prioritised in terms of their criticality to the organisation. This
provides us with a clear view of what the network should achieve.

2. Convert the aspirations into requirements. Requirements should be expressed in the admin-
istrator's language, this being numerical or constraint1 based. Care should be take to make
sure that the result accurately re�ects the users original aspirations.

3. Check that the collated set of requirements can be satis�ed. This requires knowing about the
topology of the network and information on the usage patterns of its users.

4. Generate a con�guration for the network from the requirements. This involves knowing how
a con�guration will behave under the given conditions. The con�guration can then be incre-
mentally rede�ned until it meets the requirements.

5. By monitoring the performance of the network, and gathering statistics, evaluate how good
the process is up to this point. This will provide information on how accurate the original
usage patterns were, and help to �nd new ones, as well as information about how well the
requirements were.

1By constraint we mean a absolute maximum quality degradation, beyond which the delivered quality would be
insu�cient to meet the requirements that have been set.



CHAPTER 3. UNDERSTANDING QOS 45

6. Using the available statistics, re�ne the con�guration. This could include introducing increased
provisioning for some services, or perhaps placing restrictions to encourage usage of some
services at other times of the day.

7. Using the available information identify hot-spots in the network. These could highlight where
more investment is needed.

While the points presented above may not be new they do highlight the need for an understanding of
the operational behaviour of a network. It is essential to understand what degradation is introduced
to a given �ow of tra�c traversing a network that has been con�gured in a particular manner. The
network topology and con�guration are well known; however, the e�ect on arriving tra�c is still
elusive in a number of situations.
Ideally we would like to take the requirements we have captured from the users and generate a
con�guration that will satisfy these requirements, for a given topology. However it would be just
as permissible to provide guarantees about the degradation that would occurs given a con�guration
and a topology. It is this approach that we shall now concentrate on.
What is required is the ability to guarantee the degradation, or ∆Q, a given �ow will receive. This
guarantee should be statistically sound, and hold under all normal2 conditions.

3.2.3 Criteria for Success

Once we have calculated the degradation that a �ow will receive as it crosses a network we need to
check if it is su�cient to support the target application. The two pieces of information that we have
available are the requirements set by the user and the guarantee provided by the framework.
Applications generally express their requirements as a worst case quality i.e. d∆Qe. We denote this
by ξ, to distinguish it from a ∆Q that has been measured. This is of course application dependent.
We get this requirement by converting the user's aspirations into a numerical form. We can express
the criteria for a successful guarantee as follows.
∆Q ≤ ξ

∆Q is constructed from a number of statistically properties, these properties are the same measures
that we use when measuring the performance of a network; namely throughput, loss, and delay.
These properties should hold over all time scales; however, the accuracy of these parameters are
expected to change depending on the time scale. One approach to evaluating this inequality is to
compare each of the parameters in turn. This is not the only approach; some applications will be
able to trade between the parameters and hence simple evaluation of each of the parameters may not
be su�cient. However as a �rst cut approximation it is likely to be su�cient for most applications.

2This excludes disaster management and recovery processes; due, for example, to hardware failure or user error.



CHAPTER 3. UNDERSTANDING QOS 46

3.2.4 Approach Requirements

Implementing the QoS framework can be achieved through a number of di�erent approaches. How-
ever to be ultimately successful it must provide some low level facilities to allow the framework to
be fully implemented. Below is a list of the key requirements:

• Ability to capture user requirements in a mathematically meaningful way.
• Ability to predict the behaviour of a con�guration.
• Ability to run the con�guration at a high utilisation.
• Ability to understand the interaction between QoS and user experience.
• Management of the 2 degrees of freedom [34].



Chapter 4

Methodology

4.1 Introduction

In this chapter we will look at some concepts and insights that have motivated our investigation of
QoS. The de�nitions given here are far from being mathematically rigorous, they are intended to
highlight the way in which we think about the problems associated with QoS. We will refer back to
these concepts throughout the thesis as we shed more light on the subject. In this chapter we cover
the following:

• A description of our assumptions about the way the network behaves. In general, we consider
any packet switched network, however, we are mostly concerned with networks based on
Internet technology.

• The concept, called Intrinsic quality - there is only a �nite amount of quality that the network
can provide. This quality can be shared out to provide better treatment to some �ows and
lower quality to other �ows.

• Introduce the concept of loss and delay creators and the fundamental rules that govern packet
switched networks.

• De�ne a Quality Degrader Function (QDF) to capture the behaviour of loss and delay creators.
• The concept of Instantaneous Quality; a time independent measure of quality.

Overall we view QoS as the prediction and management of the behaviour of the network under all
conditions. It is the ability to meet established targets that makes a QoS methodology successful.

47



CHAPTER 4. METHODOLOGY 48

4.2 De�ning the network

Before introducing our framework we feel it is important to outline our view of the network we
are studying. Here we are interested in the underlying nature of the network only. Later we will
reintroduce some of the mechanisms that we factor out here.
Firstly we are interested in modelling packet switched networks speci�cally. Such networks carry a
number of streams, where a stream is a connected set of packets from a protocol such as TCP. It
is assumed that there are su�cient number of streams arriving at a network element to maintain
statistical independence. Streams are grouped together into �ows, which may be grouped into a
larger �ow. Flows can be grouped together and split apart as required. The grouping can be done on
an arbitrary basis1; however in general the treatment of the �ow is dependent on the applications'
requirements. Our approach deals with �ows, and not individual streams. Flows are assumed to
be continuous. By this we mean that over a long period of time (hours or more) the average rate
remains constant. For a high-speed links this is satis�able, especially when looking at a particular
type of tra�c like WWW; although the rate is variable, depending on the time of day, the average
for a given hour is relatively stable2.
Packets are assumed to have a variable length, between some maxima and minima; the Maximum
Transmission Unit (MTU) and Minimum Segment Size (MSS) respectively. They also have a way
of identifying their source, destination and quality requirements (colour). All of this information is
contained in the packet itself. For the purposes of simulation we will also assume that there exists
a time at which the packet was sent, and a unique serial number. These two pieces of information
allow us to determine the delay and loss rate of the stream. There is also routing information, it
tells us the next multiplexing point that the packet will traverse.
Our network is also protocol agnostic. We are not interested in any speci�c connection control,
encoding, �ow control or error recovery techniques. We shall deal with these later. We do assume
that the packets can be examined to colour them3, despite the fact that this requires understanding
the protocol headers.
Fragmented packets are not considered here, but they can be accommodated in this approach.
Fragmented packets can create a problem in determining what class a fragment should be placed
in; this is not always the case, as it is highly dependent on the protocols that are being used in the
network. In general only the �rst fragment, unless the information is contained at a higher protocol
level, contains the information required. Fragmented packets also cause problems for other areas
other than QoS (such as routing), but these are outside the scope of our investigation.

1The grouping could be de�ned by Internet standards per application, or by the administrators of a given network.
2It is possible to observe this from the graphs in [95].
3Essentially this amounts to a way of assigning a packet to a quality class, without specifying the method used

(like ToS �elds for example).



CHAPTER 4. METHODOLOGY 49

Throughout this thesis we will talk about statistical properties of �ows. We take an observational
approach to explaining the meaning of these properties. The statistical properties that we are
interested in are averages, although we will also look at variance and standard deviation of these
properties as well. All averages are obtained by observing some property over a period of time, we
ensure that the measurement period is su�ciently large that the resulting averages are statically
sound. For well known distributions we use the central limit theorem to ensure that our measurement
period for the simulations is su�cient; in many cases we measure such properties for substantially
longer than required.
The �rst property that we are interested in is throughput. Packets �ow between a source and a
destination over the network. The throughput is the rate of packets, over a given time interval,
observed at a point in the network. We may refer to the throughput using a number of di�erent
terms, depending on the context. Where packets are injected into the network at a source we call
the throughput the o�ered load, as the network has not yet transported any packets. Where the
throughput is measured at the destination we may call it the transported load, or alternatively
good-put (as this is the work that has arrived successfully at the destination).
There are a number of way to measure the throughput. The most direct of which is to count the
number of packets observed in a given time interval. This approach ultimately results in an average
over a given time period; care must be taken to choose an appropriate measurement period4. The
approach taken here for measuring throughput requires us to �rst measure the average inter-packet
time. The throughput is de�ned as 1

IPT measured at the point of interest. The inter-packet time is
the interval of time between the head of �rst packet and the head of the following packet; note that
measuring the tail of the packets is equivalent. The bene�t of measuring throughput by inter-packet
time is that we can make measurements at a packet level, these can later be averaged, if required.
The variation in inter-packet time gives us our �rst, and most common, measure of jitter. There
are two common measures of jitter. The �rst is the variation in time between successive packet
arrivals, which is the variation in inter-packet times. This is essentially a measure of the change of
rate over time. The second measure of jitter is the variation in end-to-end delay. We refer to these
measurements as variation in inter-packet time and variation in end-to-end delay to avoid confusion
over the term jitter.
The �nal property is end-to-end delay. The delay of an individual packet is the interval of time
between the head of the packet entering the network and the head of the packet leaving the network.
Again we could choose to measure the tail of the packet instead, which would lead to an equivalent
measurement. As we have already mentioned variation in end-to-end delay is also a measure of
jitter.

4Measuring throughput over periods of time such as minutes may give misleading results; especially when there
are short lived periods of high load.



CHAPTER 4. METHODOLOGY 50

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.5 1 1.5 2

P
ro

ba
bi

lit
y 

of
 L

os
s

Loading Factor

Figure 4.1: Probability of loss in an m/m/1/k queue

0
1
2
3
4
5
6
7
8
9

0 0.5 1 1.5 2

M
ea

n 
nu

m
be

r i
n 

qu
eu

e

Loading Factor

Figure 4.2: Length of an m/m/1/k queue

4.3 Intrinsic Quality

In this section we will start to investigate the problem of providing QoS. To do this we use an
example of a simple M/M/1/K queue (See appendix A) to demonstrate our point. Intuitively there
can only be a limited amount of quality in a queueing system, any attempt to provide more quality
than this is simply infeasible.
The following graphs, �gure 4.2, 4.3 and 4.1, show; the average length of the queue, the average
time spent in the queue, and the probability of being refused entry to the queue. These graphs can
be used to gain some understanding of the quality that a user will receive at loading factors of 0%
to 200%. (Where k=10 on these graphs).
Let us examine the quality that we receive in relation to the loading placed on the queue. We know
that the probability of a packet being lost is related to the length of the queue. Where the loading
is 0% the length of the queue is 0. As the loading increases then so does the length of the queue,
which then increases the probability of packet loss (�gure 4.1). In e�ect the higher the loading the
higher the loss.
As we have already stated; the higher the load, the longer the queue (�gure 4.2). If we join the queue
at this point we have to wait until we get to the front to be serviced. We are of course assuming



CHAPTER 4. METHODOLOGY 51

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

0 0.20.40.60.8 1 1.21.41.61.8 2

M
ea

n 
tim

e 
in

 q
ue

ue

Loading Factor

Figure 4.3: Time spent in an m/m/1/k queue

that the queue is being serviced in a First-in First-out (FIFO) order. So as the loading increases
so does the average delay that packets will experience. If we look at the amount of time spent in
the queue (�gure 4.3) we see what initially looks like a surprise - the time spent in the queue starts
to drop as the load increases. Packets that are not admitted to the queue spend zero time in the
queue and hence contribute a delay of zero to the overall delay. This causes a drop in the average
time spent in the queue. However, for packets that are admitted to the queue they will perceive a
waiting time that is related to the queue length.
If the user of the system we are considering has dedicated bandwidth5 then to get a low delay and
loss requires using less than the allocated bandwidth. This is good news for the customer, because
here is a guaranteed way to get a low loss and delay link. However for the provider this is bad
news because it is likely that customers will demand more bandwidth for their allocations than is
available or even practical6.
There is another e�ect that is caused by the relationship of quality to loading. Users are likely to
notice that they get better quality at certain times (when the network is lightly loaded) and not at
others. This is undesirable; in the users' opinion they paid for a service and they would like it to
deliver the highest quality all of the time. What is required is a method of setting and managing
users' expectations. We can achieve this by simply degrading the quality to some bounded value at
all times. As a result the users' will receive the same service all the time.
What we can see is that a user experience of quality is dependent on the load placed on the system;
indeed this is no great shock. At a given loading factor there is only a given amount of quality
available, we call this the Intrinsic Quality. When looking at QoS guarantees it is simple to see that
we cannot make guarantees better than the quality that the intrinsic quality of the queue.
The system we have looked at here only has a single �ow of tra�c entering it. However it is not
hard to imagine that this �ow is in fact the composition of a number of other �ows.

5We assume that the loading factor is one when the allocated bandwidth is fully used.
6We are assuming that the provider is using a packet-switched network and attempting to exploit the statistical

multiplexing as much as possible.



CHAPTER 4. METHODOLOGY 52

Intuitively it must be true that the sum of quality degradation that the individual �ows receives
must be equal to the total quality degradation of the queue. This provides us with the notion of
trading; that is in order to provide better quality (absence of degradation) to one �ow we must
provide worse quality (more degradation) to another �ow. Moreover this trading can only occur
within the bounds of the total intrinsic quality of the queue.

4.4 Network Quality Invariants

In this section we present some rules that govern the processing of packets as they traverse a network.
Understanding these is important, as it encapsulates the basic behaviour of the network.
For a given �ow, loss will always increase. As packets traverse a network there is always a possibility
that they will be lost. Communication links could corrupt a packet causing it to be discarded;
however, we generally assume that the likelihood of this is relatively small7. More likely the packet
will be refused entry to a bu�er due to contention and hence will be discarded. As we are uninterested
in error recovery the packet is simply lost; if a higher level function were to retransmit the data this
is viewed as another packet altogether. With this in mind there is no way a packet can be un-lost,
and hence loss is always increasing.
For a given �ow delay, as measured from the source, will always increases. Almost every element
in a network introduces delay. When a packet is transmitted across a transmission line it is �rst
serialised, then transmitted and then deserialised. Serialisation and deserialisation introduce a delay
dependent on the length of the packet, and transmitting each byte of the packet adds a delay that
is dependent on the length of the link and its characteristics. There are also queueing delays, where
the packet has been successfully accepted into a bu�er. This delay is caused when packets are being
serviced from another �ow (inter-�ow delay) or from the same �ow (intra-�ow delay). Importantly
once a packet has been delayed it can never be un-delayed; that time has simply elapsed. Thus a
�ow of packets will always be increasingly delayed.
For a given �ow throughput will always decrease. Whenever �ows interact for a resource, such as
bandwidth on an outgoing link, sharing must occur. At this point the throughput of each individual
�ow will be decreased. The throughput cannot be increased once degradation has occurred. One
could increase the service rate to increase the bandwidth, but this can only be sustained while there
is a backlog of packets in queues in the network. Once this backlog has been removed its obvious
that you cannot remove packet from the network faster then they enter it.
By de�nition these three parameters are essentially the ∆Q that was introduced in the last chapter.
At each point in the network the quality of a particular �ow will be decreased by a local ∆Q. Over

7Note that we view contention for a shared resource, such as a WLAN, as part of the service facility of the queue;
failure to transmit is not considered to be corruption.



CHAPTER 4. METHODOLOGY 53

∆Q ∆Q ∆Q
∆Q

Figure 4.4: ∆Q Being Composed

the whole network these amount to an overall ∆Q. It is this quantity that we are interested in
understanding and eventually calculating. Figure 4.4 shows three queues, each of which contribute
a ∆Q to the total ∆Q.
As we can see networks essentially lose, delay, and restrict packets. Logically this has to be the
case, unless the laws of physics can be broken in packet switched networks. So what is quality?
Our de�nition is �Quality is the minimisation of degradation to a speci�c �ow�. By minimising the
degradation of one �ow implies that other �ows will be degraded more. Essentially providing quality
of service on a packet switched network involves trading di�erent kinds of degradation.

4.5 Quality Degradation Functions

Quality Degradation Functions (QDF) are an abstract representation of elements within a packet
switched network. Their purpose is to capture the quality degradation, ∆Q, that a �ow would
receive if it were to traverse a given network element. The quality degradation observed follows
rules imposed by the Network Quality Invariants. As such the function may only increase delay,
loss or anti-put of the �ow that traverses it. It may increase any number of these parameters at a
given time. Note that, depending on the distribution of packets, other measures such as jitter are
not subject to these rules.
Degradation parameters are represented numerically as probabilities. Loss, for example, is the
probability that a packet will arrive at a full queue. When measuring quality parameters it is
important to obtain a statistically accurate result, as such measurements have to be conducted
when the system under consideration has reached a steady state, and then for su�ciently long to
get an accurate result. The amount of time taken to reach steady state can be calculated for a
single M/M/1/K queue [100], and then the central limit theorem [96] can be used to calculate the
measurement time.
A QDF can be viewed as a black box (see �gure 4.5) that accepts a �ow as an input, and returns a
degraded �ow as an output. Additionally we have a lost tra�c �ow to capture any lost tra�c from
the QDF; clearly in a real network packets are just dropped and do not exit the system by another



CHAPTER 4. METHODOLOGY 54

Output TrafficInput Traffic

Lost Traffic

Degradator
Function

Quality

Figure 4.5: Quality Degradation Function

route, we include the loss �ow for completeness. What is important is that a QDF may not create
tra�c internally nor may it lose tra�c other than through the loss tra�c �ow.

4.6 Instantaneous Quality

In section 2.8.1 we introduced the concept of requirements capture. As was demonstrated specifying
a requirement on the total percentage loss is not su�cient to adequately capture the requirements.
In this section we demonstrate, through an example of burst losses, that capturing requirements
accurately is more complex than simple averages. Or aim is to �nd simple ways of capturing
behaviour which can be used for requirements capture, measurement and admission decisions.
We take an example guarantee for VoIP calls; here we promise to deliver 99.9% of packets within
150ms. During this example we will concentrate on the dynamics of loss in this system. We de�ne a
successful VoIP call to be one that never experiences 4 losses in a row; this has been chosen because
such a situation would cause a serious glitch in the audio quality [11]. If a user experiences such a
glitch then they are likely to judge the call as having bad quality.
Taking our 99.9% packet delivery we distribute the failure seconds evenly over an 8 hour working
day, in one second bursts8. Given that there are 2628 failure seconds in a month, there is a 3x10-3
probability of any second being a failure second. That is during such a second all packets are lost,
this will without a doubt cause 4 losses in a row. The probability of an individual second being
successful is 0.997. For a three minute VoIP call there is only a 60% (i.e. 0.997180) chance of
success, because each second of the call must not be a failure second. While this is far from an
accurate model it does demonstrate that our original speci�cation was far from accurate.
We can model burst losses in this example using a discrete time Markov chain (See �gure 4.6). The
�rst state represents no loss, as we move to the right we experience a number of consecutive losses.

8The choice of failure seconds is arbitrary; it could be failure half-seconds or failure two-seconds.



CHAPTER 4. METHODOLOGY 55

λ1 λ2 λ3 λ4

λ11−
λ21−

λ31−

λ41−

10 2 3 4 1

Figure 4.6: Instantaneous Quality Markov Chain

The �nal state, state 4, is an absorbing state; it is this state that we are most interested in as the
probability of being in this state is the probability that the call had unacceptable audio quality. The
values of lambda represent the probability of a single loss, and given a single loss the probability of
another loss, and so on.
This chain can then be solved using the power law method described in [3], or any other text book
on the subject. We start with an initial guess of what state we are in, which in this case at the
start of the call is state 0. We then iterate until we reach a solution. The number of iterations is
important, as each iteration represents an event. In this example VoIP sends 50 packets a second,
so we need to iterate for 50 times the number of seconds the call lasts for.
Figure 4.7 show the probability of a call being considered a failure, assuming that all losses are
independent, for a number of di�erent loss rates. Unfortunately previous research [12] has shown
that losses are not independent. If we include their �nding in our model we quickly �nd that the
probability of failure is almost always 100%. This clearly has some signi�cant implications for VoIP
support on the Internet. Moreover, a simple measure of the loss probability is insu�cient to capture
the behaviour.
What is required is a measure of quality that is independent of time and true at every instant; we call
this �Instantaneous Quality�. This property needs to capture the behaviour of loss and delay in some
meaningful way such that we can be assured that we can meet guarantees that we require. At the
moment we use average delay and unconditional loss probability as our measures of instantaneous
quality; however, these need to be re�ned.

4.7 Trade-o�s and Constraints

In this section we will look at a number of simple trade-o�s that can be made in packet-switched
networks. These are generally applicable to any queueing discipline or networking technology.



CHAPTER 4. METHODOLOGY 56

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0  0.02  0.04  0.06  0.08  0.1  0.12  0.14  0.16  0.18  0.2

P
ro

ba
bi

lit
y 

of
 F

ai
lu

re

Loss Rate

Failure

Figure 4.7: Failure of VoIP calls with independent loss

4.7.1 Packet Size E�ects

Today it is common for a packet switched network to carry packets that have a variable length.
Technologies such as IP do exactly this, where as technologies such as ATM do not9. However, it is
common to place a restriction on the maximum packet size that will be transported, this is called
the MTU. Packets that exceed the MTU may be fragmented, depending on the technology.
Clearly di�erent sized packets take di�erent amounts of time to service, assuming a unit is serviced
at the same rate. For this reason it is convenient to normalise service times to packet service times.
This allows a simple comparison between the waiting time for di�erent sized packets.
It is important to understand that the size of the largest packets a�ects the performance that we
can expect. Whenever a packet is enqueued the number and size of the packets ahead is unknown.
While we may, as we will see in the next chapter, be able to predict the average number of packets
ahead, predicting the size of those packets is harder. This has a direct e�ect on the performance
that we can expect.
When predicting the service time for a packet we cannot expect to make predictions more accurate
than one packet service time. This is because at any queueing point there may be one packet more,

9Although they handle variable sized loads through adaption layers.



CHAPTER 4. METHODOLOGY 57

or less, than we expected ahead. Attempting to make predictions at the granularity of one packet
is unrealistic.
When there are packets with multiple sizes in the same network we are restricted to predictions
of the order of the packet service time for the largest packet. The same argument follows, in that
we do not know, to the accuracy of one packet, how many large packets are ahead. For the small
packets this represents an accuracy of a number of service times. For example, on an Ethernet LAN
we would expect an accuracy of one packet service time for maximal sized packets (1500 bytes) and
around twenty three service times for small packet (64 bytes).
Whenever we make predictions about the performance of a network we are constrained by these
facts. The problem occurs when we wish to make predictions for small packets that are more
accurate than the packet service time of the largest packet.
One possible design choice that we have available is to lower the MTU size. By doing so we can make
more accurate predictions for smaller packets at the cost of decreasing e�ciency for applications
using larger packets. Making such a trade-o� is acceptable where the gain in accuracy, and hence
predictability, out-weights the loss in performance for large transfers. This is a choice for the
implementor of a quality network.

4.7.2 Bu�er Size E�ects

Packet-switched networks are based on the concept of store and forward. A packet arrives at a node
and is queued until it receives service. The amount of time that it takes to be serviced is dependent
on the number of bu�ers in the queue and the amount of time required to service the preceding
packets. The amount of bu�er capacity is �nite, and dependent on the implementation of the node.
Some approaches to QoS assume that there is in�nite bu�er capacity, regarding packet loss as a
rare event. While this may ease analytical analysis, the author believes that such models are on the
whole inaccurate as they do not account for the e�ects of packet loss. In this thesis we model queues
with a �nite capacity, as is the reality. For the ease of analysis we assume that a packet, irrespective
of size, occupies a single bu�er. This is not uncommon in queueing theory, the mathematical basis
that we use throughout.
The choice of bu�er size a�ects the performance of the network when it comes to the provision of
QoS. Therefore, we consider the choice of bu�er size important when considering the performance
that we would like to achieve. In real networking technologies the bu�er size is �xed, and usually
quite large, however, it is usually possible to con�gure the capacity if required. It may seem unusual
to consider bu�er sizes in a methodology for QoS, but as we will show, it is another trade-o� the
network administrator may use.



CHAPTER 4. METHODOLOGY 58

Large bu�ers sizes allow more packets to be bu�ered. When considering delay we �nd that large
bu�ers imply more delay, this is because any packet arriving at a heavily loaded queue will have
to wait for any preceding packets to be serviced. Conversely, large bu�ers reduce loss, as they
can smooth out short term �uctuations in load. However, when the load is �uctuating so will the
occupancy of the queue, this serves to increase the variance in delay.
Small bu�er sizes allow only a few packets to be bu�ered. The delay introduced by a queue with a
small number of bu�ers is also small, as is the variance. Unfortunately the side e�ect is to increase
the loss, especially when there are short term �uctuations in load. Small bu�er sizes, of the order
of 10 packets, generally result in unacceptable loss rates. However, they are far more predictable in
terms of delay.
Bu�ers can be seen as giving a queue a memory. The length of this memory is dependent on the
number of bu�ers. So a short queue will only be e�ected by �uctuations in load for a short period
of time, where as a larger bu�er capacity will have a longer memory. For queueing theorists the
time taken to reach steady state is the important measure of the memory. The larger the bu�er
the more time is taken to arrive at steady state. Where the bu�er capacity is measured in terms
of Megabytes it may take months to come to steady state, assuming that the input load remains
constant.
It is advantageous to have a queueing system that has less memory of recent events. This means that
short term �uctuations in load have a smaller e�ect. As a result the analytical models that queueing
theorists use are more likely to accurately model the behaviour of a real system. We include the
choice of bu�er size in the methodology because it has a direct impact on the performance of the
network.
We have a trade-o� between large bu�ers, with a large memory and small loss rate, and small bu�ers,
with a small memory and a larger loss rate. Huge bu�er sizes, as found in the majority of todays
network equipment, reduce loss but at the expense of larger delays and variance in delay. Choosing
an appropriate bu�er size requires making an acceptable trade-o� between loss and memory. In this
thesis we do not analytically investigate this topic, we do however make some educated guesses as
to the acceptable size of bu�ers.



Chapter 5

The Model

5.1 Applying the Methodology

In this section we will show a method, based on our Quality Methodology, for providing QoS support
to a network. To achieve this our choice of technology must satisfy the following criteria:

• A computational or algebraic model of all the network elements. This is required so that it is
possible to calculate the ∆Q introduced by each component.

• A method of composition. This is required so that the degradation introduced by each com-
ponent can be combined to yield the total degradation, or ∆Q, across the entire network.

• Instantaneous Quality. A time independent model of the degradation is needed so that the
results from the composition are meaningful at all timescales.

To achieve these goals we are going to service packets in a Poisson manner; however, this is not the
only model we could use, it is just the simplest distribution with the properties that we require.
This means that the time taken to service any individual packet will be determined by a random
process. It is hoped that by introducing such randomness into the system, it will become more
stable, and predictable; allowing us to make accurate quality guarantees.
The �rst bene�t of using Poisson tra�c is that it is the most well understood mathematically. By
ensuring1 that the tra�c is Poisson distributed at the edge of the network we can take advantage
of well known mathematical techniques. Using queueing theory we are able to calculate the waiting
times and loss probabilities of the tra�c, and their distributions. This provides us with both a

1This could be achieved using tra�c shaping.

59



CHAPTER 5. THE MODEL 60

model and an implementation of the QDFs that we introduced earlier. Notice that the waiting time
increases the delay of the packets, the loss probability increases the number of packets lost, and as
a result both reduce the throughput. These therefore follow the rules for the Quality Invariants.
Poisson streams have the PASTA (Poisson Arrivals See Time Averages) [104] principle. If we consider
a number of �ows arriving at a QDF, in steady state, they will observe the same time averaged
properties, including delay. As a given �ow traverses the network it will see the average delay of
each QDF that it traverses. The end-to-end delay can be obtained by adding the mean delay at
each point in the network. The same argument also applies to the loss, where again this can be
added together. We shall use this method of computation from now on.
It is worth noting that this is not the only method available to us; using Laplace transforms it is
also possible to symbolically (and numerically) compose these quantities. The formulae used to
represent a QDF can be transformed into Laplace space. These density functions can be convolved,
a potentially complex operation that becomes multiplication in Laplace space. Finally an inverse
Laplace transform can be performed on the convolved formulae, allowing us to calculate the CDF
(cumulative density function) of the �nal distribution. Such a method provides us with more accurate
predictions for the performance of the network, but would cost substantially more in terms of
calculation complexity. A similar approach for solving such systems can be found in [14]. We leave
this method as an area for future investigation, where the methods that we present in this thesis
are insu�ciently accurate to produce useful answers.
Poisson tra�c is by its very nature memoryless. This means that the time of the next event is
not dependent on the previous event. As a result, it allows us to maintain statistical independence
throughout the network, giving us the instantaneous measures we are looking for. Finally, assuming
that the distribution is Poisson and the rate is known, it is possible to calculate other moments of
the tra�c for example Jitter.

5.2 Exponential Service

One of the key di�erences between our approach and others to providing QoS is that we use exponen-
tial servicing throughout the network. This is in stark contrast to the majority of other approaches
that use deterministic servicing; where the service time for a packet is found by multiplying the size
of the packet by the time taken to service one unit of the packet.
When referring to exponential servicing we are in fact talking about an inverse-exponential inter-
packet time distribution. A packets service time is de�ned, in part, by a random process and not
solely by the length of the packet. In fact the service time for a packet is found in the following
way. An exponentially distributed random sample, taken from a random number generator, is used



CHAPTER 5. THE MODEL 61

to give us a random service rate. This service rate is then multiplied by the length of the packet to
give the service time. As a result every packet will have a di�erent random service time.
One bene�t of such an approach is that it makes the analytical models simpler. A large proportion of
queueing theory deals with Markovian servicing (denoted by M in Kendal's notation; see appendix
A). The Poisson (or exponential) distribution is used for the service facilities in such queues. Using
the approach outlined above we can closely approximate a Poisson distribution, and as a result the
system becomes more mathematically tractable. This is a key bene�t when attempting to make
predictions about network performance.
Another bene�t of servicing packets exponentially is that the merging properties at a multiplexing
point are fairer. When packets arrive at a multiplexing point from a number of exponentially
serviced queues the order of arrivals is indeterminate. If the queues are deterministically serviced
there is a high likelihood that �ows from di�erent queues would have a phase relationship, causing
short term unfairness. In other words at any given interval of time one of the �ows would receive
better treatment as it was always slightly ahead of the other �ows. When we service packets in a
exponential2 manner this time-dependent phase relationship is destroyed, improving the fairness.
A disadvantage of exponentially servicing packets is ine�ciency. Clearly we are introducing more
delay and more variance than we would in the deterministic case. Again we have a trade-o�, on one
hand we have e�ciency and on the other mathematical tractability. In this thesis we hope to show
that the decrease in e�ciency is warranted where the gain in predictability is more important.

5.3 Composing Queues in a Network

For our approach to QoS to work correctly we have to be able to compose queues together, this
hinges on the tra�c in the network being Poisson distributed. Unfortunately, it is well known that
the departing tra�c from a �nite Markovian serviced queue is not strictly Poisson. The question is
can we safely assume that it is a good approximation and retain the composition properties that we
require.
This work can be seen to be a continuation of the work on Jackson Networks [51] and more recently
BCMP Networks [9]. These models deal with queueing networks that have in�nite bu�er capacity
and are loaded less that 100%. By allowing in�nite bu�ers these models of networks do not encounter
problems associated with non-Markovian tra�c. They have to be loaded less that 100% or waiting
times could tend to in�nity quickly.
We would like to be able to model packet networks that can be loaded more than 100% and have
�nite bu�ering. For this reason these methods are not directly applicable, although the general idea

2This property is likely to hold for a number of other distributions as well.



CHAPTER 5. THE MODEL 62

remains the same. As our model now has �nite bu�ers we must also consider loss, and not just
delay. This however is not a great problem. However, we do return to the problem where the output
from a �nite queue is not Poisson.
A recent piece of research [49] has shown that a tra�c's pattern is strongly determined by the
service discipline. This demonstrates, at least graphically, that CPR tra�c becomes exponentially
distributed after passing through a number of exponentially (Markovian) serviced queues. Further
to this they show that for single bu�er queues that this is the case mathematically. It does also
seem possible to prove this for the general case. This work suggests that tra�c that is near Poisson
on input will become increasingly Poisson as it traverses the network.
We do not attempt here to prove mathematically that we can safely ignore the problems associated
with non-Markovian tra�c. However, we do intend to demonstrate that in practise we can safely
ignore such problems.

5.4 Modelling Variable Sized Packets

The approach presented so far has a limited applicability. One of the assumptions made was that
packets did not have a length. This is clearly unrealistic and unhelpful for modelling real networks.
For the approach to be useful it must possess the ability to correctly calculate guarantees for packets
that have a length, as this a�ects both the service time and the distribution of packets.
Some networking technologies, such as ATM, handle packets (or cells) that have a �xed length.
Here data is fragmented into these �xed sized cells for transmission over the network. However,
technologies such as ATM are in a minority; most networking technologies, such as Ethernet and
IP, possess the ability to handle packets of variable sized length. For our approach to be generally
applicable it must handle �ows arriving at a network element that contain packets of di�erent
lengths.
We shall assume, for the moment, that �ows contain packets that have identical lengths. This is not
an unreasonable assumption, for example: FTP transfers are likely to have maximal sized packets,
and WWW requests minimal sized packets. This constrains the problem to �ows of di�ering sized
packets merging together. The following discussion will take a number of approaches to calculating
the guarantees, and evaluate them through simulation. It is assumed that the worse case is two
�ows merging, where the two �ows have maximal and minimal sized packets. Here we take these to
be 64 and 1024 bytes respectively. It is important to note that in our queue model a packet occupies
one bu�er irrespective of its length.



CHAPTER 5. THE MODEL 63

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1
Loading 1500 (Erlangs)  0.1

 0.2
 0.3

 0.4
 0.5

 0.6
 0.7

 0.8
 0.9

 1

   Loading 64 (Erlangs)

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

Relative Error (%)

Figure 5.1: M/M/1/k Loss

5.4.1 Using the M/M/1/k Queue

The �rst approach we are going to examine is using the standard M/M/1/k queueing formula [3, 96]
to perform the calculations. To do this we scale the quantities appropriately.
The following graphs show the relative error between the calculations and the simulations. In this
scenario there is a single queue with two �ows arriving at its input. The two �ows have their packet
arrival rate varied between 0.1 and 1.0 Erlangs (see appendix A), providing us with a surface. Each
�ow has packets of a di�erent size, 64 and 1024 respectively, and arrives in a Poisson distributed
manner.
The following formula is used to calculate the relative error. Using the queueing formula we can
predict the outcome of some random variable, this expected value is denoted by E[x]. Using the a
simulator we then measure this value, x, allowing us to compute the relative error.
ε = x−E[x]

x

Looking at �gure 5.1 we can see that the calculations provide a poor approximation to the observed
behaviour. The probability of loss is determined by Pk, the probability of the queue being in the
k'th state i.e. full. Both �ows observe the same queue, and as such observe the same probability of
�nding the queue full. As both the �ows experience the same loss we only show one surface. The



CHAPTER 5. THE MODEL 64

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1
Loading 1500 (Erlangs)  0.1

 0.2
 0.3

 0.4
 0.5

 0.6
 0.7

 0.8
 0.9

 1

   Loading 64 (Erlangs)

 0

 200

 400

 600

 800

 1000

 1200

Relative Error (%)

Figure 5.2: M/M/1/k Delay

error reduces when the loading factor on the queue is one or more; this is because the majority of
the packets are lost at this loading factor. What this tells us is that the M/M/1/k queueing formula,
when applied in this way, incorrectly approximates the state probabilities. The cause of this is the
di�erence in service time between the two �ows, where the larger packets take longer to service than
the smaller packets.
Figure 5.2 shows the relative error in delay for the 64 byte �ow. The relative error for the 1500 byte
�ow is similar in structure, but not as severe; we have shown only one �ow for simplicity. As the
combined loading factor increases, so does the error. This is because the service rate used in the
mathematics does not take account of the packet sizes. As the loading factor increases so does the
average number of packets in the queue. The problem is that as the service rate is inaccurate, and
skewed by the packet sizes, the more packets in the queue, the worse the results are.
The conclusion is that the M/M/1/k queueing formula provides an inaccurate approximation when
applied in this way. This is exactly what we expected. What is required is a set of mathematics
that more accurately models the behaviour of this system.



CHAPTER 5. THE MODEL 65

5.4.2 The M/G/1 Priority Queue

There are many well known results from queueing theory that are widely available. What we required
is a set of queueing formula that more accurately approximate our situation. Looking at [3] there
are some results for the M/G/1 Priority Queue. In this type of queue there a n customer classes,
where each customer is serviced with a generally distributed service time. More importantly there
are classes of service but no priorities, in the simplest form (despite its somewhat confusing name).
This means that jobs are serviced in a FIFO (First-in First-out) way. While this type of queue is
not ideal, in as much as it assumes in�nite bu�ering, it does allow for di�erent service rates within
the same queue. This, it is hoped, will more accurately approximate our two packet-size system.
The �rst step is to evaluate this queue to see if it can be applied in our scenario. To do this we again
return to our example con�guration with two �ows having 64 and 1024 sized packets respectively.
However, this time we have to ensure that the loading factor remains under one, as this would lead
to an in�nitely long queue. The following formulae are taken from page 700 of [3].
The �rst step is to covert the packet arrival rate Ri, packet size Si and service rate µ and convert
them into the form required for the calculations. The arrival and service rate per �ow can be
calculated as follows:

λi = Ri

Si

µi = µ
Si

From these quantities we can calculate the expected service time E[si] and its second moment E[s2
i ]

as follows:

E[si] = 1
µi

E[s2
i ] = 2

µi

At this point we are going to restrict our discussion to the two �ows in our example. The general
forms for the following formula can be obtained from [3]. Next we can calculate the total arrival
rate into the system, λ, as follows:

λ = λ1 + λ2

Next we can specialise the formula to calculate, Ws - the expected customer service time for the
whole system, E[s2] - the second moment of the expected service time for the whole system, and
Wq - the amount of time waiting for service as follows:

Ws = λ1
λ E[s1] + λ2

λ E[s2]

E[s2] = λ1
λ E[s2

1] + λ2
λ E[s2

2]

Wq = λE[s2]
2(1−λWs)



CHAPTER 5. THE MODEL 66

64byte Flow
1500byte Flow

 0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45
Loading 64byte Flow

(Erlangs)  0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45

    Loading 1500byte Flow
(Erlangs)

 0

 2

 4

 6

 8

 10

Relative Error (%)

Figure 5.3: M/G/1 Delay

Finally we can calculate the time spent in the system per �ow. This is equal to the time spent in
the queue (Wq) added to the time taken to service that class (E[si]).

Wi = Wq + E[si]

In addition it is useful, as a means of checking the correctness of the simulation, to know the average
waiting time for all classes in the system.

W = λ1
λ W1 + λ2

λ W2

Figure 5.3 shows the relative error between the simulation and calculation of the delay. Note that
we cannot calculate the loss, as none occurs. The packet arrival rates are �xed to a maximum of
0.45, ensuring that the maximum load on the queue does not exceed 0.9, as we do not want to cause
an in�nite queueing delay. As you can see from the graph the maximal relative error is around 1.4%.
This is around one packet service time for the largest packet, which is within the bounds that we
would expect (see section 4.7.1). The �ow (1) with the smaller sized packets su�ers more in terms
of accuracy that the �ow with the large packets; this is to be expected as the e�ect of the large
packets is much more signi�cant than that of the small. In general this type of queue approximates
our scenario su�ciently well.



CHAPTER 5. THE MODEL 67

64byte Flow
1500byte Flow

 0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45
Loading 64byte Flow

(Erlangs)  0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45

    Loading 1500byte Flow
(Erlangs)

 0
 50

 100
 150
 200
 250
 300
 350

Relative Error (%)

Figure 5.4: M/G/1 Delay, with �nite bu�ers

5.4.3 Using the M/G/1 queue as an approximation

The M/G/1 queue, as show above, is not entirely suited to our situation. Speci�cally, it assumes
that there are in�nite bu�ers in the system. While the results above are promising they are of little
value unless we can handle queues that have a �nite number of bu�ers. In such a case we would
also like to calculate the loss, per �ow, that occurs in the queue.
The next approach we will take is to use the same M/G/1 queueing formula, but used to approximate
a queue that has a �nite amount of bu�ers. In other words, we are going to perform calculations
using the M/G/1 queueing formula while simulating a queue that does not have a in�nite number
of bu�ers. The example used is the same as before, other than the queue has only 10 bu�ers that
can be shared between the �ows. We still restrict the arrival rates so that the loading factor on the
queue is less than one to again ensure that the queueing time is not in�nitely long.
Figure 5.4 show the relative error between our approximation and the results from the simulator. As
you can clearly see, this is by no means a good approximation, and is completely unworkable. This
is because the maths takes no account of loss, which is unsurprising as it assumes in�nite bu�ering,
and as such returns results that are far removed from those that are simulated. Another method is
clearly required.



CHAPTER 5. THE MODEL 68

5.4.4 Using the M/G/1/k Priority Queue

Recent research [101] into M/G/1/k queues has yielded valuable results, which we can use to better
model our results. It is possible using this research to calculate the loss ratio (LR) of the queue.
The loss ratio is, in essence, the same as Pk in that it returns the probability of the queue being
full. This loss ratio can then be applied to both �ows equally. In addition, by calculating all of the
state probabilities, it also allows us to calculate the average number of customers in the system L.
As we know the average number of customers (packets) in the system we can calculate, by Little's
Law, average waiting time in the system. Note that we use the rate of tra�c accepted into the
system, λa, in the following:

λa = λ(1− LR)

W = L
λa

By substituting this waiting time, W, into the waiting time of the M/G/1 queue and expanding we
are left with the following for the time spent in the queue.

Wq = L
λa

− λ1
λ E[s1]− λ2

λ E[s2]

The time spent in the queue for an individual �ow is given by:

Wi = Wq + E[si]

Using these formula we can re-evaluate our previous simulation results. Figures 5.5 and 5.6 show
the relative error in the delay and loss respectively. The large spikes on the loss graph are due to
simulation errors, this is because the probability of a loss occurring is extremely low and any loss
that does occurs will skew the results. Both graphs are predominately under 1% relative error -
making this type of queue a good approximation of our scenario.

5.5 Performing the Calculations

In the previous sections we have show a number of methods for modelling �ows with di�erent sized
packets. Using the M/G/1/k queue gives us the most true representation of the performance of a
variable sized packet system. What is required to use this model is a solution to the M/G/1/K class
based queue. Recent work [101] has produced closed form mathematical solutions to this queue
for two and three classes of tra�c. This has concentrated on solving the balance equations for
each state, and then by re-arrangement returning the closed form solutions; clearly this technique
requires human intervention.



CHAPTER 5. THE MODEL 69

64byte Flow
1500byte Flow

 0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45
Loading 64byte Flow

(Erlangs)  0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45

    Loading 1500byte Flow
(Erlangs)

-10

-5

 0

 5

 10

Relative Error (%)

Figure 5.5: M/G/1/k Delay

64byte Flow
1500byte Flow

 0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45
Loading 64byte Flow

(Erlangs)  0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45

    Loading 1500byte Flow
(Erlangs)

-10

-5

 0

 5

 10

Relative Error (%)

Figure 5.6: M/G/1/k Loss



CHAPTER 5. THE MODEL 70

λ1

µ1

λ1
λ1

µ1

µ1µ1

λ1

λ1

µ1

λ1

µ2

λ2λ2

µ2

λ2

µ2

λ2

µ2

λ2

µ2

λ2

µ2

µ1

0,0 1,0 2,0 3,0

0,1 1,1 2,1

0,2 1,2

0,3
x,y − Packets in class 1,2 respectively

− Arrivals
− Departures

λ
µ

Figure 5.7: Two Class Markov Chain

To avoid having to produce closed form solutions for each of these problems we propose use of
matrices to solve each case individually. In order to do this we need to construct the Markov chain
representing the problem, and from there produce the transition matrix representing it.
What is required is a way of automatically generating the Markov chain for the problem that we are
trying to solve. Figure 5.7 shows the Markov chain for a two class queue with three bu�ers. The
state represents the number of packets in the queue from class one and two respectively. In each
state there can be an arrival from either class, this will cause a transition into another state - other
than when the queue is full and the packet will be discarded as usual. Departures are similar, but
may only occur if there is a packet in that class requiring service. The queueing discipline of this
queue is �rst-in �rst-out (FIFO).
Using the methods presented in Appendix A and [3, 96] it is possible to construct a matrix in
order to solve this Markov chain. Using such an approach it would be possible to solve arbitrary
combinations of �ows with di�erent sizes. Note that if two �ows have the same packet size then we
can simply consider them as an aggregate �ow in this system. Generating and solving chains for
this style of problem could be done automatically, avoiding the use of the closed form solutions.
The drawback of using such an approach is the time taken to compute the answer. It some situations
the algorithms used to solve such chains may not converge, although this depends on the algorithm
chosen. Clearly such a method could not be used in admission control decisions; however, it could
be used in provisioning decisions where the time constraints are lower.



CHAPTER 5. THE MODEL 71

5.6 Modelling Burst Loss

Burst loss probabilities are important for a number of applications, such as VoIP. In the past loss
had been modelled unconditionally, that is to say the probability of a loss occurring was independent
of a previous loss occurring. Previous studies [12] have shown this not to be the case in practice
and results from our own simulator agreed with these �ndings.
The model of networks that we are investigating is based on Poisson tra�c, which is well known
for having memory-less properties. This means that the time of an arrival is not determined by the
time of the previous arrival. It would seem to follow that a loss would not depend on the loss of the
previous packet, however, this is not the case, as queues are not memory-less. When considering a
queue in steady state we have a measure of the average loss probability, this is the probability of
�nding the queue in the last state or full. To consider the arrangement of losses we need to take a
more detailed look at the tail behaviour of a queue.
Looking at traces from our simulator we found that there is a probability of an initial packet loss,
and another probability of a second or subsequent packet loss occurring. After examining the
results further we found that the probability of losing a packet after the last packet was lost remains
constant. That is, given that we have lost the �rst packet, the probability of losing subsequent
packets remains constant.
This means that there are two probabilities required to capture the process of burst loss. The �rst
is the probability of losing a packet initially. This happens when the queue is full and an arrival
happens. The following formula calculates this probability:
Pα = Pk( λ

λ+µ )

The second probability is the probability that an an arrival happens. As the system is already full
this will cause a loss. As the arrival process is memory-less arrivals are independent; therefore, this
probability remains the same until a departure occurs to reset the system. The following formula is
the probability of a conditional loss:
Pβ = λ

λ+µ

Using these two probabilities we can construct a Markov chain to model this system. This chain is
in�nitely long as an in�nite number of losses in a row could occur. Figure 5.8 shows this:
Notice that we can loop into state 0, no losses, to represent successful arrivals. After this we start
traversing through the states in the chain, where state 1 represents one loss in a row and so on. At
any point a successful arrival can occur, reseting the chain back to state 0.
The Markov chain presented in �gure 5.8 has been simpli�ed to allow it to be solved by iteration (see
below). The Markov chain is �gure 5.9 shows the addition of the loss states to a standard M/M/1/k



CHAPTER 5. THE MODEL 72

Pα

Pα
Pβ

Pβ1−
Pβ1−

Pβ

0 1 2

1−

Figure 5.8: M/M/1/k Loss Chain

P0 P1 L0 L1 L2Pk−1

λ λ λ λ λ

µ µ µ µµ

Pk

Figure 5.9: Full M/M/1/k Loss Chain

queue. The last state in the queue, Pk, has been expanded into three states, although it could be
more if required. The state L0 now represents the queue being full; however, no loss occurs in this
state. Arrivals when the queue is full move the queue into the L1 and higher states; each of these
states corresponds to a number of losses occurring in a row. By constructing balance equations it
is simple to show that the L states have the same probability mass as the original Pk state; as such
this chain is equivalent to a standard M/M/1/k arrangement, but provides more information.
The chain presented in �gure 5.8 is also theoretically equivalent to the chain presented in �gure
5.9. The states P0 to L0 have been collapsed into a single state, where the transition out of that
state is dependent on the queue being full. The bene�t of this approach is that it allows the loss
process to be examined in isolation from the rest of the queue, all that is required is the probability
of the queue being full, the arrival rate and the service rate. We are con�dent that this is a correct
representation for Markovian systems; however, more work is required to mathematically prove this
both for the Markovian and general case.
Using this Markov chain (�gure 5.8) we can calculate the probability of getting a given number of
consecutive losses in a row. To do this we construct a probability matrix representing the Markov
chain and iterate over it. Each iteration represents a packet arrival, so we must iterate for the
number of packets we are interested in. Its important to note that over an in�nite number of
packets we would expect to see each length of burst losses in a row, as such, solving this chain for
steady state does not make much sense.
Figure 5.10 shows the probability of a VoIP call of a given length succeeding at di�erent loading
factors, when transported by a M/M/1/k queue with ten bu�ers. We are assuming that the call is



CHAPTER 5. THE MODEL 73

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

S
uc

ce
ss

 P
ro

ba
bi

lit
y

Loading Factor

3 mins
15 mins
30 mins
60 mins

120 mins
3mins Pk

Figure 5.10: VoIP Failure Probabilities

the only �ow using the queue. As you can see, as the queue approaches 50% loading the probability
of a call succeeding drops dramatically. The line �3mins Pk� represents the success probability
calculated using just the unconditional loss probability; which is the probability of the queue being
full3. As you can see it seriously underestimates the loading factor at which VoIP calls will start to
fail.
Calculating the failure probability in this way is useful to us as it allows us to determine what
loading factor a VoIP call can tolerate. We can quickly see that to deliver VoIP successfully it can
only pass through queues that are less that 50% loaded. This gives us a much better idea of what
the Instantaneous Quality we must deliver to VoIP.

5.7 Summary

In this chapter we have developed the analytical tools that we require to solve the QoS problem
using our methodology. We have covered the following areas:

• Convolution of queues numerically using the PASTA property.
3In reality there is a subtle di�erence between the probability of the queue being full and the probability of loss,

since the former can occur without loss occurring. However, these are generally considered to be the same.



CHAPTER 5. THE MODEL 74

• Using exponential service to move the problem into a mathematically tractable domain.
• Queueing systems that can model queues which service packets of variable sizes.
• Methods for solving queueing systems, including: numerical convolution, automated Markov
chain solving and Laplace transforms.

• Extending queueing systems to allow burst-losses to be modelled clearly and explicitly.



Chapter 6

The Testing System

6.1 A Haskell Packet Simulator

6.1.1 Introduction

This chapter introduces a discrete time packet simulator written in Haskell. Using Haskell allows
the programmer to clearly express many forms of problem, including discrete event simulation. Our
motivation for developing a packet simulator in Haskell was to produce a prototype that could be
used as a basis for further work. Credit should be given to Neil Davies, and others as Degree2
Innovations, for their inspiration and code (see appendix B) for the Haskell simulator.
Ultimately the simulator proved too slow for long simulations, even after it was compiled using
the Glasgow Haskell Compiler (GHC). However, many of the ideas presented here were used when
developing the C variant of the simulator. What follows is interesting if only to demonstrate how
Haskell can be applied to a number of di�erent uses.

6.1.2 Time Dependent Evaluation

In any discrete time simulator it is important that events are processed in the correct order; in Haskell
this is no di�erent. Most programs that are written in Haskell use in�nite lists, this simulator is
again no exception. The problem comes when evaluating an in�nite list; it is important to avoid any
unnecessary references to the beginning of the list, which would cause the whole list to be stored.
If the whole list is retained then the memory requirements of the program grow rapidly, which is
clearly undesirable.

75



CHAPTER 6. THE TESTING SYSTEM 76

In this simulator we make time explicit in the design. Each value that is passed around has a
time associated with it. Using this time we can correctly merge together a number of lists, while
maintaining the correct order. To do this we de�ne a type, called TimedThing, which associates a
time with any type. Its de�nition is as follows:

type TimedThing a = (Time, a)

Using this type we can now merge two lists of timed objects together. As a bonus, because we use a
polymorphic type, we can perform the merge without having to evaluate the data that is associated
with the time. This is important because we do not wish to evaluate anything until it is necessary,
this further helps the space e�ciency of our program. The following function allow us to merge a
number of lists of TimedThing into a single list of TimedThing.

timeMerge :: [[TimedThing a]] -> [TimedThing a]

timeMerge []

= [] timeMerge [xs] = xs

timeMerge xss

= timeMerge_ (timeMerge left) (timeMerge right)

where

splitPosition = length xss `div` 2

(left, right) = splitAt splitPosition xss

timeMerge_ :: [TimedThing a] -> [TimedThing a] -> [TimedThing a]

timeMerge_ [] ys = ys

timeMerge_ xs [] = xs

timeMerge_ xs@(x:xs') ys@(y:ys')

= if

fst x <= fst y

then

x:(timeMerge2 xs' ys)

else

y:(timeMerge2 xs ys')

6.1.3 Simulating Networks

This section explains how we build on the above models of TimedThing to build a packet simulator.
We start by de�ning a type to represent a packet. This type is then encapsulated by the polymorphic
type TimedThing to create a TimedPacket. The type de�nitions for this are as follows:



CHAPTER 6. THE TESTING SYSTEM 77

type TimedPacket = TimedThing Packet

type Packet = (SourceId, PacketId, Time)

type PacketId = Int

type SourceId = Int

type Time = Double

Using the timeMerge function that we have de�ned earlier we can now correctly merge two �ows of
packets, called �ow1 and �ow2 of type [TimedPacket], into a new �ow called �ow3. The following
snippet of code shows this:

flow3 = timeMerge [flow1, flow2]

The following subsections show how we: generate timed packets, queue them and �nally how we
measure the results.

6.1.4 Generating Packets

Packets are generated using the ExpStream module. To start the process o� we create an in�nite
list of samples from an exponential distribution with parameter alpha. The following code performs
this operation:

expStream :: Double -> Int -> [Time]

expStream alpha seed = [ id $! (f x) | x <- uniStream]

where

f x = - 1.0 / alpha * log (1-x)

uniStream = randoms (mkStdGen seed)

Next we calculate a set of packet departure times by adding a new sample to the value of the last
departure. The following code shows this:

poissonArrivalStream :: Double -> Int -> [Time]

poissonArrivalStream alpha seed = scanl1 (+) stream

where

stream = expStream alpha seed

Finally we generate an in�nite list of TimedPacket from the poissonArrivalStream. These packets
have the same �ow Id, but have an incrementing packet Id starting from one. The following code
shows this:



CHAPTER 6. THE TESTING SYSTEM 78

poissonTrafficSource :: SourceId -> Double -> [TimedPacket]

poissonTrafficSource srcid alpha

= zip times (zip3 (repeat srcid) [1..] times)

where

times = poissonArrivalStream alpha srcid

6.1.5 Queueing Packets

The following subsection describes how we model queues in the simulator. It is based heavily on
the SimulatorQueueModel module developed by Neil Davies (readers are directed to appendix B for
more details).
First we de�ne the initial state of the queue. This contains a state tuple of the items that are held on
the queue and the list of service times. We also reference an arrival and departure function (which
we will describe shortly). The following code does this:

init = Running {

stateOf = ([], serviceStream),

doArrival = arrive,

doDeparture = depart

}

serviceStream = expStream mu seed

Next we describe the arrival function. There are two cases. The �rst is when the queue is empty.
Here we simply add the arrival to the queue state. The second case is where the queue has at least
one item in it. In this case we check that there is su�cient space for the arrival; if there is then it
is added to the queue; failing that it is simply discarded. The following code implements this:

arrive ([], stream) arrival

= ( init {stateOf = ([arrival], tail stream)},

[], Just (id $! (head stream)))

arrive (q, stream) arrival

= if (length q) < maxQ

then ( init {stateOf = (q ++ [arrival], stream)}, [], Nothing)

else ( init {stateOf = (q, stream)}, [], Nothing)

Finally we de�ne the departure process. This is evaluated whenever there is an item on the queue.
This function extracts the �rst item on the list of packets and the head of the service times list.



CHAPTER 6. THE TESTING SYSTEM 79

It then sets the state to be the same, but without these two values. Then it emits the packet at
the head of the queue with a service time de�ned by the head of the service stream. The following
shows this:

depart ((q:qs), stream)

= if null qs

then ( init {stateOf = (qs, tail stream)}, [q], Nothing)

else ( init {stateOf = (qs, tail stream)}, [q], Just (head stream))

6.1.6 Calculating Statistics

To extract useful information from the simulator we have to build statistics. To do this we have
the notion of an observer. This function takes a list of TimedPacket and generates an array with
statistics for each �ow, where the index to the array is the �ow Id. We provide this function with the
maximal �ow Id that it will receive, so that it can construct the array; and the number of �ows that
are to be averaged, so we know when we have completed our task. The function has the following
type signature:

aveFlows :: Int -> Int -> [TimedPacket] -> FlowArray

Finally we have a function that can print the FlowArray, its type signature is:

showAveFlows :: FlowArray -> String

6.1.7 Pulling it Together

The following function shows how to use the simulator to simulate a network with two queues in
a chain. Two �ows, with �ow ids 1 and 2 respectively, enter the �rst queue. The �rst queue then
feeds into a second queue. Finally the second queue feeds into the observer object.

main

= let

-- Configuration

rate = 0.5

buffers = 10

-- Traffic Sources



CHAPTER 6. THE TESTING SYSTEM 80

source1 = poissonTrafficSource 1 rate

source2 = poissonTrafficSource 2 rate

-- First Queue

input1 = timeMerge [source1, source2]

output1 = gm1k 1.0 buffers 3 input1

-- Second Queue

output2 = gm1k 1.0 buffers 3 output1

-- Results

result = showAveFlows $ aveFlows 2 2 output2

in

putStr result

6.2 A QoS Test System

In this section we are concerned with the system that is used as a means of testing our end-to-end
quality system. Throughout this thesis we present a number of sample network con�gurations; this
test system provides a way of simulating, calculating and comparing any con�guration we choose.
The motivation is simple: we wish to be able to predict the behaviour of a network accurately. To
do this we need both the predictions, provided by the Calculator, and an example of the resultant
behaviour, provided by the Simulator. These are then �nally compared using the Comparator.
Ultimately we need a way of comparing simulations and calculations. The result of this system is a
set of relative errors, which we will examine in later chapters (see chapter 7), between our predictions
and a simulated network. The parameters that we are interested in are:

• Rate - the number of packets arriving in a given interval.
• Loss - the percentage loss of packets.
• Delay - the average end-to-end delay of packets.

6.2.1 Overview

Figure 6.1 shows a diagram of the overall test system. In later sections we will provide more detailed
information on the design and implementation of the separate functional components; their function
should be clear from their name. In this section we will look at the data �les, speci�cally the Scenario
and Results �les.



CHAPTER 6. THE TESTING SYSTEM 81

Scenario

Simulator

Calculator

Results

Results

Comparator

Figure 6.1: System Overview

The �le format is based on XML. The decision to use this is because it allows us to use a number of
standard tools to read and write the �les. There is also a number of tools that allow transformations
to be performed on the �les, which allows for greater �exibility in the overall system.

6.2.2 Scenario Files

Scenario �les provide us with a way of describing a sample network and the tra�c that �ows across
it. A scenario can be seen as the result of a routing function applied to a topology, which describes
the layout of the network, and an o�ering, which describes the tra�c that will �ow across that
network. It is our intention to expand the system to allow this functionality in due time.
Below is an example scenario for a chain of queues topology. This particular topology has two
queues, the �rst feeding into the second. A single tra�c source, at a load of 0.5, crosses both
queues.

<scenario>

<title>Queue Chain, Rate(0.5), CLen(2), QDF(mm1k), K(10), Mu(1.0)</title>

<date>Tue Aug 20 18:50:22 2002</date>

<author>David C. Reeve</author>

<source name="source1" sendsTo="router0">

<flow id="1" rate="0.5" type="Poisson" lengthType="fixed" lengthMean="1"/>

</source>

<object name="router0">

<port name="port1" qdf="mm1k" rate="1.0" buffers="10" sendsTo="router1">

<select id="1" class="be"/>

</port>



CHAPTER 6. THE TESTING SYSTEM 82

</object>

<object name="router1">

<port name="port1" qdf="mm1k" rate="1.0" buffers="10" sendsTo="sink0">

<select id="1" class="be"/>

</port>

</object>

<sink name="sink0">

<consume id="1" packets="10" samples="100"/>

</sink>

</scenario>

As you can see, the �le is split into four main sections: preamble, tra�c sources, objects and sinks.
The preamble is included for informational purposes only, and is not used in any part of the system.
We shall now describe the operation of the other three sections.
The source section provides a way of describing a number of �ows that are present in the system.
A �ow is a label that is applied to a number of packets that are to receive the same treatment. In
the source section there can be a number of distinct sources, de�ned as required by the user. Each
source has a name, in order to distinguish it from other sources, and a name of an object that it
sends its tra�c to. We shall explain about objects in a moment.
Within each source there are a number of �ows. These �ows will be sent to the same location, as
speci�ed in the speci�cation of the source. Flows are uniquely identi�ed in the system by a number,
which we call the FlowId. Along with this Id there are a number of parameters that describe the
characteristics of the �ow; speci�cally, the rate at which packets are injected into the network, the
distribution of inter-packet times, the average length of the packets, and the distribution of the
lengths (Poisson or Fixed). The �ow can be one of the following types:

• Poisson - for Poisson inter-packet times.
• CPR - for Constant Packet Rate, ie. �xed packet intervals.
• ARS - for an adaptive rate source (see section 6.5.2.2).

The next section is the objects section. Objects are a simple abstraction that can be used to
encapsulate a number of network elements. Each object has a unique name to distinguish it from
other objects. An object has a number of ports, which describe how tra�c leaves the object. We
are assuming an output bu�ered model, but this does not exclude us from modelling other bu�ering
semantics. Output queueing proved to be a simpler design than specifying both input and output
ports, as it is closer to the way it is evaluated in Haskell.



CHAPTER 6. THE TESTING SYSTEM 83

A port is identi�ed uniquely within each object, allowing the name to be reused. A port has
associated with it a QDF, by which tra�c is degraded. The service rate and the number of bu�ers
per class are also described. The available QDFs in the system at the moment are as follows:

• gm1 - for a queue with in�nite bu�ers and Markovian servicing.
• gm1k - for a queue with a �nite number of bu�ers serviced Markovian.
• gd1k - for a queue with a �nite number of bu�ers serviced Deterministically.
• WFQ - for a DRR queue.
• gos - for a loss-delay queue.
• delta - for the identity function1.

The port also has a sendsTo, which contains the name of the next object or sink that the tra�c
will be sent to. As all tra�c arrives to the object, a method of selecting what tra�c leaves by a
particular port is required. This is provided by the select statement. Select statements take two
parameters: the �ow Id of the �ow that is destined to leave this port, and the class that it belongs
to. The class describes how the QDF should treat the tra�c. For example, in the case of the priority
queue it will describe a strict priority queue that this �ow should be admitted to. This allows us to
support a number of di�erent queueing disciplines.
The �nal section is the sinks section, which can contain a number of sinks. A sink describes where
tra�c leaves the network; it again has a unique name. Within each sink statement are a number
of consume statements. These consume statements de�ne the point in the network where statistics
about a �ow are collected. When packets are consumed with a continuous tracer (see section 6.5.2.5)
the number of packets per sample, and the number of samples are also used.
We have shown the format of a scenario, now it is necessary to impose a number of rules to ensure
that it is semantically correct. The same checks are performed by both the Calculator and the
Simulator. These rules are as follows:

1. Source names must be unique
2. Sink and Object names must be unique
3. Port names, within an object, must be unique
4. Flow Id's must be unique
5. All sendsTo statements must be correctly routed
1The delta function has no e�ect on the tra�c. That is it does not introduce delay, nor does it introduce any loss.



CHAPTER 6. THE TESTING SYSTEM 84

6. Each select statement must be able to select the given �ow
7. All �ows must eventually reach a sink

Unfortunately, the current implementation cannot handle routing loops; evaluating them requires
iterating to a solution. As yet we have not investigated such methods, although an extension to this
approach would be possible. It is worth noting that it is possible, with only a few minor alterations,
to support one-to-many multi-cast. This is achieved by routing the same �ow to more than one
destination.
Multi-cast �ows are well known for causing correlation problems in a network. This is because the
�ow of tra�c is repeated throughout the network, other �ows interacting with the multi-cast �ow
can become correlated with it. While we do not look at multi-cast issues in this thesis we do look
at correlation issues (see section 7.4.3). Multi-cast �ows require higher quality than other uni-cast
�ows, as there are a number of subscribers. Investigating both multi-cast correlation and quality
issues are left as an area for future research.

6.2.3 Results Files

Once a scenario has been passed through the Calculator or Simulator it produces a results �le. A
results �le describes the degradation that a �ow has su�ered by the time it reaches its destination
sink. An example of a results �le, from the Calculator is shown below.

<results>

<meta>

Created on: Tue Dec 17 21:49:52 GMT 2002

Input File: test.scenario

Modified On: Tue Dec 17 21:49:39 GMT 2002

Directory: /home/dave/PhD/Software/Simulator

</meta>

<sink name="sink0">

<flow id="1"

arrival="0.49951267154762774"

loss="9.746569047445197e-4"

delay="3.979520790521888">

<deg point="router1.port1"

rate="0.49951267154762774"

loss="4.8637472336850277e-4"

delay="1.9892959615873818"/>



CHAPTER 6. THE TESTING SYSTEM 85

<deg point="router0.port1"

rate="0.49975574010747437"

loss="4.885197850512946e-4"

delay="1.9902248289345061"/>

</flow>

</sink>

</results>

There is an important di�erence between the results produced from the Calculator and the Sim-
ulator. That is the results from the Simulator do not contain information about the degradation
at intermediate points, only the degradation that has been su�ered overall. It was decided to take
this approach as we are far more interested in the �nal degradation after the �ow has crossed the
network than we are at intermediate points. This is however di�erent in the case of the Calculator
where we wish to know as much information about the network as is possible.
Results �les contain two sections. The �rst is some meta information, which like the Scenario �le,
can be used to store any additional information about the �le that is required by the user. The
second is the set of sinks found in the corresponding scenario �le.
Each sink is identi�ed by name, which is the same name speci�ed in the scenario �le. Within each
sink are a number of �ows, again identi�ed by their �ow Id. As we mentioned earlier, this system
can cope with multi-cast and as such we need to distinguish between the same �ow arriving at a
number of di�erent sinks. For each �ow we record the arrival rate, loss probability and average
end-to-end delay of the �ow in question.
In the case of the Calculator we also record the degradation along the way. This is achieved using
the deg tag, of which there will be one per port that the �ow has traversed. The degradation records
the point at which the �ow was inspected, by convention this is �object.port�, and the same overall
quality parameters.
When results are collected using a continuous tracer in the simulator the results are presented in a
di�erent format. For details on this see section 6.5.2.5.

6.3 The Scenario Library

The scenario library is responsible for loading scenario �les into an intermediate data structure and
performing the sanity checks listed above. It is common to both the Calculator and Simulator.
Additionally it provides a way of storing the results into a results XML �le. Finally some types are
included that are used throughout for convenience.



CHAPTER 6. THE TESTING SYSTEM 86

The library is written in Haskell, a lazy evaluated function programming language with a strong
type system. The decision to use Haskell was motivated by its lazy evaluation, which removes the
need to worry about the order of evaluation. Writing the same functionality in C would require
signi�cantly more code, which would undoubtedly obscure the semantics.

6.3.1 The Types

Throughout the following type de�nitions are used, which simpli�es the design. We start by de�ning
some simple types for the quantities that are used when describing various names and measures.
These are as follows:

type Name = String

type FlowId = Int

type FlowRate = Double

type FlowType = String

type Loss = Double

type Delay = Double

type MeanLength = Int

type LengthType = String

type ServiceRate = Double

type Buffers = Int

type NumSamples = Int

type NumPackets = Int

Next we de�ne what a �ow is. Confusingly a �ow is a list of FlowToken, where a FlowToken speci�es
the lowest level of detail about a �ow that we are interested in, that which is uniquely identi�ed by
a FlowId. At any point in the network the Flow will be arriving at a given rate (FlowRate) and with
a given distribution (FlowType). It also has a mean length (MeanLength), and a length distribution
(called a LengthType). Finally a Flow has a list of degradations, initially set to the empty list, to
store degradations that occurs as it passes through the network. A Degradation simply records the
location, de�ned by the type PortRef, and the rate, loss and delay of the �ow at that point in the
network.

type Flow = [FlowToken]

data FlowToken = FlowToken FlowId FlowRate FlowType

LengthType MeanLength [Degradation]

data Degradation = Degradation PortRef FlowRate Loss Delay



CHAPTER 6. THE TESTING SYSTEM 87

Flows of tra�c are always degraded by a Quality Degradation function, as speci�ed in the port tag
in the Scenario XML �le. The degradation a �ow receives depends on the policy that the arriving
tra�c is subjected to. The precise value of the policy depends on the QDF that is in use. This is
essentially where the information in the class attribute from the select tag resides. QDFs are de�ned
as a function, which when given a PortRef and a list of (FlowToken, Policy) returns a new �ow that
has been degraded.

type Policy = String

type QDFName = String

type QDF = (PortRef -> [(FlowToken, Policy)] -> Flow)

Next the various parts of the Scenario are described in a number of types. These types capture
Sources, Objects, Ports and Sinks. The overall Scenario is de�ned as a list of these types.

data Scenario = Scenario [Source] [Object] [Sink]

data Source = Source Name Flow DestinationRef

data Object = Object Name [Port]

data Port = Port Name QDFName ServiceRate Buffers

[(FlowRef, Policy)] DestinationRef

data Sink = Sink Name [FlowRef]

To allow other parts of the Scenario to be referenced we de�ne a number of reference types, these
capture the name of a destination object. We use them to keep the type signatures of various
functions clean, so as to make them clearer to the user.

data FlowRef = FlowRef FlowId

data SourceRef = SourceRef Name

data ObjectRef = ObjectRef Name

data PortRef = PortRef Name ObjectRef

data SinkRef = SinkRef Name

data DestinationRef = DestinationRef String deriving (Eq)

6.3.2 The Loader

To make the task of loading and saving �les in XML easier the HaXml library is used. The HaXml
library provides a way of automatically producing functions to load and save any XML �le from its
DTD �le. The program used is called DtdToHaskell. As its output it produces a Haskell module
that can load and save the XML �le, as well as a set of types to encapsulate the information.



CHAPTER 6. THE TESTING SYSTEM 88

Unfortunately the compound type that is produced by DtdToHaskell is not exactly as we would like
it to be; speci�cally it treats attributes of an XML element as a separate type, thus complicating
the resulting data structure. For example an Object would be parsed into the following data types:

data Object

= Object Object_Attrs [Port]

deriving (Eq,Show)

data Object_Attrs

= Object_Attrs { objectName :: String }

deriving (Eq,Show)

For convenience this is re-parsed into a new data structure that �attens out the data structure. In
the case of the above example this is stored in the Object data structure described above. Once the
data has been moved into the new data structure the sanity check is performed. This is essentially
the list of checks that are outlined in the previous section.

6.4 The Flow Calculator

The Flow Calculator, as the name suggests, provides a way of calculating the degradation that a set
of �ows will receive as they traverse a network of QDFs. Its functionality is broadly split into two
sections, those responsible for calculating and applying the degradation and those responsible for
evaluating the network such that the former can happen. Additionally it uses the Scenario support
library to load the Scenario and to save the results of the calculations.

6.4.1 Evaluating the Network

The network is evaluated from sink to source. As Haskell is lazily evaluated this is a somewhat
easier process, as most of the hard work is performed by the way Haskell is evaluated. Each sink is
evaluated in turn, which causes each �ow in each sink to be evaluated and so on.
When a sink is evaluated we attempt to �nd all of the objects that send a particular �ow to the
sink. The extractFlow function �nds all of the FlowTokens that are sent to this particular sink. We
construct a DestinationReference of the sink name we are interested in to create a �lter. Once we
have all of the �ows that send to this sink we then �lter only the �ows that we are interested in.
The function selectFlows then ensures that all of the required �ows are available and that no more
are present. The following snippet of code shows this.



CHAPTER 6. THE TESTING SYSTEM 89

evaluateSink :: Scenario -> Sink -> Flow

evaluateSink scenario (Sink sinkname flowrefs)

= selectFlows sinkname flowrefs $ extractFlow scenario destref

where

destref = (DestinationRef sinkname)

When we extract �ows matching a DestinationRef, using extractFlow, we have to evaluate all of the
objects and sinks. However, as Haskell is a lazy evaluating language, only as much of the graph is
evaluated as is necessary to return a result. Essentially what we are doing is to �nd all the Sources
and Sinks that send to a speci�c destination, and then evaluate the Sources and Sinks to yield the
Flow (which is a list of FlowToken) that would emerge.
Evaluating a Source is a simple process. All we need to do is to return the list of FlowTokens
contained within that sink. As the following piece of code shows:

evaluateSource :: Scenario -> Source -> Flow

evaluateSource scenario (Source name flow dests) = flow

Evaluating an Object is a little more involved. In extractFlow, when extracting �ows from an
Object, we call evaluatePort for each of the Ports in that Object. Objects get their input �ows
from other Objects or Sources, so we must �rst extract and select the �ows that arrive in the same
way we do for a Sink. However, this time we extract all the �ows that arrive at the Object, and
only select those �ows that leave from the given port. Once we have the list of �ows that depart
from a port we then apply the QDF to the Flow to yield the output Flow. While this description is
somewhat brief the code below should expose some more of the �ner detail.

evaluatePort :: Scenario -> Object -> Port -> Flow

evaluatePort scenario

(Object oname ports)

(Port pname qdfn rate buffs refplcys destref)

= outputflow

where

estr = (oname ++ "." ++ pname)

destref = (DestinationRef oname)

inputflows = selectFlows estr flowrefs $ extractFlow scenario destref

flowrefs = map fst refplcys

portref = (PortRef pname (ObjectRef oname))

qdf = getQdfByName qdfn rate buffs

outputflow = qdf portref (map f refplcys)

f (flowref, plcy) = ((selectFlow estr inputflows flowref), plcy)



CHAPTER 6. THE TESTING SYSTEM 90

In essence the whole process involves evaluating the Object or Source that sends to this Sink or
Object. Once this has happened, we can then perform the operation of this component. When
Sources are evaluated they return a Flow as de�ned in the Scenario, and are therefore terminals in
the evaluation. When Objects are evaluated they must �rst evaluate those Sources or Objects that
send to them (which in turn causes the evaluation of their up-stream Objects and Sources) and then
degrade the Flow. Finally, Sinks provide a handle to start the process.

6.4.2 QDFs and Degradation

Throughout the Calculator QDFs are distinguished by a string that determines what function to
apply. Whenever we refer to a QDF we do so by this string. There is a simple mapping that returns
a function, of type QDF, that will perform the required degradation. This allows us to pass some
additional arguments, such as number of bu�ers and service rate to the real QDF function before
returning it.
For each type of QDF, say an M/M/1/K queue, we have a function that allows us to calculate the
degradation and apply it to the �ows that traverse it. Below is an example of one such function.

mm1kQdf :: ServiceRate -> Buffers -> PortRef -> [(FlowToken, Policy)] -> Flow

mm1kQdf mu k portref tknplcys

= outflow

where

inflow = map fst tknplcys

lambda = totalArrivalRate inflow

loss = mm1kLoss lambda mu k

delay = mm1kDelay lambda mu k

outflow = map (applyDeg portref loss delay) inflow

The operation of these functions follow a common theme. In this example we do not show how
more than one class of service can be accommodated, although the steps are the same for each of
the classes. The steps are as follows:

• Find all of the �ows that we are interested in degrading.
• Calculate the total arrival rate, which is simply the sum of the arrival rates of all the separate
FlowTokens.

• Calculate the loss and delay that this type of queue would introduce.



CHAPTER 6. THE TESTING SYSTEM 91

• Apply the degradation to each of the input FlowTokens to yield the output Flow.

The function applyDeg adds a new Degradation to a FlowToken. This function calculates the
departure rate from this QDF and stores it in the ArrivalRate �eld of the FlowToken. Additionally
it adds a new Degradation to the list of Degradations in the FlowToken to store the e�ects of this
QDF. The following code performs this function.

applyDeg :: PortRef -> Loss -> Delay -> FlowToken -> FlowToken

applyDeg portref loss delay (FlowToken fid ratein ltype lmean degs)

= (FlowToken fid rateout ltype lmean (deg:degs))

where

deg = (Degradation portref rateout loss delay)

rateout = (1-loss) * ratein

6.5 The Flow Simulator

The Flow Simulator provides a way of doing packet based discrete event simulation. It is split
into three major constituents. The �rst provides a set of support functions for timer manipulation
and packet routing. The second is a set of components written using these functions, and �nally a
Haskell based loading interface.

6.5.1 The Interfaces

The Simulator provides two sets of support functions. The �rst is for manipulating timer events,
and their associated call backs. The second is a way of routing packets between the components in
a way that allows us to incrementally build a network from scratch.
Overall the simulator is run by calling simulation_loop. This function simply runs through the
timer queue waiting for the next event to occurs. Time is moved forward to the next event loc-
ated at the head of the timer queue. The simulation will keep running until the global variable
g_simulation_loop is set to zero.

6.5.1.1 Time

In the simulator time is represented using a Double, which always increases. It is expected that the
clock will wrap around in some situations. This is not a problem and a number of macros have been
provided to protect against this. At any time it is possible to retrieve the simulator time by using
the current_time global variable.



CHAPTER 6. THE TESTING SYSTEM 92

6.5.1.2 The Timer Queue

In order to simulate a large number of queues at speed it is necessary to process events quickly. This
is especially important when the queues are loaded, as there will be more events waiting to time
out. As the Simulator spends a fair proportion of its time processing the timer queue it is worthy
of optimisation.
The timer queue uses a heap-ordered tree, which is sorted on insert. The insertion time is O(log n)
where n is the size of the queue at the time of insertion, and repeated insertions tend to balance the
tree. The tree does not guarantee to remain balanced as elements are removed from it, as such the
removal time is O(n log n).
Events may be scheduled at any time in the future; events that have already passed cause an error
to be raised. Details of the event time and the call-back function are stored in the event structure.
In order to allow state information to be passed when the event is triggered, the event structure can
be embedded in another structure. By use of the timer_event_object macro we can extract the
pointer to the original structure.
We can de�ne a structure for a imaginary queue using the event structure as follows. The example
also contains examples of the pins interface that we will explain shortly.

struct queue_internals {

struct pin *input;

struct pin *output;

int length;

int occupancy;

struct timer_event event;

char *packets[];

}

Assuming that we have allocated ourselves a new structure, of type queue_internals, called queue
we can do the following. First we must set the name of the function that is to be called at the event
time, this need only be done once when the component is initialised. Next we need to set the time
that the event is to trigger, here we assume that some_time is a time in the future. Finally we call
timer_event_insert with a pointer to the event structure.

queue->event.function = queue_callback;

queue->evant.event_time = some_time;

timer_event_insert (&queue->event);



CHAPTER 6. THE TESTING SYSTEM 93

When the event is triggered the callback function is called with the timer event. If we wish to
retrieve the original data structure then we can use the timer_event_object macro which is passed:
the event structure that the function was called with, the type of the structure that we want to
extract, and the name of the element that the event structure is stored in inside the data structure.
Once this has been done we can proceed as normal.

static void queue_callback (struct timer_event * event) {

struct queue_internals * queue

= timer_event_object (event, struct queue_internals, event);

/* more code here */

}

6.5.1.3 The Pins Interface

The Pins interface provides a generic way of connecting a packet producer and consumer. This
interface provides the basic plumbing to join all of the components in a network together. It also
allows one producer to send to many consumers by copying the packets as they pass across a pin.
In essence it maintains a list of consumers and, when passed a packet by a producer, it passes the
packet to those consumers.
A new pin can be created as follows:

struct pin * my_pin = pin_create ();

Once a pin has been created there are two operations that we can perform on it. The �rst, and
most simple, is to send a packet to it using the pin_put_packet functions shown below.

void pin_put_packet (struct pin * pin,

struct packet * packet);

The second function is to attach a sink. This function, shown below, takes the following arguments:
the pin that the consumer (or sink) is to be attached to, a function to call when a packet arrives,
and some additional data which is de�ned by the user. Also shown below is the de�nition of
pin_sink_function.

void pin_attach_sink (struct pin * pin,

pin_sink_function function,

void * data);

typedef void (*pin_sink_function)

(void * data, struct packet * packet);



CHAPTER 6. THE TESTING SYSTEM 94

6.5.2 The Components

There are three main types of component: generators that are responsible for creating packets,
queues that are responsible for implementing various types of queues, and tracers that are responsible
for gathering statistics about various �ows.

6.5.2.1 Generators

Generators are by far the simplest of the components. They use a structure to store their state,
such as the �ow Id and rate. Below is in an example of the generator for Poisson tra�c:

struct poisson_generator {

struct timer_event event;

struct pin * pin;

double mu;

long flow;

long seqno;

int length_type;

int mean_length;

};

When a new generator is constructed, by say add_poisson_generator, a new structure is allocated
and �lled. Next we calculate an inter-packet time, this is generator speci�c, and set an event for
now plus that time.

generator->event.event_time = current_time + ipt_time;

timer_event_insert (&generator->event);

When the event �res the event function is called which, using pin_put_packet, emits a packet. The
above lines are then repeated so that the next packet is emitted.

6.5.2.2 Adaptive Sources

Adaptive sources, as presented here, are intended to model the behaviour of a simple elastic-source.
That is sources that attempt to utilise as much as the available bandwidth of the network as
possible. One common example of an elastic-source is TCP; while some details of the adaptive



CHAPTER 6. THE TESTING SYSTEM 95

source we present here resembles TCP it is not our intention to model it in any detail. While the
behaviour of our adaptive source is not exactly the same as TCP it does capture an important part
of the behaviour, namely the source will attempt to use as much bandwidth as possible.
The adaptive sources work by modifying their sending rate dependent on the observed behaviour of
the �ow at the destination. To achieve this packets are intercepted by the source at the destination.
Both the end-to-end delay and loss events are collated when making decisions about adapting
the sending rate; more details on this shortly. When the sending rate is modi�ed it is done so
instantaneously, without incurring and end-to-end delay (as for example TCP would). This is for
simplicity and also because we do not have a reverse path in the simulator.
When the source is started it does so with an initial rate. This initial rate is used to calculate the
inter-packet time for the source. The source always sends packets spaced by the inter-packet time
stored in its internal data structure. This structure is modi�ed by a receiving process to update
the rate, however, the rate is not changed until 100 packets2 have been collected to ensure that the
averages are correct. The initial rate is set as close to the expected steady running rate of the source
as possible. Protocols such as TCP do not do this, instead they use slow-start algorithms to reach
a steady rate. We have chosen to avoid slow-start for simplicity, and more importantly to allow the
network to reach a steady state faster.
The source performs the following steps when packets arrive at their destination:

• Performs the end-to-end delay calculations (see below).
• Checks to see if enough packets have been collected to start adapting, if not no further pro-
cessing is done.

• If the window size has not been set, set it to the number of packets currently in the network.
• Adjust the window size (see below).
• Set the inter-packet time of the sender.

The inter-packet time of the sender is set as the delay divided by the window size. This is a
rearrangement of the bandwidth-delay product formula, shown below. The bandwidth delay product
gives us a measure of the expected volume of data, measured here in packets, in the network. Initially
we know both the delay and the number of segments in the network, this allows us to calculate the
inter-packet time.
window = bandwidth ∗ delay

2The choice of 100 packets was considered 'enough' to arrive at a steady round trip time after looking at results
from the simulator.



CHAPTER 6. THE TESTING SYSTEM 96

bandwidth = window
delay

IPT = delay
window

The delay calculations are preformed by the following snippet of code. The calculations are taken
from Van Jacobson's Congestion Avoidance and Control Algorithm [52] used in TCP.

delay = (double)time_to_seconds(current_time - packet->initial_timestamp);

/* Check that this is not the first measurement, if not update the delay */

if (generator->delay < 0) {

generator->delay = delay;

} else {

error = delay - generator->delay;

generator->delay = generator->delay + (0.125 * error);

}

The size of the window is adjusted depending on the following two rules:

• If two packets in a row are lost then the window size is halved.
• If eight packets in a row are successfully received then the window is doubled.

6.5.2.3 Queues

Queues are the second most complex component. They maintain their state in a structure similar to
queue_internals; shown above. When a new queue is added to the network this structure is allocated
and its values are de�ned. This includes setting a timer event function and a sink function. The
former is used for departures and the latter for arrivals, which call queue_timer and queue_arrival
respectively. The following code shows this:

queue->event.function = queue_timer;

pin_attach_sink (input, queue_arrival, queue);

The queue_arrival function is called when a packet arrives at the input pin. It performs the following
operations:

• Checks if the queue is full, if so discard the packet and return.



CHAPTER 6. THE TESTING SYSTEM 97

• Enqueue the packet on the rear of an internal list.
• If the queue was previously empty, schedule a departure event.

Note that we only schedule a departure event if the queue was previously empty, and the arriving
packet causes it to be no longer; otherwise we rely on the departure function to schedule the departure
events.
The queue_timer function is responsible for emitting packets when their service time has elapsed.
It is called whenever the timer event expires. It performs the following operations:

• Emit the packet at the head of the queue.
• If there are no packets left in the queue then return.
• Calculate the service time of the packet at the head of the queue.
• Schedule a departure event for now plus the service time.

Note that in normal operation there is always a packet at the head of the queue when the timer
function is called. This is because we only insert as many timer events are there are packets that
arrive at the queue.

6.5.2.4 Tracers

Tracers are responsible for producing statistics about a �ow that terminates at its input. One tracer
will only collect statistics about a single �ow Id, and will ignore packets with any other �ow Id. To
maintain their state they use the following structure:

struct packet_tracer_state {

char *name;

struct pin * pin;

int flow;

int state;

unsigned long first_seq;

Time last_arrival;

unsigned long count;

double delay_sum;

double ipt_sum;

};



CHAPTER 6. THE TESTING SYSTEM 98

When a tracer is �rst started it will skip 10,000 packets, giving the queues enough time to settle.
From this point onward it will start collecting statistics. When the next packet arrives its sequence
number is recorded in �rst_seq, count is incremented and last_arrival is set to the current time.
As each packet arrives the following steps are performed by the tracer:

• Check that the packet has the correct �ow Id.
• Increment count.
• Calculate the delay of the packet, and add it to delay_sum.
• Calculate the inter-packet time, and add it to ipt_sum.
• Set last_arrival to be the current time.

When count reaches the desired value, in this case 100,000, we stop the tracer; in this state no
further statistics are collected. Additionally if it was the last tracer active then it stops. Then it
causes the main simulation loop to be broken such that the results can be stored. From this state we
calculate the average delay, rate and loss probability. The following code performs this operation:

rate = 1.0 / time_to_seconds(state->ipt_sum / state->count);

delay = (double)(state->delay_sum / state->count);

loss = 1.0 - (

((double)state->count) /

((double)(state->last_seq - state->first_seq))

);

6.5.2.5 Continuous Tracers

Continuous tracers work much like normal traces other then they produce a continuous output and
not an averaged result. They are used when more detailed information about the behaviour of a
�ow is required. A continuous tracer takes a number of packets and produces a line of output. The
number of packets per line of output is de�ned in the consume statement of the scenario, found
in a sink. A continuous tracer is marked as completed when it has collected enough samples, this
is also de�ned in the consume statement. Although a continuous tracer is marked as completed
it will continue to produce results until all of the other tracers have completed; this allows us to
collect data for all �ows over the same time period. Additionally a continuous tracer does not skip
a prede�ned number of packets, this allows us to gather information about the startup conditions
in the network.
The output from the continuous traces produces a space separated text �le with one line per result,
it has the following �elds:



CHAPTER 6. THE TESTING SYSTEM 99

• The name of the sink that the result was collected from.
• The �ow Id that the result belongs to.
• The time that the �rst packet in a result was collected.
• The time that the last packet in a result was collected.
• The sequence number of the �rst packet in a result.
• The sequence number of the last packet in a result.
• The sum of packet delays.
• The sum of packet delays squared.
• The sum of inter-packet times.
• The sum of inter-packet times squared.
• The number of packets that were lost in the result.

The result �le is parsed after the tests has completed to compute the average and variance of: delay,
inter-packet time, and loss. As we have intermediate results we can compute a instantaneous result
as well as long term running averages.

6.5.3 The Processor

The Simulator processor is responsible for constructing a scenario in the Simulator. It is, in fact,
written in Haskell allowing it to take advantage of the Scenario Library. In order to construct the
scenario in the Simulator it is necessary to call C functions to add pins and components to the state.
This is achieved using the green-card [86] library.
The green-card suit takes a speci�cation and automatically produces marshaling code, allowing the
user to call C functions from within Haskell. An example of one such speci�cation is show below:

%fun addPoissonGenerator

% :: Pin -> Double -> Int -> LengthTypeEnum -> Int -> IO ()

%call (pin output) (double service) (int flowid)

% (lengthTypeEnum length_type) (int mean_length)

%code add_poisson_generator (output, service, flowid,

% length_type, mean_length);



CHAPTER 6. THE TESTING SYSTEM 100

This produces a function in Haskell called addPoissonGenerator which calls the C function
add_poisson_generator with the same arguments. The return type from the Haskell function is
IO(); this means that the function is side-e�ecting but returns no result. Similar speci�cations exist
for all of the functions that we wish to call from Haskell.
To process a scenario we �rst use the Scenario Library to load the scenario into a convenient data
structure. From here we need to call the marshalled C functions in the correct order to build the
network, run the simulation, and collect the results. First we create a list of named pins, which are
a tuple of String and Pin, for each of the objects and sinks in the scenario. Then we process all of
the sources, objects and sinks in order. The following code is the top level function:

processScenario :: Scenario -> IO ()

processScenario (Scenario sources objects sinks) =

let {

objectnames = map objectName objects;

sinknames = map sinkName sinks;

} in do {

namedpins <- mapM createNamedPin (objectnames ++ sinknames);

mapM (processSource namedpins) sources;

mapM (processSinks namedpins) sinks;

mapM (processObjects namedpins) objects;

return ();

}

The function processSource �nds the NamedPin that it sends to, found by the DestinationRef in
the Source data type, and creates a new generator to this pin. It is as follows:

processSource :: [NamedPin] -> Source -> IO ()

processSource namedpins (Source name flow (DestinationRef dest)) =

let {

destpin = getNamedPin namedpins dest;

} in do {

mapM (createGenerator destpin) flow;

return ();

}

In essence the process is the same for processSinks and processObjects. That is we �nd the required
pin and attach, using the marshaled C functions, the desired component to it. Once this has been
completed for the whole network a special marshaled C function, runSimulation, is called which
calls the simulation_loop() function in the core of the Simulator.



CHAPTER 6. THE TESTING SYSTEM 101

In much the same way the results are returned from the C part of the Simulator and saved into a
results �le using the Scenario Library.

6.5.4 Random Numbers

When we simulate a particular scenario a number of random numbers are used. This is to make sure
that the results are meaningful, and not just an artifact of the random number seed that was used
for a single run. In the next section we will elaborate more on the e�ects of the random number
generator.
Each scenario is simulated one hundred times using di�erent random seeds. The �rst �fty of these
seeds have been pre-generated and are stored in a �le; these seeds remain constant throughout all
of the tests. The second set of �fty numbers are generated at the time of execution, and are stored
along with the results as the test runs. The �rst set of numbers gives us a way of repeating the
tests, and the second set of numbers insures that there is no bias in the �rst set of numbers.
In the simulator the MT19937 generator of Makoto Matsumoto and Takuji Nishimura is used. It is
a variant of the twisted generalised feedback shift-register algorithm, and is known as the "Mersenne
Twister" generator. This is provided as part of the GNU Scienti�c Library (gsl).

6.6 The Comparator

The comparator is responsible for comparing the results between the Simulator and the Calculator.
It compares a calculation result �le, from the Calculator, with a number of results �les from the
Simulator. From these it produces the following results for delay, rate and loss:

• Mean result from the Simulator.
• Absolute error between the mean Simulator result and the Calculator.
• Percentage relative error between the mean Simulator result and the Calculator.
• Variation in Percentage error of each Simulator result compared to the Calculator.
• Standard deviation of the above.

The results are printed in a plain text suitable for processing with awk, sed, and �nally gnuplot.
The comparator works by joining all of the Sinks and then Flows found in a number of scenarios.
From there it can then work out the mean value for the loss, delay and rate. These are then
compared to the result that the Calculator produced.



CHAPTER 6. THE TESTING SYSTEM 102

6.7 Summary

In this chapter we have presented a QoS test system which we can use to investigate the accuracy of
our QoS methodology. The test system comprises of two main components, the Simulator and the
Calculator. These components rely on a custom library, the Scenario Library, which provides basic
functions for loading and saving data in a common XML format. The Simulator is able to perform a
packet based simulation of a network and produce results at varying levels of detail. The Calculator
uses mathematics from queueing theory to predict the behaviour of a network. The results from
the Simulator and Calculator can be compared to check the accuracy of the methodology. In the
following chapters we will use this system to investigate our ability to predict the behaviour of
networks.



Chapter 7

Predicting Networks

7.1 Introduction

In this chapter we will present a comparison between our results from the Simulator and Calculator.
The aim is to show that we can predict, to some level of accuracy, how a given network scenario will
behave; that is the calculated parameters match closely those that are gathered from simulations.
All of the results presented in this chapter are for networks that do not provide di�erentiated service.
This means that all packets will be treated the same by the queues in the network. The motivation
is to show that it is possible to construct a network that behaves as closely as possible to a sound
mathematical model.
Throughout this chapter we will use a number of simple test cases. These are designed to exercise
well known problems in networks. In total three test cases are presented. These are explained in
section 7.4.
In addition to the three test cases we have three di�erent levels of network simpli�cation. At each
step we introduce more factors that could a�ect the accuracy of the results. Sections 7.5, 7.6 and
7.7 deal with each type of network simpli�cation in turn. The di�erent simpli�cations are:

• Network with packets modelled as point processes.
• Networks with sequences of equally sized packets.
• Networks with sequences of mixed sized packets.

Finally in section 7.8 we draw some conclusions from these tests.

103



CHAPTER 7. PREDICTING NETWORKS 104

7.2 Expected Outcome and Constraints

Before we present the results in this chapter it is important to understand what our expectation
of the results are, and what these results are constrained by. The following points highlight some
important facts about our results.

1. Mathematical reality and simulation reality are not the same. In creating the simulator we
have attempted to stay as close to the mathematics as possible, however, di�erences are likely
to be introduced.

2. Where di�erences between mathematical prediction and simulation exist those di�erences are:
bounded and predictable.

3. The sources of the inconsistencies can be analysed using the the mathematical formulae them-
selves.

4. At one level the inconsistencies can be explained by the nature of random number generators
and their property of short term bias.

5. There are other properties that we could see having an e�ect; we can see them and outline
ways of understanding their bounds and predictability.

6. Errors do not make the system unpredictable. They imply that you either have to accept that
the answers have an associated error or that you need more information/work to characterise
and reduce the error to an acceptable level.

7. All this means that predictability is possible; however, it is a prediction that comes with an
associated level of con�dence.

7.3 Testing Methodology

7.3.1 Subject of the Tests

The purpose of this section is to describe our approach to testing the framework. We have imple-
mented the framework using a simple model of queues based on Queueing theory using the Poisson
distribution. This provides us with the following:

• A mathematical basis, derived from queueing theory, from which we can begin our investiga-
tion.

• A theory that allows us to compose these queues to model a given network topology.



CHAPTER 7. PREDICTING NETWORKS 105

• A method for calculating the predicted performance of a network con�guration in terms of
average delay, throughput and loss ratio.

In essence we can decompose a given, perhaps real world, network topology into a connected set
of queues. From this we are able to predict, through calculations, what the performance of this
network will be. This can then later be compared to a set of simulation results to evaluate both the
usefulness of our approach as well as its accuracy.
There are a number of assumptions that have been made while constructing this framework. It is our
aim to show that while these assumptions do a�ect the accuracy of the results, they do not invalidate
the usefulness of the approach in general. There are a number of deviations in implementing the
approach; these are as follows:

• The mathematics is based on the Poisson distribution; however, in real world networks pack-
ets in a network are not permitted to overlap1. We do not therefore strictly use a Poisson
distribution in the simulator.

• The packet lengths, when using Markovian servicing, should also be Poisson distributed. This
is again unlikely to happen in any real network; we therefore restrict each �ow to a �xed size
of packets2.

• We are assuming that the tra�c arrives at the edges of the network with Poisson distributed
inter-packet times. This can, however, be achieved using a shaper.

The use of a shaper is an important requirement in the way we have implemented the framework.
Using our framework we can calculate the e�ect on a �ow that a shaper introduces. However, as it is
not always possible to know what the input pattern is, it is not always possible to accurately predict
the outcome. Conversely, where we do know the input pattern, say in the core of the network, it is
possible to accurately predict the e�ect on the �ow.
The framework is useful for modelling networks that accept a number of merged �ows, with di�ering
service requirements, at its input. While this does not apply to a large number of networks it is
su�cient to demonstrate the usefulness of the approach in general.
One restriction is that �ows must contain packets that are equally sized. This clearly does not
re�ect the mix of packet sizes found in a real network. It is the hope of the author that, in time, it
will be possible to model trains of packets, where the tailing packets have a smaller size; this is left
for future investigation.

1Queueing theory generally deals with point processes, which exist in a single instance of time. Packets can be
modelled as a point process when you consider the arrival (or departure) of the head (or tail). However, in real
systems, packets cannot overlap but mathematically we have not taken into consideration the length.

2We do however allow �ows of di�erent sized packets to mix together in the network.



CHAPTER 7. PREDICTING NETWORKS 106

Given the deviations above we have a number of assumptions that we hope will hold true when
tested. These are as follows:

• Exponentially distributed inter-packet times should closely resemble a Poisson distribution,
despite the fact that the queues are �nite.

• By modelling queue service distributions as generally distributed (to a given mean), when
dealing with multiple sizes of packets, the length of the packets should not a�ect the predictions
from the calculations3.

• As tra�c traverses the network, and is subjected to more Poisson service times, it will ap-
proximately become more Poisson distributed.

This means that we use the mathematics to model Poisson inter-arrival times, whereas in reality
we are simulating something close to Poisson inter-packets times. Similarly we model departures
as generally distributed, but we service packets using a exponentially distributed service rate (the
service time is therefore this rate multiplied by the packet length).
We conjecture that our assumptions will hold, allowing us to use the mathematics to make predic-
tions, so long as we introduce enough randomness in the system. By randomness we mean to service
packets with an exponentially distributed rate, approximating the maths as closely as possible.

7.3.2 Aims and Motivation

Before we can explain how we are going to test this approach it is necessary to de�ne what the
high level outcome of this approach is. In essence we are aiming to design and build predictable
multi-service networks. In this context we take predictable to mean:

• We have the ability to predict the emergent behaviour of the network through calculations.
• The network must behave in a predetermined way when subjected to sudden changes in load-
ing.

Predicting the behaviour of a network under a given set of conditions is almost a necessity when
it comes to providing guarantees. However, predictions are next to useless unless they accurately
re�ect the performance that would actually be observed. With accurate guarantees it is possible
to provision network resources correctly, and, as a result, provide and meet guarantees to the end
users.
By attempting to stay as close as possible to a Poisson distribution we gain two important e�ects:

3Other moments, such as jitter, may be more inaccurate.



CHAPTER 7. PREDICTING NETWORKS 107

• The mathematics for predicting the behaviour of the network is simple, and is easily comput-
able.

• We avoid any serious synchronisation problems inherent in deterministic systems (see section
2.2.1).

The second point is extremely important. In deterministic systems there are two places where
predictions of behaviour fail. The �rst is where there is a time dependent synchronisation (or phase
relation) between two streams, and the second is where the load of the network approaches 100%.
In the former it is impossible to predict at which moment one of the two streams will gain a better
treatment. In the latter, the introduction of loss into the calculations make them extremely complex
and in some cases intractable. Our approach avoids both of these two problems.
Here we are attempting to give guarantees that are su�ciently �exible that we can meet them, while
at the same time still being useful to the application that wishes to use them. At the same time
we wish to protect �ows for which we have provided guarantees from those for which we haven't, or
that are out of contract.

7.3.3 Criteria for Success

De�ning the criteria for success is extremely di�cult, and highly dependent on the application that
requires the guarantee. As we have already explained, applications can tolerate degraded �ows until
they cross some threshold; this threshold is application dependant. If a �ow is received with a
lower degradation than this threshold, then we can consider it to be successful. Here we are more
interested in evaluating how accurate our assumptions are. However, we should always evaluate
these assumptions with their �nal purpose in mind; namely the provision of acceptable levels of
quality to applications.
Ultimately the results from the simulator and the calculator provide us with an average delay,
throughput and loss ratio. From here we can then compare the two and �nd the absolute and
relative (percentage) di�erence between them. The question is how close is close enough? As we
saw in section 4.7 the following bounds on performance are considered to be acceptable.

• Delay should be accurate to less than one packet service time.
• Loss should be accurate to the same order of magnitude.

What is perhaps more important is that the relative classi�cations of the �ows should be maintained.
That is to say, that in all cases a �ow that has a lower predicted loss should always get a lower
actual loss. This is also the same for delay.



CHAPTER 7. PREDICTING NETWORKS 108

7.3.4 Expectations and Directions

In this thesis there is an underlying theme, namely, to make the networks behave in a way that
closely follows a sound mathematical model. It is for this reason that we have chosen to use the
Poisson distribution, as it is the most well modelled in queueing theory. However, this does not
preclude us from using other distributions in the future, especially where other distributions are
likely to result in better packet by packet performance. For the time being we are more interested
in the behaviour of the system as a whole.
During this chapter we will present a number of results for a number of simple networks. These
results are, on the whole, presented as absolute errors. The mathematical model is taken as the base
case. A positive error indicates that the simulation produces more loss or delay than we expected,
where our expectations are set by the mathematical model.
The power of this approach in the provision of QoS is simple. If we can build a system that behaves
in the same way as a mathematical model, then we can predict the behaviour of the network. These
predictions can then be used as a basis for provisioning and control of the networks that we build.

7.4 Test Cases

The following subsections will deal with the three test cases used in this chapter in turn, and explain
what they are designed to test, and how.
For all of the tests we consider networks with two di�erent sizes of bu�ers in the queues; namely,
10 and 100 bu�ers. For each of the �ows in the test cases we vary their loading factor (which is
measured assuming a service rate of 1.0) between 0.1 and 1.0 in steps of 0.1. Note, this loading factor
is calculated per byte and not per packet; this means that the packet departure rate is this loading
factor divided by the packet length (when considering point-processes a length of 1 is assumed).

7.4.1 Chains of Queues

The �rst and most simple test case is a chain of queues. Here a single �ow enters at the start of the
chain and traverses all the queues in the chain before being measured. The test is repeated with a
chain length of 1 to 10. Figure 7.1 shows a queue chain with two queues.
The purpose of this test is to check that our model is composable. We already know that the output
from a queue with exponential service is not truly Poisson. However, it may be close enough that
the performance predictions are still accurate to an acceptable tolerance.
Figure 7.2 shows the loss and delay predictions for a chain of ten queues. Packets are modelled as
point processes and ten and one hundred bu�er sizes are shown.



CHAPTER 7. PREDICTING NETWORKS 109

Figure 7.1: Queue Chain Test

 0

 50

 100

 150

 200

 250

 300

 350

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

W
ai

tin
g 

Ti
m

e
(in

 p
ac

ke
t s

er
vi

ce
 ti

m
es

)

Fr
ac

tio
n 

of
 O

ffe
re

d 
Lo

ad
 L

os
t

Offered Load

Chain 10k Delay
Chain 100k Delay

Chain 10k Loss
Chain 100k Loss

Figure 7.2: Queue Chain Test Predictions

7.4.2 Crossing Flows

The second test case again consists of a chain of queues; however, this time in addition to the �rst
�ow, which traverses all the queues, there are additional �ows crossing each of the queues in turn.
We measure the �ow that traverses all the queues. This test is repeated with a chain length of 1
to 10. Figure 7.3 shows this test with a chain length of 3, notice that �ow 0 traverses the whole
network while 1-3 traverse only one queue.
The purpose of this test is to see how much interference the �ow (�ow 0) that traverses all the
queues su�ers as a result of the crossing �ows. If the model is composable then we would expect
any e�ect due to the crossing �ows to be accounted for. This would result in the predictions for
�ow 0 being accurate.
Figure 7.4 shows the loss and delay predictions for a cross �ow test with ten queues. The crossing
�ows place a 50% loading on each of the queues, the main �ow is varied between 0-100%. Both ten



CHAPTER 7. PREDICTING NETWORKS 110

0
1

2

1

0

3

2

0,3

Figure 7.3: Cross Flows Test

and one hundred bu�ers have been calculated.

 0

 100

 200

 300

 400

 500

 600

 700

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

0%

20%

40%

60%

80%

100%

W
ai

tin
g 

Ti
m

e
(in

 p
ac

ke
t s

er
vi

ce
 ti

m
es

)

Fr
ac

tio
n 

of
 O

ffe
re

d 
Lo

ad
 L

os
t

Offered Load

Cross 10k Delay
Cross 100k Delay

Cross 10k Loss
Cross 100k Loss

Figure 7.4: Cross Flows Test Predictions

7.4.3 Correlation

The �nal test is the correlation test. This consists of three queues connected together as show in
�gure 7.5. Flows 1 and 2 share their �rst queue with �ow 0, then both share the �nal queue. Flow



CHAPTER 7. PREDICTING NETWORKS 111

0 traverses two queues, that are the �rst queue that both 1 and 2 see respectively.

0
1

2

0
1

2

0

1,2

Figure 7.5: Correlation Test
This test is designed to correlate �ows 1 and 2 such that they receive di�erent treatment when they
are queued together. To achieve this an interfering �ow, �ow 0, interacts in a queue with �ow 1 then
�ow 2. If the �ows correlate then we would expect the treatment of �ows 1 and 2 to be radically
di�erent. However, as we service packets exponentially, this correlation should be destroyed making
our predictions accurate.

7.5 Packet Point Processes

The �rst set of tests models packets as point processes. By a point process we mean that the packet
it transmitted in a single instant of time. This means that the length of the packet does not a�ect
its service time. Clearly this does not model real word networks with any accuracy; however, it is
as close as possible to the mathematical models that we are using and is therefore a good base case
test. We shall now investigate each of the test cases in turn.

7.5.1 Queue Chains, 10 Bu�ers

Figure 7.6 shows the absolute error in delay measured in packet service times against the loading
factor of the sample �ow. This is repeated for a chain length of 1 to 10. We can see from the graph
that, at its worse, the delay is one packet service time greater than it was predicted when ρ is 1.0.
Also the delay is 0.2 service times less than expected, where ρ is 0.6. From the applications point
of view this is not a problem, as it will bene�t from the increased performance. However, when
considering the system as a whole we would like to minimise this kind of error as it will result in
lost opportunities to carry more tra�c.
Figure 7.7 shows the absolute error in the packet loss rate against loading factor for a queue chain
of 1 to 10 in length. The loss error is at its worst at around 0.025 less than expected. This is about
a 25% improvement in performance. Clearly any application that has been predicted a higher loss
rate would bene�t in this situation.



CHAPTER 7. PREDICTING NETWORKS 112

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

A
bs

ol
ut

e 
E

rr
or

 (s
er

vi
ce

 ti
m

es
)

Trafic Intensity (Erlangs)

1 Queue
2 Queues
3 Queues
4 Queues
5 Queues
6 Queues
7 Queues
8 Queues
9 Queues

10 Queues

Figure 7.6: Queue Chain Delay, 10 bu�ers

-0.03

-0.025

-0.02

-0.015

-0.01

-0.005

 0

 0.005

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

A
bs

ol
ut

e 
E

rr
or

 (s
er

vi
ce

 ti
m

es
)

Trafic Intensity (Erlangs)

1 Queue
2 Queues
3 Queues
4 Queues
5 Queues
6 Queues
7 Queues
8 Queues
9 Queues

10 Queues

Figure 7.7: Queue Chain Loss, 10 bu�ers



CHAPTER 7. PREDICTING NETWORKS 113

7.5.2 Queue Chains, 100 Bu�ers

Figure 7.8 shows the absolute error in delay measured in packet service time against the loading
factor of the sample �ow. This is repeated for a chain length of 1 to 10 with 100 bu�ers per queue.
As you can see when the loading factor is 1.0 for 10 queues the delay is nearly 2.5 packet service times
higher than expected. How this would e�ect a real application is dependent upon that application.
However, notice that this is not a problem until we are loaded in excess of 90%, a fact that we will
use in later chapters.

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

A
bs

ol
ut

e 
E

rr
or

 (s
er

vi
ce

 ti
m

es
)

Trafic Intensity (Erlangs)

1 Queue
2 Queues
3 Queues
4 Queues
5 Queues
6 Queues
7 Queues
8 Queues
9 Queues

10 Queues

Figure 7.8: Queue Chain Delay, 100 bu�ers
Figure 7.9 shows the absolute error in the packet loss rate against loading factor for a queue chain
of 1 to 10 in length. As you can see at a loading factor of 1.0 the loss is 0.0035 less than expected,
this is again in the application's favour. The error in the packet loss rate increases signi�cantly after
a loading factor of 90%. If you refer back to �gure 7.2 you will see that signi�cant (ie. > 10−10)
loss does not occur for a 100 bu�er queue until this point. What we see in this graph is that loss
is less likely in the simulator that the mathematics predict. However, it should be noted that loss
is relatively rare (<1%) at 100% loading, its quite likely that a longer simulation run would be
required to gain enough loss results to be meaningful.



CHAPTER 7. PREDICTING NETWORKS 114

-0.0035

-0.003

-0.0025

-0.002

-0.0015

-0.001

-0.0005

 0

 0.0005

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

A
bs

ol
ut

e 
E

rr
or

 (s
er

vi
ce

 ti
m

es
)

Trafic Intensity (Erlangs)

1 Queue
2 Queues
3 Queues
4 Queues
5 Queues
6 Queues
7 Queues
8 Queues
9 Queues

10 Queues

Figure 7.9: Queue Chain Loss, 100 bu�ers

7.5.3 Cross Flows, 10 bu�ers

Figure 7.10 shows a surface plot of the absolute error in the delay against the loading factor of both
the sample �ow and the crossing �ows. As you can see, when both the crossing �ows and the main
�ow are at a loading factor of one, the error in the delay in packet service times is 2. This means the
delay is longer by two packet service times. Over 10 queues this equates to about a 3.5% positive
deviation.
As we saw from �gure 7.6 the delay was one packet service time larger than expected. Here it is
2 and we are dealing with two �ows. It would appear that the error experienced in the delay is
additive. However, given the small relative error in this situation it is quite acceptable.
Figure 7.11 shows the absolute error in the predicted loss for a cross �ows test with 2 to 10 queues.
Similarly to �gure 7.7 the delay is 0.025 less than expected at its worse. This shows that there is
not a signi�cant increase in inaccuracy in this situation over others.

7.5.4 Cross Flows, 100 bu�ers

Figure 7.12 shows the absolute error in delay for a cross �ows test with 2 to 10 queues. Whenever
the combined loading factor exceeds 80% there is a positive error introduced of around 5 packet



CHAPTER 7. PREDICTING NETWORKS 115

2 Queues
3 Queues
4 Queues
5 Queues
6 Queues
7 Queues
8 Queues
9 Queues

10 Queues

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1
Trafic Intensity

 Main Flow (Erlangs)  0.1
 0.2

 0.3
 0.4

 0.5
 0.6

 0.7
 0.8

 0.9
 1

   Trafic Intensity 
Cross Flows

 (Erlangs)

-0.5

 0

 0.5

 1

 1.5

 2

Absolute Error (service times)

Figure 7.10: Cross Flow Delay, 10 bu�ers

2 Queues
3 Queues
4 Queues
5 Queues
6 Queues
7 Queues
8 Queues
9 Queues

10 Queues

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1
Trafic Intensity

 Main Flow (Erlangs)  0.1
 0.2

 0.3
 0.4

 0.5
 0.6

 0.7
 0.8

 0.9
 1

   Trafic Intensity 
Cross Flows

 (Erlangs)

-0.025

-0.02

-0.015

-0.01

-0.005

 0

 0.005

Absolute Error (service times)

Figure 7.11: Cross Flow Loss, 10 bu�ers



CHAPTER 7. PREDICTING NETWORKS 116

service times. This accounts for less that 1% relative error in the delay over 10 queues. Again we
see that this error is approximately twice that found in the corresponding queue chains example
(see �gure 7.8).

2 Queues
3 Queues
4 Queues
5 Queues
6 Queues
7 Queues
8 Queues
9 Queues

10 Queues

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1
Trafic Intensity

 Main Flow (Erlangs)  0.1
 0.2

 0.3
 0.4

 0.5
 0.6

 0.7
 0.8

 0.9
 1

   Trafic Intensity 
Cross Flows

 (Erlangs)

-2
-1
 0
 1
 2
 3
 4
 5

Absolute Error (service times)

Figure 7.12: Cross Flow Delay, 100 bu�ers
Figure 7.13 shows the absolute error in the packet loss rate against loading factor for a queue chain
of 2 to 10 in length. At its worst it is 0.003 less than expected, which is about 30% more loss. This
again is almost exactly the same error in loss that can be found for a queue chain test for 100 bu�ers
(see �gure 7.9).
The reason for the change at 80% is due to loss occurring, which is rare before this point. As can
be see from the graphs for both loss and delay the change happens at the same point. You will also
notice that the point of change happens at a lower loading factor when there are 10 bu�ers, this is
because loss occurs at a lower loading factor when there are a smaller number of bu�ers.

7.5.5 Correlation Test

Figure 7.14 shows the absolute error in the delay for a correlation test with 10 bu�ers. Firstly,
notice that �ows 1 and 2 receive almost the same treatment. Flow 2's error is slightly higher than
�ow 1's; however, given that the di�erence is so small it is likely to have been caused by an error
in the rate calculations for �ow 0 as it leaves the �rst queue. As the di�erence is small, a fraction



CHAPTER 7. PREDICTING NETWORKS 117

2 Queues
3 Queues
4 Queues
5 Queues
6 Queues
7 Queues
8 Queues
9 Queues

10 Queues

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1
Trafic Intensity

 Main Flow (Erlangs)  0.1
 0.2

 0.3
 0.4

 0.5
 0.6

 0.7
 0.8

 0.9
 1

   Trafic Intensity 
Cross Flows

 (Erlangs)

-0.003
-0.0025
-0.002

-0.0015
-0.001

-0.0005
 0

 0.0005
 0.001

Absolute Error (service times)

Figure 7.13: Cross Flow Loss, 100 bu�er

of a packet service time, we do not consider the tra�c to be correlated. For both �ows 1 and 2 and
�ow 0 the delay is 0.4 packet service times worse than expected.
The error in �ow 0 increases as its rate increases, which is to be expected. This error is increased
more as the crossing �ows, 1 and 2, increase their rate. This gives the shape of the graph for �ow
0 as it peaks at the back right hand corner. The error for �ows 1 and 2 is similar in that as they
increase their rate so their error increases.
Figure 7.15 shows the absolute error between the predicted and measured loss for a correlation test.
The treatment of all �ows is generally uniform. At its worst the loss is 0.006 less than expected.

7.6 Fixed Packet Sizes

In our second set of tests we model a network where packets have a length. However, we restrict
the network to carrying packets of a single �xed length. This is similar to networks such as ATM
which carry 53 byte cells only. The packet length a�ects the service time, which in a deterministic
system with �xed sized packets would also be �xed. In this approach we �nd this by multiplying
the packet length by an exponentially distributed service time (see chapter 5 for more details).



CHAPTER 7. PREDICTING NETWORKS 118

Flow 0
Flow 1
Flow 2

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1
Trafic Intensity 

Main Flow (Erlangs)  0.1
 0.2

 0.3
 0.4

 0.5
 0.6

 0.7
 0.8

 0.9
 1

Trafic Intensity 
Cross Flows (Erlangs)

-0.05
 0

 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

Absolute Error (service times)

Figure 7.14: Correlation Delay, 10 bu�ers

Flow 0
Flow 1
Flow 2

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1
Trafic Intensity 

Main Flow (Erlangs)  0.1
 0.2

 0.3
 0.4

 0.5
 0.6

 0.7
 0.8

 0.9
 1

Trafic Intensity 
Cross Flows (Erlangs)

-0.006
-0.005
-0.004
-0.003
-0.002
-0.001

 0
 0.001

Absolute Error (service times)

Figure 7.15: Correlation Loss, 10 bu�ers



CHAPTER 7. PREDICTING NETWORKS 119

We have chosen to test two sizes of packets in this set: 64 and 1500. These numbers were chosen
because they are the minimum and maximum packet sizes that are found on a standard Ethernet
network4.
For both sets of packet size the resulting graphs closely resemble the graphs from our �rst set of
tests using point processes; for this reason we have not included the graphs. Table 7.1 shows the
maximum errors for loss and delay for the two packet sizes in this test and those of the point process
set. We have included the �rst set so it is possible to examine the graphs if required.

Test Name Max. Abs Point Processes 64 Byte Packets 1500 Byte Packets
Chain 10 Loss -0.025 -0.025 -0.025

Delay +1 +1 +1
Chain 100 Loss -0.0035 -0.003 -0.003

Delay +2.5 +3.5 -0.5 +3 -0.5
Cross 10 Loss -0.025 -0.025 -0.025

Delay +2 +2 +2
Cross 100 Loss -0.003 -0.0035 -0.003

Delay +5 +4 +5
Correlation 10 Loss -0.006 -0.005 -0.005

Delay +0.4 +0.4 +0.4
Correlation 100 Loss 0.006 0.008 0.008

Delay +1.2 -0.4 +1 -0.6 0.8

Table 7.1: Absolute Errors for Fixed Packet and Point Process tests
You will notice from the table that the results for packet sizes 64 and 1500 are almost identical.
What is more encouraging is that the results from both sets of packet sizes are also almost identical
to the results that we got in the �rst set of tests, namely using point processes. It is worth noting
that the errors are at their largest when the loading factor is in excess of 80%, for the majority
the errors are at the worse over 100% loading. Other approaches yield interesting accurate answers
when the loading is lower, this approach maintains accuracy in excess of this point. This is strong
evidence for the applicability of this approach. We can now predict the behaviour of a semi-realistic
network with no less accuracy than a hypothetical network based on point processes.

7.7 Mixed Packet Sizes

In the third and �nal set of tests in this section we look at packets of mixed sizes in the same
network. Remember that each �ow has packets of a �xed size, and there are a number of �ows with
di�erent sized packets. This provides us with a more realistic model of real networks.

4It is possible to have packet sizes greater that 1500 on Gigabit Ethernet. This is a propriety extension, called
Jumbo Frames, to the Ethernet standard used by some Gigabit Ethernet Switch manufactures.



CHAPTER 7. PREDICTING NETWORKS 120

Each of the tests have 64 and 1500 byte packets in the network. In the case of the queue chain
test we send two �ows through the network for each packet size. For the cross �ows and correlation
tests we have two complementary tests. The �rst is where small (64 byte) packets cross the whole
network and large (1500 byte) packets interfere (we label this 'large'). The second is the opposite,
where large packets cross the whole network and are interfered with by small packets (we label this
'small').
Table 7.2 summarises the results from this set of tests. For each test we show the worse result
obtained. Overall we can see that the trend is for the smaller packets to receive much worse service
than we were expecting when they are interfered with by the larger packets.

Test Name Max. Abs. 64 Byte Packets 1500 Byte Packets
Chain 10 Loss +0.25 -0.14

Delay +90 +-0.4
Chain 100 Loss +0.06 -0.05

Delay +80 -1.8
Cross 10 large Loss 0.18 -

Delay 300 -
Cross 10 small Loss - -0.08

Delay - -0.6 +0.4
Cross 100 large Loss 0.18 -

Delay 1000 -
Cross 100 small Loss - -0.04

Delay - -3.5
Correlation 10 large Loss +0.06 +-0.01

Delay +6 +1
Correlation 10 small Loss +0.07 0

Delay +3 0
Correlation 100 large Loss +0.06 +-0.01

Delay 25 5
Correlation 100 small Loss +0.035 0

Delay 20 0

Table 7.2: Absolute Errors for Mixed Packets Tests
Of the tests in this set the Cross Flows test is the most interesting. Speci�cally, where a �ow of
small packet size is interfered with by a number of large packet sized �ows. As the large packets take
longer to service the smaller packets see a larger average waiting time. This causes our predictions
to be inaccurate (see section 7.8.4 for an explanation).
Figure 7.16 shows a �ow, containing 64 byte packets, as it traverses a number of queues. The queues
are shared with a �ow, containing 1500 byte packets, that traverses each queue only once. As you
can see, the more queues the �ow of 64 byte packets crosses the worse the predictions become.
What is interesting is that the inaccuracy is dependent entirely on the load o�ered by the 1500 byte
packets; as the load that this �ow o�ers increases so does the error, irrespective of the load that the
64 byte packets o�er.



CHAPTER 7. PREDICTING NETWORKS 121

2 Queues
3 Queues
4 Queues
5 Queues
6 Queues
7 Queues
8 Queues
9 Queues

10 Queues

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1
Trafic Intensity

 Main Flow (Erlangs)  0.1
 0.2

 0.3
 0.4

 0.5
 0.6

 0.7
 0.8

 0.9
 1

   Trafic Intensity 
Cross Flows

 (Erlangs)

 0

 50

 100

 150

 200

 250

 300

Absolute Error (service times)

Figure 7.16: Cross Flows 10 bu�ers large Delay

Figure 7.17 shows the same test but using 100 bu�ers and not 10. As you can see the errors in the
predictions do not become severe until the 1500 byte packets reach a loading factor of 0.9. Beyond
this point the errors are signi�cantly worse than the results for 10 bu�ers. Its clear that more bu�ers
increases the accuracy of the predictions, at least for a larger region of the problem space. This is
not surprising given that more bu�ers gives us a larger memory, which in turn makes the predictions
about the number of packets of each size more accurate.
This may seem to suggest that this approach is only useful for particular bu�er sizes; this is not
the case. As we discussed in section 4.7.2 the choice of bu�er size e�ects the performance of the
network. This also e�ects the extent to which we can make accurate predictions. Where the bu�ers
are small, and so is the memory of the queue, the loss is higher. Firstly the increase in loss makes
the predictions more inaccurate, as we have seen before. Secondly the small memory provides a
poor average of the number of packets of each size in the queue.

7.8 Interpreting the Results

In this section we look at some probable causes for di�erences between our calculations and simu-
lations. This is important, as any real world implementation, also based on random services, would
likely su�er from similar problems. First we show that the random number generator we have drifts



CHAPTER 7. PREDICTING NETWORKS 122

2 Queues
3 Queues
4 Queues
5 Queues
6 Queues
7 Queues
8 Queues
9 Queues

10 Queues

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1
Trafic Intensity

 Main Flow (Erlangs)  0.1
 0.2

 0.3
 0.4

 0.5
 0.6

 0.7
 0.8

 0.9
 1

   Trafic Intensity 
Cross Flows

 (Erlangs)

-400
-200

 0
 200
 400
 600
 800

 1000

Absolute Error (service times)

Figure 7.17: Cross Flows 100 bu�ers large Delay

around its mean value over a number of samples. We then show how this error in the mean produces
a positive bias in the delay calculations. Finally we show how this bias is likely to cause higher delays
in the simulations.

7.8.1 Errors in the mean

It is well known that random number generators drift around a mean value. It is this mean value
that we set when we are asking for a particular rate of tra�c to be generated. It is assumed that
when averaged over a large number of samples that the observed mean value will be the same as
the value that has been requested. This clearly depends on the number of samples that have been
taken.
To test what drift in the average value of a number of samples from the random number generator we
did the following. We took 100,000 rolling averages and for each of these rolling averages calculated
how much higher or lower the observed average was than the predicted value. During the test the
number of samples per rolling average was varied to see what the drift was likely to be. Throughout
the test the expected value was set to 1.0. The test was also repeated a number of times with
di�erent seeds to ensure that the results were representative of normal operation. The table below
shows the results.



CHAPTER 7. PREDICTING NETWORKS 123

Samples per Average Approx Absolute Error
100 0.045
1,000 0.015
10,000 0.005

These results are not surprising, they are well within the bounds of possibility, as expressed by the
Central Limit Theorem. If we sample a random variable, in this case an exponential distribution, we
�nd that as we increase the number of samples we approach the mean of the original distribution.
The more samples that we take the more accurate the mean becomes, and the lower the variance
in the mean. Variation from the mean over short runs from the random number generator creates
bias in the resulting simulations. The cause of this bias on the theoretical results from the queueing
theory is important to understand.

7.8.2 Resulting Bias in Queueing Formula

In this section we will explain how the results are a�ected by accuracy of the sample taken from
the random number generator. To do this we will look at how this a�ects the calculated delay for
an m/m/1/k queue with 10 bu�ers. The formulae for loss and delay in any queueing system are
non-linear. A period of bias from the random number generator will have e�ects which do not cancel
out. A temporary increase in the load will cause more degradation (ie more loss or increased delay)
than the corresponding temporary decrease in load. In this subsection we will quantify this e�ect.
Figure 7.18 shows the percentage error in the delay calculations, for the absolute errors given in the
table above. To calculate this we use the following formula:
delay(λ+ε)−delay(λ−ε)

delay(λ) ∗ 100

The reasoning behind this formula is as follows: The maths predicts that the delay at a given loading
factor is delay(λ), when λ is measured over an in�nite period of time. However, we know that if λ

is measured over a smaller number of samples and will therefore have an error of ±ε, in accordance
with the central limit theorem. We wish to know if the delay added by a positive error is cancelled
by a corresponding negative error. To answer this we subtract the delay when λ is smaller from the
delays when λ is larger, and then divide by the ideal λ to �nd the percentage error (this can be seen
as a crude approximation to the �rst derivative of the delay formula).
As you can see, there is a positive bias, that is the area under the curve above the x-axis is larger
than that below. This means that when drift is introduced into the simulator the results are likely
to come out higher than those that had been predicted by the mathematics. This is because a small
increase in λ results in more delay than the same decrease in λ would decrease the delay. When
a number of samples of λ are taken, being evenly distributed around the mean, more delay results
due to the overshoot.



CHAPTER 7. PREDICTING NETWORKS 124

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

D
el

ay
 E

rr
or

 (s
er

vi
ce

 ti
m

es
)

Loading Factor (Erlangs)

0.045
0.015
0.005

Figure 7.18: Bias in Delay Calculations

Its worth noting that the same bias does not exist for loss. There are large variations in the level
of loss at low loading factors, which small changes in load could e�ect; however, as the loss rates
are so small they are essentially irrelevant. It would appear that loss is less susceptible, at least
theoretically, than delay. However, it is worth remembering that the loss e�ects the delay and vice-
versa as the system has two degrees of freedom. So while there may be no signi�cant e�ects on the
loss, for small changes in load, they may cause larger variations for delay.

7.8.3 Explaining the Deviation

There are a number of artifacts in the results that need to be explained. The most signi�cant of
these is when a number of queues are composed in a chain the delay results from the simulator
are always higher than that which the maths would predict. This applies to any �ow that crosses
a number of queues in our system whatever the topology. We have taken care to ensure that this
e�ect is not caused by the choice of random numbers, and have repeated the tests in a number of
di�erent ways to con�rm this.
To explain this result we start by considering a simulation, lasting for T seconds, of a single queue.
We split the simulation time into a number of discrete time intervals t0..tn. Each of these time
intervals starts and ends when the queue becomes empty. During each time interval the queue



CHAPTER 7. PREDICTING NETWORKS 125

observes an average arrival rate of packets, given the time interval is �nite then so is the number of
packets that can arrive at the queue during the interval. It follows that the observed average during
each time period will be close to the long term mean arrival rate with some error, ε.
We assume that the errors in the observed rate are normally distributed, that is there are, on
average, the same number of positive errors as there are negative errors. However, we know that a
positive error causes more overshoot in delay than a negative error undershoots, when compared to
the delay expected by the long term average rate. The result is that more delay will be experienced
than predicted.
The increase in delay for a single queue, as a result of sampling and the bias in the queueing formula,
is likely in reality to be quite small. Delays are additive, so over a number of hops the extra delays
introduced will add up, causing the higher delay observed in the simulations.
As an area for further investigation would be to validate this hypothesis. A good starting point is
the occurrence of empty events. We know that the probability of the queue being empty is given by
P0; the rate of empty events is therefore given by 1

P0
. Using this it would be possible to calculate

the average period of time between empty events. Applying the central limit theorem would give
us a measure of the expected error in the observed rate. Finally it would be possible to get a more
true measure of the expected error.

7.8.4 The e�ect of packet size

As we have seen from the cross �ows test networks with mixed packet sizes are harder to predict.
This is because the mathematical models that we are using do not accurately re�ect the network.
We are using a M/G/1/k class queue to model this network. Firstly the arriving tra�c is not strictly
Poisson distributed, as it has been produced by a �nite queue. This may not indeed be a problem as
the tra�c is progressively shaped by the network. Secondly the service discipline is best modelled
using a Gaussian distribution, the service facility calculates the departure time as a random Poisson
service rate multiplied by the packet length, while this may have the same mean as a Gaussian
model its moments are di�erent.
To make better predictions a better model of the service discipline is required. Some candidates for
this could be Hyper-exponential or Erlang distributions. Using such a model would require us to
do some analytical work in order to arrive at some suitable equations. While we have not done this
it would be possible to use such models in our methodology.
What is perhaps more interesting is the e�ect of the bu�er size on our predictions. The formula for
the waiting time in the queue that we are using is as follows (See Appendix A):
Ws = λ1

λ E[s1] + λ2
λ E[s2]



CHAPTER 7. PREDICTING NETWORKS 126

The waiting time for the entire queue is therefore the sum of the average waiting time for each
class. We can obtain the waiting time for each class as the ratio of packets of that size, given by
λx

λ , multiplied by the expected service for that class.
To explain the e�ect of the bu�er size on the accuracy of the predictions, consider a single queue.
At any instant of time we can take a snapshot of the packets that are in the bu�er. At this instant
of time there is a average number of each size of packet. When there are a small number of bu�ers
the average number of packets for each size are less likely to be close to the expected value. As
we increase the number of bu�ers the average number of each size of packet becomes closer to the
expected value. We can relate this to an experiment where a number of coins are tossed in the air
simultaneously; the more coins we add, the more likely we are to �nd 50% heads or tails, when
compared to say two coins where there is a low chance of a head and a tail.
In reality the problems with the average number of packets in the queue occurs because of loss. In a
system with in�nite bu�ering the relative number of packets of each size will always be the same as
the o�ered number. In a system with �nite bu�ers the number of packets of each size is determined
the unpredictable ordering of losses, as a result the ratio of packets of di�erent sizes in the queue
is not always the same as the o�ered ratio. The waiting time for the queue is determined by this
ratio, and if that is not accurate nor are the results. The more bu�ers there are the closer the ratio
of packet sizes in the queue is to the o�ered ratio.
The more bu�ers we add the closer the ratio of packets of each size is to the averages the maths
predicts. Choosing a bu�er size that is large enough to make this average reliable is clearly important.
However if it is too large then the time taken for the queue to reach a steady state will also increase.
This is undesirable, as it makes the network less resilient to changing loads.
An area for future research is to investigate a better model for mixed packet sized networks based
upon a di�erent service distribution. In addition, the e�ect of bu�er size needs to be studied in
relation to this to ensure that it is large enough to gain good averaging properties without being
too large, so as to cause instability.

7.8.5 Link service rates

Thus far we have looked at delay in relation to normalised packet service time. While this is useful for
comparing the results between simulation and calculation it gives us very little idea of performance
of a real network. What can be tolerated in terms of delay is application dependent, and is more
usually speci�ed in seconds not packet service times. Table 7.3 shows the service time for a 64 and
1500 byte packet at di�erent link speeds.
As you can see from the table the service time unsurprisingly reduces as the link speed increases.
This is important when considering errors of a number of packet service times. For example an



CHAPTER 7. PREDICTING NETWORKS 127

Technology Data Rate Service Time for 64 bytes Service time for 1500 bytes
Mobile Phone (GPRS) 16kbps 32ms 750ms

Modem 56kbps 9ms 214ms
Dual ISDN 128kbps 4ms 93ms

xDSL 512kbps 1ms 23ms
E1/T1 1.544Mbps 0.3ms 8ms

Gigabit Ethernet 1Gbps 0.5us 12us

Table 7.3: Link Service Rates

error of 10 service times at a Gigabit would give a delay for 64 bytes of 0.05ms; when real time
constraints for tra�c are expressed in 100's of milliseconds this is not signi�cant. However at 16kbps
this is extremely signi�cant. Note that we are more interested in 64 byte packets as we know that
predicting their delay is harder.
The errors in our predictions should always be considered in terms of the rate at which the packets
were serviced. Where the link rates are high the errors in the predictions become relatively insigni-
�cant when compared to application requirements. However, when the link rates are low the errors
in the predictions are more damaging. Getting a better understanding of the magnitude of these
errors is required, as it is likely that some applications performance will be severely damaged by
problems at low link speeds (probably when entering and leaving the core network).

7.9 Conclusion

In this chapter we have compared simulation results to predictions based on calculations for a
number of test cases. We conducted three sets of tests modelling packets as: point processes, �xed
length, and mixed length.
For point processes and �xed packet sizes we �nd that our analytical models closely match the
results from our simulations. Importantly, this shows that assumptions about the Poisson nature of
the tra�c leaving a �nite queue still hold even when the tra�c is not, at least theoretically, Poisson.
One possible reason for this assumption holding is due to reshaping of the tra�c as it passes through
the network [49]. As a result only the �rst few queues contribute to errors in the calculations.
For networks that contain mixed packet sizes we �nd that our predictions are acceptable for large
packets, but inaccurate for small packets. While this can be eased by increasing the bu�er size to
get a better averages it is not as accurate as hoped. This is due to the models, based on Gaussian
distributions, that we are using. However, as an area for future research it looks possible to obtain
the same accuracy using a better model. This would allow us to make strong predictions on the
behaviour of the network.



Chapter 8

Quality Requirements

8.1 Cherish and Urgency

In this chapter we will look at QoS requirements for a number of common applications. We shall
also look at some problems that these applications su�er on the Internet today. The focus will be
on classifying the applications within our framework to allow them to be supported on a network
that has di�erential QoS support.
In [34] a model for classifying and servicing �ows with di�ering loss and delay requirements is
presented. Tra�c is classi�ed along two axes:

• Cherish; the desire to experience less loss.
• Urgency; the desire to have a lower delay.

This can be represented graphically (see �gure 8.1) as a grid. This allows for four classes of service:
cherished and urgent, not cherished and urgent, cherished and not urgent and not cherished and not
urgent; although it would be entirely possible to extend the model to provide more levels of cherish
and urgency. In the rest of this chapter we will use this two dimensional classi�cation.
This chapter is organised as follows: In section 8.2 we look at the problems and requirements of
routing protocols. In sections 8.3, 8.4, and 8.5 we look at the requirements for NTP, VoIP and
HTTP respectively. In section 8.6 we look at how the IP ToS bits map onto our cherish-urgency
model, and look at the implications of such a mapping. Finally we will �nish with a summary of
the �ndings in this chapter.

128



CHAPTER 8. QUALITY REQUIREMENTS 129

Not Cherished
Not Urgent

Cherished
Not Urgent

Urgent
Not Cherished

Urgent
Cherished

U
rg

en
cy

Cherish

Figure 8.1: Cherish Urgency Grid

8.2 QoS and Router Flap

In this section we will investigate how Quality of Service can be used to alleviate the problems causing
router �ap. IP networks are interconnected using routers. These devices operate at the Network
layer of the ISO seven layer model [35]. Each router maintains a routing table that describes how
to reach portions of the IP address space. The routing table is used to send packets down an
appropriate link, bringing them closer to their destination. A detailed description of this process is
outside the scope of this document and readers are directed to [7] for a fuller discussion.
Routing tables are in general maintained in one of two ways, depending on the size and complexity
of the network. In a small network they are usually maintained by hand by an administrator. Each
route entered in this way is called a static route. In larger networks a routing protocol is used.
Routing protocols enable routers to pass information about routes in their routing table to adjacent
routers. Each router, in addition to its static routes, holds a set of dynamic routes which are updated
by a routing protocol. Both the static and dynamic routes are now used to send packets to their
destination. This process allows a router to discover parts of the network that it is connected to
automatically.
In addition to the route itself there is often a metric passed as well; the metric describes how suitable
the path is. For example hop-count may be used to choose the shortest path to a destination; if there
are two routes to a destination then the path with the shortest hop count will be used. This allows
for redundancy in the routing infrastructure, where there is more than one route to a destination.
Such metrics are usually protocol speci�c, and we will not deal with them in detail here.



CHAPTER 8. QUALITY REQUIREMENTS 130

Router �ap occurs when dynamic routes disappear and appear in quick succession. In some situ-
ations a route may disappear for a longer period, in which case we would more likely call it a
net-split. The e�ect of these dynamic routes disappearing causes parts of the network to be un-
reachable, or reachable via a longer path. This is clearly undesirable, and will a�ect any tra�c that
is attempting to reach such a destination.
In such an environment it is almost impossible to provide QoS guarantees, as a �xed path cannot
be determined. Even without the desire to provide multi-service facilities, it is extremely irritating
to the end user to be unable to reach parts of the network; especially when it was possible only a
few moments ago.

8.2.1 Causes of Router Flap

One cause of router �ap is when routing messages fail to reach their destination in time1. Each
dynamic route has an expiry time; if the route is not updated during this time then it is removed.
This is not the case for all routing protocols, but a number of well used protocols will behave in this
way. Will shall examine this more in a moment.
When routes are lost in this way there is a secondary e�ect. That is, routes propagated from this
point onwards do not contain routes to the destination that was deleted. This means that the loss of
routes is not just con�ned to adjacent routers but is actively propagated around the whole network,
causing yet more inconvenience. To add to this, routing protocols take time to converge into a stable
state, which may not happen in the presence of router �ap. Even worse, it is possible to converge
into an incorrect state in some protocols such as RIP [48, 67]. These problems are well known.
What causes the router messages to be lost? The �rst and most obvious reason is that there has
been a hardware failure, physically separating two parts of the network. If there is an alternate
route then this can be used in the interim, otherwise there is nothing that can be done, other than
replacing the hardware. The second reason is that the link, which is carrying the router messages,
is heavily congested. The congestion causes messages to be discarded, as there is insu�cient bu�er
capacity to hold them. This situation is made worse when there is contention between the routers2,
or if a link has failed causing a backup link to carry additional tra�c.
Using RIP and OSPF [72] as an example, we will investigate how router �ap could occur using these
protocols. What follows is a brief outline of the operation of these two protocols, and the problems
that they have when dealing with loss.

1There may be other causes of router �ap, such as routing tables over�owing due to large numbers of routes.
2This could happen when there is a switched network between the two routers.



CHAPTER 8. QUALITY REQUIREMENTS 131

8.2.2 RIP

Routing Information Protocol (RIP) is a simple UDP based routing protocol designed to be used
on a Local Area Network (LAN). It is, however, used in a wide variety of other places. There are
two versions of this protocol, 1 and 2, the latter is an extension to the �rst to add security; for our
purposes their behaviour is the same.
Each router that is running RIP sends its routes to its neighbour, usually every 30 seconds. When
a router receives a RIP message it examines it and adds or deletes routes as appropriate. However,
for the routes to remain in the routing table, updates must be sent, or the routes will be deleted. If
no message is received after 180 seconds then the routes are marked as unusable.
Thus if 6 messages in a row fail to reach their destination then routes will be deleted; if the intervening
network is heavily loaded this is quite possible. The situation is made worse if broadcast frames are
used to transmit the routing messages, as they are more likely to be discarded by switching elements
in the network than uni-cast frames.

8.2.3 OSPF

Open Shortest Path First (OSPF) is a link-state routing protocol designed to be used inside a single
Autonomous System. It is layered directly on top of IP, and has its own mechanisms for providing
reliable updates. It is a complex protocol and we will only look brie�y at its operation here.
Each router running OSPF talks to its neighbours using uni-cast, multi-cast or broadcast frames
depending on how it is con�gured. The �gure 8.2 shows the basic exchanges that OSPF goes through
when it initially transfers its routing information. Once this has happened HELLO frames continue
to be sent to keep the routes active, and Link State Updates are sent when required. The exchanges
can be summarised as:

• Send HELLO frames to discover, or keep-alive, neighbouring routers.
• Transfer the details of the links that are available in the database.
• Make updates to the available links when the topology changes.
• Send HELLO frames to inform neighbours that you are active.

Generally in OSPF changes to the topology are acknowledged either implicitly or explicitly. This
makes it far more tolerant to loss than RIP. However, similarly to RIP, HELLO frames have to
be sent to neighbours in order to keep the advertised routes active. In OSPF, HELLO frames are



CHAPTER 8. QUALITY REQUIREMENTS 132

Router A
Link

Hello

Router B

Database Descriptions

Database Descriptions

Link State Updates

Link State Updates

Hello

Figure 8.2: Basic OSPF Exchanges

smaller than they are in RIP, as they do not contain routing information, hence the bandwidth
required when no topology changes occur is smaller.
If no HELLO frame is received from a neighbour within a certain amount of time, called the Dead
Time, then the routes expire from the routing table. This in turn causes the shortest path to be
recalculated and the changes to be propagated. We are assuming here than no Link State Update
frames are sent, as there have been no alterations to the topology in other parts of the network.
Both the HELLO advertisement rate and dead time are dependent on the underlying network type.
The table below shows the HELLO period, and Dead Time for a number of network types. Included
is the standard from which the numbers come and the number of losses that will cause a link failure.

Type Hello Period Dead Time Standard Losses
Point-to-Point Non-broadcast 30 120 Cisco 4

Point-to-Point 10 40 Cisco 4
Broadcast 10 40 Cisco 4
NBMA 30 120 RFC 4

Point-to-Multi-point 30 120 RFC 4
As you can see, in all cases, four losses in a row will cause the link to assumed to be down. This is
actually lower than that of RIP, but you have to remember that the bandwidth required is lower.
The e�ects and causes are the same as RIP.



CHAPTER 8. QUALITY REQUIREMENTS 133

8.2.4 QoS Solutions

As you can see from the examples above, the main cause of router �ap is packet loss; using QoS we
should be able to protect against this more e�ciently than best e�ort can achieve.
In this framework we classify tra�c by two metrics: cherish and urgency. Routing protocol tra�c
is highly cherished but not urgent. This is because the tra�c is sensitive to loss, especially when
there is a high contention ratio, but it has a number of seconds to reach its destination before a
failure occurs. For this reason in our architecture we would place this tra�c in the most cherished
but least urgent class.
Using other QoS techniques we could do the following:

• Priority Queueing (separate bu�ers). Here we would place the routing tra�c in the highest
class, preventing loss. As the bandwidth required is low, problems to do with starvation of
the lower queues are unlikely.

• Push-out bu�ering. Ensure that the routing protocol tra�c is always able to take bu�er space.
We are not concerned with the delay that would be su�ered. However, this is detrimental to
other tra�c.

• WFQ. Assign the routing tra�c a class of its own with a low bandwidth. This is assuming
that each of the classes has its own bu�ers.

8.3 NTP and QoS

Network Time Protocol (NTP) [69] allows a computer's local clock to be synchronised to the correct
time. This is achieved by synchronising with one or more time servers across the Internet. What
follows is a brief description of some of the terminology and working of the NTP protocol.
Each NTP server has a concept of how accurate its time source is. If it has direct access to an
external time source, such as a caesium clock or GPS receiver, then it is considered a stratum zero
server. The stratum is a measure of how far away from an accurate time source you are; so if you
synchronise to a stratum zero server your stratum is one and so on.
An NTP server has its own virtual reference clock. In the case of a stratum zero server this is
synchronised to the external time source. Other NTP servers synchronise their reference clock to
one or more other NTP servers having a lower stratum. This reference clock is then used to set the
system time, in small increments.



CHAPTER 8. QUALITY REQUIREMENTS 134

NTP is a UDP based request-response protocol. A client sends a request to a server, the server then
processes this request and returns a response. When sending out a request, the client stores its own
time (originate time-stamp) into the packet being sent. When a server receives such a packet, it
will in turn store its own time (receive time-stamp) into the packet, and the packet will be returned
after putting a transmit time-stamp into the packet. When receiving the reply, the receiver will
once more log its own receipt time into the packet.
From this exchange the client can calculate the transit time of the packet. This is estimated to be
half of the total delay minus remote processing time, assuming symmetrical delays. This is then
used to calculate the time o�set between the two machines. Clearly a number of these exchanges
have to take place before the o�set in the time can be averaged, and considered valid. NTP has
some sophisticated methods for doing this, which are outside the scope of this discussion.
The client uses this averaged o�set, and that from other servers, to synchronise its own reference
clock. Finally it uses this reference clock to set its own local clock, as described above.
NTPs ability to accurately synchronise time is dependent on how accurately it estimates the o�set
in the clocks. This is in turn dependent on the round-trip time calculations. The shorter and more
predictable the round-trip time is, the more accurate the estimate will be. Essentially we want the
round trip time to have as little jitter as possible.
In our approach to QoS we would place NTP in the most urgent but least cherished class. The
motivation for this is that we would rather the NTP packet did not arrive than be delayed. Ad-
ditionally there are very few other types of tra�c that have similar requirements; this means that
there will be little contention for the outgoing link, hence, the jitter will be lower. Jitter will still
be introduced as a result of the service of the preceding packet (which may be in another class) and
any shaping.

8.4 VoIP and QoS

When referring to Voice-over-IP (VoIP) in this thesis we are generally talking about the H.323
protocol suit. However, this does not exclude the discussions from applying to other types of voice
or video conferencing and streaming technologies. H.323 was chosen as it is an industry standard
and one of the more interesting real time applications.
H.323 is an umbrella that covers a number of protocols. From a QoS perspective we are most
interested in the data streams containing voice data. As such we do not consider protocols that are
responsible for call signalling, although it is possible to do so. H.323 is not covered in any great
detail here, due to its complexity.



CHAPTER 8. QUALITY REQUIREMENTS 135

H.323 carries audio data encapsulated in an RTP [90] data stream. This has an overhead of approx-
imately 58 bytes on an Ethernet LAN 3. The amount of data carried in each segment is dependent
on the codec in use. Throughout we will be using the G.711 codec at 64Kbps. Samples are sent at
a rate of 50Hz, so at 64Kbps we have a raw packet size of 160 bytes. Adding the protocol overhead
to this gives us a packet size of 218 bytes sent at 50Hz intervals; this corresponds to a data rate of
87.2Kbps.
For simulation purposes VoIP tra�c is much easier to generate than other tra�c. This is because it
sends a �xed sized packet at �xed intervals. The size of the packet may vary between connections
depending on the codec, which is chosen during call setup, in use. During the simulations in this
thesis we will assume that VoIP calls are always placed using the G.711 codec at 64Kbps.
VoIP tra�c has a number of simple quality constraints [97]. These are as follows:

• The end-to-end delay, including all processing costs, must be less than 150ms.
• The inter-packet delay variation must be less than 60ms.
• The loss rate must be less than 1%, with no more than three losses in a row.

The end-to-end delay is constrained by our (human) ability to detect delay in a two way conversation;
if the delay is less than 150ms we will not notice it. The restrictions on the jitter are to ensure that
audio samples arrive in good time at their destination. The loss has to be low, so as not to lose
too much data. The requirement for less than three losses in a row will ensure that there is not a
serious glitch in the audio quality, however, this may depend on the codec in use.
In the loss-delay model we would chose to place VoIP tra�c in the highest class, that is cherished
and urgent. We chose cherished to minimise both overall loss and burst loss, so long as the class is
not over contended there should be very little loss. We chose urgent both to keep the end-to-end
delay low and to minimise jitter. In the most urgent class we will only have to wait for the same or
any other classes to �nish processing the current packet before we receive service.
In bandwidth-centric networks we can only allocate the VoIP call the correct amount of bandwidth.
This may protect against loss where there are separate bu�ers for each class, otherwise it must
compete with the other tra�c. The delay is dependent on how many other classes have to be
serviced, and this is extremely hard to predict in advance. Additionally where the VoIP class has
to wait for other classes to service jitter may be introduced. The amount of jitter is dependent on
the number of classes and properties of their instantaneous tra�c characteristics, and cannot be
determined beforehand.

320 bytes of IP, 8 bytes of UDP, 12 bytes of RTP and 18 bytes of LAN.



CHAPTER 8. QUALITY REQUIREMENTS 136

8.5 HTTP and QoS

HTTP is perhaps one of the hardest applications to model convincingly. Being based on TCP makes
its packet by packet behaviour hard to simulate. We know that the length of a connection is likely to
be Pareto distributed, as are the gaps between successive connections from the same source. During
this thesis we will model HTTP connections as a long running transfer of data using a greedy source.
The greedy source attempts to use as much of the bandwidth as possible at any given time; this is
intended to model the behaviour of TCP.
TCP e�ectively turns loss into delay; that is, any losses are hidden from the user and extra delay is
introduced. From the point of view of the user of TCP this decreases the throughput. The problem
with applications like HTTP is we wish to maximise the throughput and minimise the delay; users
simply do not like waiting for pages to load.
In this thesis we use HTTP as our best e�ort tra�c, not cherished and not urgent. HTTP does not
have as strict loss requirements as VoIP or routing protocols, due to TCP being a reliable transport
protocol. It also does not have strict delay requirements in the same way VoIP does. It is for this
reason that we consider it as best e�ort.
Another important reason for making HTTP best-e�ort is that it is perhaps the most common
application in use on the Internet. As it stands HTTP does work reliably for most purposes,
however, applications like VoIP are harder to support. We believe that there needs to be a portion
of the total network tra�c that is best-e�ort, as this allows the higher quality classes to borrow
spare capacity when required.

8.6 IP ToS Mapping

In order to provide basic support for classes of service to the Internet Protocol [84] part of the IP
protocol header contains what is known as the ToS (Type of Service) bits. These are de�ned in [4].
This RFC de�nes four classes of service described below:

1. Minimum Delay. This class is used when the time a packet takes to travel from its source to
its destination is most important.

2. Maximum Throughput. This class is used when the volume of data transfered in any given
period of time is most important.

3. Maximum Reliability. This class is used when some certainty is required that the data reaches
its destination without retransmission.



CHAPTER 8. QUALITY REQUIREMENTS 137

Class of Service Application
Minimum Delay telnet/ssh

ftp control
SMTP control

UDP DNS query
Maximum Throughput ftp data

SMTP data
DNS zone transfer

Maximum Reliability IGP
SNMP

Minimum Cost TCP DNS query
ICMP
EGP

BOOTP

Table 8.1: RFC1060 ToS Mappings

4. Minimum Cost. This class is used when it is important to minimise the cost of data transmis-
sion.

To specify which class of service is required a bit is set in the ToS �eld of the IP header. If none of
the bits are set the the packet will receive �normal service�; otherwise known as best-e�ort.
While this RFC speci�es the value of the ToS �eld, by de�ning the classes above, it does not mandate
that other interpretations of the �eld are not allowed; this is important as it allows the �eld to be
re-used in the future. It does however �x the size of the �eld to four bits, updating several previous
RFCs.
It is important to note that these bits are intended to provide a way of allowing an application to
describe its desire to receive a particular class of service. The network does not have to honour this,
indeed, it may not even support this functionality.

8.6.1 Setting the ToS bits

The assigned numbers RFC [88] speci�es what class of service well known applications should use.
Table 8.1 shows the class to which some well know applications belong.

8.6.2 ToS to Loss-Delay Mapping

Given the de�nitions of the classes of service for the ToS �elds we can map these classes into the
classes for the loss-delay model. Figure 8.3 shows the loss-delay grid with the names of the classes
of service in place.



CHAPTER 8. QUALITY REQUIREMENTS 138

Minimum
Cost

Maximum
Reliability

Delay
Minimum Maximum

Throughput

U
rg

en
cy

Cherish

Figure 8.3: Loss-Delay ToS Grid

The reason for these mappings are as follows:

• Minimum delay means that we should service the packet as soon as possible. This class does
not specify any constraints on loss. We have therefore classi�ed this class as urgent but not
cherished.

• Maximum reliability means that we should always admit the packet into a queue. This class
does not specify any constraints on delay. We have therefore classi�ed this class as cherished
but not urgent.

• Minimum cost is taken to mean using less resources. In our model resources are bu�er capacity
and service capacity. Therefore we have classi�ed this class as not urgent and not cherished.

• Maximum throughput is harder to classify. We know that throughput is related to both loss
and delay. To achieve the highest throughput we require the lowest loss and lowest delay. We
therefore place this class in the cherished and urgent class.

8.6.3 Important Observations

It is important to realise that the Maximum Throughput class will dominate all other classes if this
mapping is implemented. This may not be what was originally intended when some well known
applications were placed into classes.
For example, let us assume that there is a long running FTP transfer, which is mapped into the
Max. Throughput class. In this instance a telnet session could appear to be very slow! This is



CHAPTER 8. QUALITY REQUIREMENTS 139

because both the FTP transfer and the telnet session are at the same level of urgency. It is likely
that there are signi�cantly more ftp packets than telnet packets; this will result in the telnet packets
having to wait longer for service.
Taking the same long running FTP session, we may also expect to see problems with SNMP queries.
This is because the FTP session and the SNMP query are at the same level of cherish. As a result,
they will both be contending for the same bu�er capacity, and as the FTP session will have more
packets in �ight, it is more likely to succeed; this is assuming that the SNMP query is a low
bandwidth �ow.
The problems do not stop there. Our FTP transfer completely dominates the Minimum Cost class,
which is not cherished and not urgent. As a result, any tra�c in this class is likely to be discarded
or su�er a long delay.
Of course, this may not actually be a problem, as it depends on how important the FTP transfer is
in comparison to the other tra�c. While the mapping we have presented will give the application
the service that it requires, it may do so at an unacceptable cost to other tra�c.
There are two ways of tackling this problem. The �rst is to change the class of service applications
request to better re�ect the priority of the application. The second is to cap the available bandwidth
of each class so as to prevent unacceptable starvation of other classes. It is likely that a combination
of these two approaches will be the most successful.

8.7 Summary

In this chapter we have looked at the quality requirements for a number of di�erent types of tra�c.
We have seen that these can easily be classi�ed in terms of cherish and urgency requirements. This
provides us with a simple to understand way of prioritising network tra�c. We may also need to
capture additional information like the number of consecutive losses that can be tolerated, or the
inter-packet jitter that is acceptable.
We have provided a brief description of the following protocols, as well as assigning them to a
cherish-urgency class:

• Routing Protocols - cherished but not urgent.
• NTP - urgent but not cherished.
• VoIP - cherished and urgent.
• HTTP - not cherished and not urgent (best-e�ort).



CHAPTER 8. QUALITY REQUIREMENTS 140

In networks that provide QoS support by bandwidth there is no way of trading loss and delay. We
can only assign each application a bandwidth dependent on its expected requirements. This is in
contrast to networks that allow loss-delay trading.



Chapter 9

Differential Quality

9.1 Introduction

In this chapter we are going to develop a simple case study to demonstrate the techniques we have
presented so far. Using these techniques we will show how it is possible to construct a network that
is capable of delivering QoS support to a number of applications with high con�dence.
We deviate from previous approaches here in that we will not calculate the performance of the
network beforehand. As we have shown it is not currently possible to accurately calculate the
performance of networks that transport mixed packet sizes. However, the author believes that this
will become possible in due course.
Our aim is to show in this chapter that, using the principles we have already shown, we can construct
a network with QoS support that is better than other well known approaches. By using a �xed
topology and mix of tra�c we will be able to investigate the e�ect of using di�erent queueing
disciplines. A given network has a �xed amount of quality it can provide, we call this the Intrinsic
Quality (see section 4.3), by choosing di�erent queueing disciplines we change how this quality is
shared out. By managing the two degrees of freedom we will show that it is possible to provide
better QoS support than is possible with bandwidth alone.

9.2 Assumptions

9.2.1 Tra�c Distributions

In previous chapters we have restricted ourselves to using exponentially distributed tra�c. The
motivation for doing this was to allow us to explore the mathematical properties of the queueing

141



CHAPTER 9. DIFFERENTIAL QUALITY 142

systems that we have presented. In this chapter we are interested in the performance of more
realistic tra�c, and for this reason we do not dictate a distribution. We will however use tra�c
distributions that are aligned with the real world behaviour of the applications in question.

9.2.2 Tra�c Loading

The network we will present carries a mixture of di�erent types of tra�c, each with their own
constraints. It is important that we do not place an unrealistic load on the network. For example to
load a network at 100%, when 90% of the tra�c is VoIP, is unrealistic. The reason for this is that
it is extremely unlikely that we would be able to meet that guarantees of that many VoIP calls. A
good way of approximating how much tra�c, of a particular type, a network can carry is to ask if
it is possible to meet the guarantees only with that tra�c type being carried. If it is not then it is
almost certainly not going to perform correctly when other tra�c is also present.
An important observation about running a multi-service network is that it is important to have a
portion of the tra�c as best e�ort. Without this best e�ort tra�c we have no one who can receive a
worse treatment. The provision of quality is the absence of degradation, for a given intrinsic quality
we can chose who receives the worse treatment; best e�ort tra�c provides such a possibility.
Finally we will arrange for the network to be heavily loaded at the edges to more accurately represent
the loading on real networks. The centre of the network while moderately loaded should not be in
heavy contention.

9.2.3 Fixed Tra�c and Topology

Firstly we are assuming a �xed topology. That means that there are no sudden appearance or
disappearance of routers. It also means that tra�c will always take a well known path. Secondly
we assume that the number of streams, and hence �ows, is �xed for the duration of the case study.
Both of these things are relatively unlikely in a real network. However; they are both ultimately
supportable. It would just involve re-calculation on a topology or tra�c change. This would take
us into issues such as signalling, which while interesting is not the thrust of our example.
In some senses we could allow changing tra�c, so long as it does not exceed the maximum we
have provisioned for (which requires policing). In this case we would give worse case guarantee. To
allocate to peak in this way requires us to have an understanding of how large the peak is, when
it occurs and how long it is likely to last for. This then leads us into over booking, tra�c trends
and alike. Again this is not the thrust of the example. Using the techniques that we present in
this thesis would allow us to make inroads into these problems; we leave this as an area for future
research.



CHAPTER 9. DIFFERENTIAL QUALITY 143

9.2.4 Packetisation and Transmission Costs

For the purposes of this example we ignore the cost of data (de)packetisation at the sources and
sinks. These costs are related to the size of the packet that is to be sent. While this means that the
results are less realistic, it would not be hard to factor this in if necessary.
We also ignore the costs of packet transmission. This means that packets move across a link in zero
time. Transmission times are �xed per byte, with some overhead per packet. We have chosen not to
model this for simplicity, again if necessary it could be factored in. In both cases we are interested
in the ability of the network to support di�erential service.

9.2.5 The tra�c is well behaved

As we mentioned above the tra�c arrival rate and distribution is �xed. Additionally we assume
that we have managed to make them not break their guarantees. So we do not let more tra�c arrive
than we intended. This is easy in a simulator but harder in real life.

9.3 Trade-o�s

This section provides a review of the trade-o�s introduced in section 4.7. When constructing the
example that we use in this chapter we have used a number of these trade-o�s to improve the
expected performance of the network.

9.3.1 MTU Size

The MTU of the network, that is the largest size packet that can be sent, a�ects our ability to make
quality guarantees. Reducing the MTU size of the network also reduces the average service time of
the packets. This reduction in service time leads to more accurate guarantees. Large packets have
a large residual service time, any small packet behind a large packet is likely to experience a delay
that is much larger than we would have predicted in the mathematics. This for the purposes of our
example is non optimal.
For this reason we will chose to set the MTU of the network to 512 bytes. The choice to use this
size was motivated by measurements of packet sizes on the Internet. Most packets in reality have
less than 64 bytes of payload, so we would not e�ect the majority of packets. The same study [95]
showed that peaks in packet length histograms occurred at 64, 128, 256, 512 and 1500 bytes. By
choosing 512 we only cut o� one common size of packet, which accounts for about 10% of the tra�c.



CHAPTER 9. DIFFERENTIAL QUALITY 144

It is most likely that 1500 byte packets are generated by �le transfer applications such as FTP1.
This means that we will decrease the e�ciency of such applications. However; the bene�t is better
guarantees for tra�c that has real time constraints. We feel that this is an acceptable trade o� as
ultimately we are more interested in getting applications, such as VoIP, to work predictably.

9.3.2 Bu�er Sizes

The bu�er sizes found in queues on a network a�ect the reliability of the quality guarantees, as well
as our ability to provide some levels of service. This is an unavoidable fact, as there is a relationship
between the number of bu�ers and the observed delay and loss; less bu�ering implies more loss,
more bu�ering implies more delay. Choosing an appropriate bu�er size is therefore important.
If the bu�er sizes are too small then at higher loading factors we are likely to see an unacceptable
high level of loss. Adding more bu�ers in the face of continued over utilisation will not help reduce
the loss rates, it simply delays the problem for a few milliseconds. One bene�t of small bu�er
sizes is that it gives the queue a smaller memory. This means that the e�ect of short bursts of
over-utilisation do not e�ect us for long periods of time.
If the bu�er sizes are too large then we are likely to get unacceptably large delays. What is worse is,
because the queue has a longer memory, we are more likely to su�er from longer periods of recovery
from short term overload; this has the e�ect of increasing the variance which is also undesirable.
What is required is a bu�er size that is large enough to prevent unacceptable loss in short bursts,
yet small enough not to increase the delay and variance unacceptably. A bu�er size of 200 should
be su�cient; at a loading factor of 100% it has a loss ratio of around 1

2% (assuming an M/M/1/200
queue). This is su�cient to prevent short term losses. At the same loading factor there is an average
service time of around �fty times the average service rate.

9.4 The Topology

The topology we will use as our example is show in �gure 9.1. It depicts a number of sources sending
data across a set of contended routers to a sink. Starting with a source on the left we traverse a
fan-in router followed by a backbone router, then the backbone link; then the same in reverse until
we reach a sink.
For simplicity we only model one direction of data �ow. Each of the sources sends a mixture of
tra�c, to one or many sinks. We will explain more about the nature of this tra�c later in the
section.

1Where HTTP is used to download large �les it will su�er similar reductions in performance.



CHAPTER 9. DIFFERENTIAL QUALITY 145

Src

Src

Src

R

Src

Src

Src

R

Src

Src

Src

R

RR R

Snk

Snk

Snk

R

Snk

Snk

Snk

R

Snk

Snk

Snk

LT1

LT2

LT3

Figure 9.1: The Network Topology



CHAPTER 9. DIFFERENTIAL QUALITY 146

This example has links of three di�erent speeds. The link rates of these are 512Kbps, 1.544Mbps,
and 6.312Mbps respectively, which we have labelled LT1-LT3 respectively. Queues feeling into these
links are serviced at the rate of the link.
In this example the sources produce enough tra�c to keep their LT1 links loaded to full capacity.
This allows us to calculate the loading factor that each of the routers is under. The fan-in routers
accept three LT1 connections and multiplexes them onto a single E1 line, this means that their
loading factor will be 0.99 Erlang's. For the fan-in backbone router the loading factor is around
0.73 Erlang's. The fan-out routers are less loaded as they have less contention for bandwidth in the
direction of �ow.
We have chosen to place the multiplexing points at, or close to, saturation. In this state resources
are highly contended. It is in this kind of situation that is a good test of the success of QoS schemes.

9.5 Simulation Tra�c

For the purposes of the example we need to decide on a number of types of tra�c that we are going
to support. Seeing as we have some information on the constraints of the following sorts of tra�c
they would seem an obvious choice. The quality tra�c types that we will support are:

• VoIP calls
• HTTP tra�c
• NTP tra�c
• RIP tra�c

Remember that the ratios of these sorts of tra�c are constrained by the intrinsic quality of the
network. VoIP is likely to be the most problematic, seeing as it is high bandwidth with stringent
loss, delay, and jitter requirements. NTP and RIP are much lower bandwidth, and have only one set
of constraints, i.e. delay and loss respectively. Finally HTTP would ideally like low loss and plenty
of bu�er space to achieve maximum throughput; however, in this example we are going to consider
it as best-e�ort because we are more interested in the performance of applications like VoIP.

9.5.1 VoIP

In the simulation two VoIP calls will be made from each source to the sink directly opposite. In
total there will be 18 concurrent VoIP calls running.



CHAPTER 9. DIFFERENTIAL QUALITY 147

For VoIP we need to evaluate two things: the delay variation and the burst losses. If either of these
is too high then we may consider a call to be a failure. We are also interested in the probability of
call failure for a number of calls, as in reality this is a more useful measure for network providers.
In this example we chose to model VoIP calls using a G.711 codec. The codec has a sample rate of
64Kbps. The samples are packetised at a rate of 50Hz, ie. 50 packets a second. This produces raw
packets of 1280 bits, or 160 bytes, at a rate of 50 a second.
These raw packets have additional headers added to them. We are assuming that the VoIP call
is placed using H323, and as such is carried by an RTP stream. This would impose overheads for
LAN, IP, UDP, RTP of 18, 20, 8, 12 bytes respectively. This gives an extra 58 bytes of additional
overhead; bringing the packet size to 218 bytes. Our VoIP call has a packet rate of 50pps and a
packet size of 218 bytes. This results in a data rate of 87.2Kbps.
For VoIP to deliver the best voice quality it requires that the jitter of the incoming packets is less
than 60ms and an end to end delay less than 150ms. Minor packet loss can be tolerated, but burst
losses of greater than three cause a signi�cant loss of quality. These quantities are measured over a
number of three minute intervals, each representing a VoIP call. If the jitter exceeds 60ms or their
is a burst loss of more than three, we say the call has failed.

9.5.2 NTP

In the simulation each source sends NTP tra�c to each of the sinks, resulting in 81 concurrent NTP
sessions. While this may seem a lot of tra�c NTP has a low bandwidth, in total this accounts for
less than 1% of the total network capacity.
For NTP we want the delay to be as low and as predictable as possible. It is hard to quantify
the results of this protocol, but the mean and variance of the delay should be su�cient to give an
indication of the performance.
We model NTP as sending one packet every 10 seconds to each peer. With a packet size of 64 bytes.
This corresponds to a data rate of around 51bps per peer.

9.5.3 RIP

In the simulation RIP packets are sent from each source to all other sinks. Again this results in 81
concurrent RIP sessions where the total is less that 1% of network capacity.
RIP sends a packet every 30 seconds to each of it neighbours. If a neighbour does not receive a
packet in 180 seconds then the routes are dropped and there has been a failure. This constraint
would be measured over the whole timescale of a simulation.



CHAPTER 9. DIFFERENTIAL QUALITY 148

We assume that these RIP packets are 128 bytes in size. In a real network their size would be
determined by the number of routes that RIP advertises. At one packet every 30 seconds the data
rate is 34 bits a second.
For RIP we are most interested in the burst losses. What we want is there to be at least a packet
every 180 seconds, so that the routing tables are not changed as a result of a route not being updated.

9.5.4 HTTP

In the simulation we take HTTP tra�c to be best-e�ort. This means that we will not evaluate the
performance of HTTP in any detail, we will however provide some indication of the likely throughput
of an HTTP session in the network. Each source sends HTTP data packets to all of the sinks, this
is similar to RIP and NTP. We are choosing only to model the data part of HTTP, in e�ect we
are assuming that acknowledgement packets do return successfully. We shall �x HTTP packets to
be the MTU of 512 bytes. The bandwidth used by HTTP will be the remaining capacity after the
other applications have taken their share.
As we are modelling HTTP, which is based on TCP, we are going to use our adaptive source. This
source will attempt to increase its bandwidth when it receive 8 successful packets in a row, and two
losses in a row cause it to decrease. The receiver is able to change the bandwidth of the sender in
the simulator without transmitting additional packets, for this reason it only models on half of the
interactions. While this is a extremely simple model it does capture one of the main features of
TCP, namely its greediness. It is hoped that this will provide a reasonable model of TCP for our
purposes.

9.6 FIFO Queueing

The �rst set of tests that we have run use FIFO queueing throughout the network. Although we
are interested in di�erential queueing in this chapter we have run these tests to provide a base line
comparison of the topology and tra�c. All the queues have 200 bu�ers that can be used by any
of the applications. We ran tests with Deterministic and Markovian service discipline to provide a
basic comparison.
Each of the tests were run 10 times with di�erent random numbers generator seeds. For each of
the applications we produce an average result. We can do this because the topology is symmetrical;
that is any path between a source and a sink is identical, a �ow would cross the same type of queues
and links. We will use this approach again in the rest of the chapter. Table 9.1 shows the results
from this set of tests.



CHAPTER 9. DIFFERENTIAL QUALITY 149

Service Discipline Application Delay Delay Stdev IPT IPT Stdev Loss Prob.
Markovian VoIP 1.552s 0.391s 0.021s 0.018s 0.056

NTP 1.536s 0.450s 10.809s 2.964s 0.070
RIP 1.538s 0.451s 32.440s 8.499s 0.069
HTTP 1.570s 0.450s 0.109s 0.103s 0.063

Deterministic VoIP 1.622s 0.369s 0.021s 0.012s 0.053
NTP 1.609s 0.402s 11.139s 3.625s 0.097
RIP 1.610s 0.402s 33.387s 10.321s 0.095
HTTP 1.641s 0.407s 0.108s 0.131s 0.070

Table 9.1: Results for FIFO Queueing

For each of the service disciplines you will notice that the delay for each application is broadly
similar. This is not at all surprising as all the �ows are treated the same by the queues, as a result
they will see the same average queueing time. The e�ect of the packet size of an application can also
be seen in the delay. HTTP for example has the largest packet size, and as a result has the largest
delay; this is because the larger packets take longer to service, so the delay increases relative the the
others. The other applications VoIP, RIP and NTP have 218, 128 and 64 byte packets respectively;
they also have progressively smaller delays due to their packet size.
Another perhaps surprising result is that the average delay and delay standard deviation are of the
same order of magnitude for both service disciplines. This is due to the heavy tra�c approximation
which states that waiting time in any queue will tend to be exponential when heavily loaded.
The heavy tra�c approximation is based on the G/G/1 queue, which is an approximation to the
G/M/1/k and G/D/1/k queues that we are using here.
The loss probability for each application within a service discipline is of the same order of magnitude.
One would perhaps expect to see the loss probability for each of the applications to be the same,
as they cross the same queues. However this is not the case because the loss probability depends
on the amount of arriving tra�c of each application and its packet size. The loss probability for
NTP is the highest as it has the smallest packet size. In decreasing probability we would expect to
see RIP, VoIP and HTTP. However, as the HTTP �ow is controlled by our greedy source it has a
higher loss as it attempts to use as much of the available bandwidth as possible.
As you can see from the results, most of the applications are likely to fail. VoIP has an end-to-end
delay of 1.5s. NTP has 450ms of end-to-end delay variation. RIP may work correctly depending on
the distribution of losses. HTTP will of course work correctly as it is based on TCP, however, it
may not be all that fast. We do not analyse the results further as they are only meant to be a base
comparison.



CHAPTER 9. DIFFERENTIAL QUALITY 150

9.7 Di�erential Queueing

The second set of tests have been run with queues that can support di�erential service. We com-
pare two queueing disciplines here: FQ and loss-delay multiplexing. The implementation of Fair
Queueing that we are using is De�cit Round Robin (DRR). This was chosen primarily for its ease of
implementation, to avoid any mistakes in the implementation. The loss-delay queue is implemented
as presented in chapter 2.7.2.
The loss-delay queue has 200 bu�ers; all of which are available to the cherished class, the non-
cherished class may only use the �rst 100 bu�ers. The queue is also serviced in strict priority order,
where the servicing priority is separate from the cherish priority. This means that the queue has
four classes of service, we place the applications in the following classes:

• VoIP is Cherished and Urgent
• NTP is Not-cherished and Urgent
• RIP is Cherished and Not-urgent
• HTTP is Not-Cherished and Not-urgent

The DRR queue works by dividing the bandwidth of the outgoing link between the di�erent classes.
Each class has its own set of bu�ers, and therefore only has to contend for outgoing link capacity.
A class is allocated 100 bu�ers, which only that class can use. This means that the queue has more
than 200 bu�ers, which could be considered unfair. However, as VoIP and HTTP form the majority
of the tra�c it would make a poor comparison to only allocate them 50 bu�ers. Both the FIFO and
loss-delay queueing have 200 bu�ers that can be shared, approximately half being used by HTTP
and the other by VoIP; it is for this reason that we allocate 100 bu�ers per class. Its worth pointing
out that this will make the loss for NTP and RIP extremely small, as they account for just a small
fraction of the transported tra�c. For each of the applications we allocate an percentage of the
outgoing link, as we know what tra�c is �owing we can allocate each application its share. The
percentages for each application are as follows:

• VoIP 35%
• NTP 1%
• RIP 1%
• HTTP 63%

Table 9.2 shows the average results per application and service discipline for this set of tests. We
shall now examine each of the results for each class in turn before presenting a comparison between
them.



CHAPTER 9. DIFFERENTIAL QUALITY 151

Service Discipline Application Delay Delay Stdev IPT IPT Stdev Loss Prob.
FQ VoIP 0.538s 0.241s 0.020s 0.085s 0.017

NTP 0.818s 0.413s 10.055s 0.565s 0.000
RIP 0.820s 0.412s 30.196s 0.585s 0.000
HTTP 0.977s 0.453s 0.112s 0.155s 0.071

Loss-Delay VoIP 0.024s 0.012s 0.020s 0.014s 0.000
Markovian NTP 0.025s 0.013s 10.703s 2.584s 0.060

RIP 1.335s 0.536s 30.196s 0.756s 0.000
HTTP 1.353s 0.521s 0.115s 0.130s 0.067

Loss-Delay VoIP 0.011s 0.003s 0.020s 0.005s 0.000
Deterministic NTP 0.012s 0.004s 11.008s 3.231s 0.086

RIP 1.543s 0.482s 30.196s 0.678s 0.000
HTTP 1.543s 0.480s 0.111s 0.134s 0.070

Table 9.2: Results for Di�erential Queueing

9.7.1 Fair Queueing

In a FQ the delay you receive is dependent on the percentage of the outgoing link you are allocated
and the utilisation of the other classes. If you have been allocated a small percentage of the outgoing
link then it may take some time to accrue enough tokens to send a packet. How often you are checked
for service, that is, when it is your turn if you have enough tokens, is dependent to some extent on
how busy the other classes are. If another class is using all its allocation then you will have to wait
until it has �nished to be serviced.
You will notice that the delays for NTP and RIP are quite high. This is because they have to wait
for other classes to �nish servicing. It could also be caused by having to wait for enough tokens to
be serviced, but both NTP and RIP are over allocated by a factor of 10 in this case (as they account
for around 0.1% of the tra�c and are allocated 1%). The delay for HTTP is higher as it is likely to
have a longer queue length, as can be seen from the loss probability, which means that there is more
queueing delay than other classes. Indeed this is why the delay for VoIP tra�c is lower. You will
also notice that the delay variation is broadly the same as the FIFO queueing. This is not surprising
as each class must still wait for other classes to �nish servicing, in FIFO servicing packets have to
wait for preceding packets to be serviced.
If we convert the IPTs into bandwidths, by inverting them and multiplying by the packet size in
bits, we �nd that the percentage of bandwidth used by each application is the same as we allocated.
This is not at all surprising as this is essentially what FQ does - share the link bandwidths between
the classes. The standard deviation is also better than FIFO queueing, again FQ attempts to make
the shares of the outgoing link fair.
The loss probabilities for NTP and RIP are, unsurprisingly, zero. As both these applications have
been allocated 100 bu�ers each and their bandwidths are so low then the probability of queue



CHAPTER 9. DIFFERENTIAL QUALITY 152

over�ow is extremely low. The loss probabilities for VoIP and HTTP are higher than those of NTP
and RIP, which is again unsurprising as they use a larger share of the bandwidth. As there is
isolation between HTTP and VoIP in this type of queue the loss probabilities are lower than those
of FIFO.
When it comes to the performance of applications under FQ they do not work any better than they
do under FIFO queueing. The delays are better under FQ, than FIFO, as each application has
an isolated queue; this prevents our greedy sources from �lling all the bu�ers. VoIP has an IPT
standard deviation of 85ms, which is larger than the 60ms target. NTP is unlikely to come up with
accurate time estimates if the end-to-end delay standard deviations are nearly half a second. RIP
would work correctly as there is no loss. HTTP does fair slightly worse under FQ, at least in terms
of throughput, this is due to the isolation in FQ that prevents it from gaining a higher share of the
capacity.
The important point to understand from this example is that, although the DRR queue did what
it was supposed to, namely divide the outgoing link bandwidth, it was insu�cient for the types
of service that we required. Although the algorithm is functioning correctly it did not have the
result we expected. We could increase the performance of the VoIP by increasing its portion of the
outgoing link, this would lower the IPT standard deviation. As for NTP we could do the same, but
it may still su�er due to the residual of other classes service time. Ultimately it is quite hard to get
a feel for the behaviour of FQ algorithms in terms of delay and jitter.

9.7.2 Loss-Delay Queueing

We ran the loss-delay queueing with two di�erent servicing disciplines: Markovian and Deterministic.
The latter is to enable a more accurate comparison with FQ, which is also Deterministically serviced.
It is clear immediately from the results that the classes received the treatment that they should
have. Looking at tra�c in the urgent class, that's VoIP and NTP, we can see that the delay is
dramatically lower than the non-urgent class containing RIP and HTTP. Looking at tra�c in the
cherished class, VoIP and RIP, we see that the loss is zero; while the loss for the non-cherished class,
containing NTP and HTTP, is non-zero. This is exactly the behaviour we would have expected.
Comparing the Markovian and Deterministic servicing disciplines, we can see that the delay for
the urgent class when serviced Deterministically is roughly halved. However, they are increased for
the non-urgent class. The delay standard deviation for Deterministic servicing in the urgent class
is decreased, but in the non-urgent it is also decreased but not as much. By servicing the queue
deterministically we decrease the delay and variance, as there is no exponential element introduced
that would increase them. However there will always be a variance in this type of system due to the
packet sizes. This is why the non-urgent class does not improve that much, as it is still e�ected by
the variation in service of the urgent class.



CHAPTER 9. DIFFERENTIAL QUALITY 153

You will also notice that the loss probabilities change when we service the queue Deterministically
rather than Markovian. This only e�ects the non-cherished tra�c here as the other classes have no
loss. The loss is higher in the deterministic case as the end-to-end delay calculations performed by
the adaptive source are not as good. The Markovian servicing distributes the delays in such a way
as to make the simple end-to-end average more accurate. We intend to do some more investigation
to see if the same holds for real TCP.
When it comes to supporting di�erentiated service the loss-delay queue clearly wins. VoIP requires
an end-to-end delay of less than 150ms, an IPT variation of less than 60ms and low loss. All of
these are met with ease. However, it is worth noting that adding more VoIP �ows to the cherished
and urgent class would degrade the service for all other classes. Using this class in a real network
would require policing without a doubt.
NTP requires an accurate estimate of the end-to-end delay, for this reason we want to minimise
the end-to-end variance. In the loss-delay queue the end-to-end standard deviation is only 13ms,
compared to around 400ms in the FIFO and DRR queues. While it is hard to predict how accurate
the time estimate would be with a deviation of 13ms, it will likely be better than 400ms. As NTP
is not-cherished it does su�er loss, but this is of the same order of magnitude at FIFO and DRR
queueing.
RIP requires predominately low loss, it is important that a packet arrives at the destination in the
order of 100s; clearly in most cases the end-to-end delay is unlikely to be this high. As RIP is
cherished it su�ers no loss, and as it is non-urgent it su�ers 1.5s of delay. In these conditions RIP
is likely to work as there is no loss.
HTTP is mainly concerned with throughput, we do not attempt to relate that to the actual amount
of data that is transfered at the session level. The throughput for HTTP stayed about 36.5Kbps
in all of the tests in this chapter. From the point of loss-delay queueing this means the application
performed no worse than it did in other disciplines.

9.8 Conclusion

In this chapter we presented a simple network that carries a well known set of tra�c. We allowed
ourselves to change the queueing discipline in order to evaluate the performance, in terms of QoS,
of the di�erent disciplines. Using the requirements set out previously we then evaluated the results
of each test.
In the �rst set of tests we used FIFO queueing with Deterministic or Markovian servicing. We found
that the results for the two di�erent servicing disciplines were broadly the same. This is due to the
heavy-tra�c approximation. We used this set of tests as a base line comparison.



CHAPTER 9. DIFFERENTIAL QUALITY 154

Next we changed the queueing discipline to a variant of Fair Queueing (FQ) called De�cit Round
Robin (DRR). We found that this did behave as it was designed, namely it correctly shared the
outgoing link to a number of classes. However, it failed to meet the majority of the constraints on
the tra�c, although it did better than FIFO queueing.
Finally we changed the queueing discipline to loss-delay queueing. We found that all of the quality
constraints for the tra�c were met, and usually with room to spare. This was possible because a
loss-delay queue correctly manages the relationship between throughput, loss and delay. In addition
it provides a simple to understand way of classifying tra�c, and more importantly its emergent
properties are easier to understand.
Thought this chapter we have kept the topology and the o�ered tra�c the same. The di�erences in
results are due to the performance of the di�erent queueing disciplines only.



Chapter 10

Modelling Real Networks

10.1 Introduction

The purpose of this chapter is to demonstrate how it is possible to construct scenarios, such as those
used by the Simulator and Calculator, to model a real network infrastructure.
We already know that it is possible to model network components using QDFs. We will show
that to model most real world network devices requires more than one QDF. However, this is not
a problem, as it is possible using this framework to compose multiple QDFs together to form a
composite component.
Figure 10.1 shows a very simplistic network consisting of two interconnected switches and a number
of terminals. Each of the terminals is the source and sink for a number of �ows. The switches
are connected together with a single link that carries tra�c between them. Similarly, each of the
terminals is connected to a switch using a link. In order to model this network we need composite
models for each of the following:

• Terminals or other endpoints.
• Network Links, such as Ethernet.
• Switches and Routers.

In the beginning of this chapter we deal with each of these components in turn. In the �nal part of
this chapter we will look at the issues involved in producing QDFs that can model di�erent types
of switches, and some of the QoS problems that each switch design introduces.

155



CHAPTER 10. MODELLING REAL NETWORKS 156

Figure 10.1: A Simple Network

10.2 Terminals and Endpoints

In this context we de�ne an endpoint, or terminal, to be the source and sink of a number of �ows.
To model this in a scenario we would create a source and sink for each endpoint. We have already
covered this in chapter 6.2.2, readers are directed there for further information. We would as an
example add the following, for endpoint1, to a scenario �le:

<source name="endpoint1_source" sendsTo="switch1">

<flow id="1" rate="0.5" type="Poisson" lengthType="fixed" lengthMean="64"/>

<flow id="2" rate="0.5" type="Poisson" lengthType="fixed" lengthMean="1500"/>

</source>

<sink name="endpoint1_sink">

<consume id="3"/>

<consume id="4"/>

</sink>

Note that two �ows are generated by this endpoint, labelled 1 and 2, and a di�erent two �ows, 3
and 4, are sinked. This is because we treat a �ow as a uni-directional transfer of packets. In this
example we could be modelling two connections where 1 and 3, and 2 and 4 are paired together to
form a bidirectional �ow.



CHAPTER 10. MODELLING REAL NETWORKS 157

Port

Object

Link

Figure 10.2: A Network Link

10.3 Network Links

Network links are used to connect together components on a network. We introduce a technology
independent model here, which could for example model a point-to-point Ethernet link1. Network
links primarily introduce a delay, due to transmission latency, which is dependent on the length of
the link. They also introduce a small probability of loss, due to transmission corruption, but in
general we ignore this as its e�ect is extremely small.
Figure 10.2 shows a diagram of how we would construct a link in a scenario. Note that this is again
a uni-directional link, and another link would have to be used to model the opposite direction. The
link consists of a single object which contains a single port. Tra�c crossing the link arrives at the
object and is degraded by the QDF speci�ed in the port, �nally the sendsTo attribute de�nes where
the tra�c should be sent. The following snippet of scenario shows a link transporting a single �ow
of tra�c (labelled 1):

<object name="link0">

<port name="port" qdf="ethernet" rate="1.0" sendsTo="switch">

<select id="1" class="be"/>

</port>

</object>

In this thesis we do not use this model of links. Instead we ignore the e�ects of transmission delay
in favour of concentrating on the e�ects on �ows caused by queueing. For this reason no QDFs to
model links have been written, although doing so would be a simple extension.

1Modelling shared media access requires modelling the contention resolution processes; one approach to achieving
this is to model queues with vacations.



CHAPTER 10. MODELLING REAL NETWORKS 158

Port

Port

Object

Switch/Router

Figure 10.3: Modelling Output Queueing

10.4 Routers and Switches

In our model we consider routers and switches to be the same. We can make this generalisation
because the path a �ow takes across the switching fabric in either device is �xed in the scenario.
This does limit us to static con�gurations, however, it is su�cient for our purposes.
Routers and switches can be constructed in a number of di�erent ways. They can have bu�ers on
the input, output, or both. They can also have a diverse set of switching fabrics. A full discussion
of these matters is beyond the scope of this chapter. However, we will show how it is possible to
model the following types of switches:

• Output queueing with a perfect2 switching fabric.
• Input queueing with a perfect switching fabric.
• Input and output queueing with a perfect switching fabric.
• Input and output queueing with an imperfect switching fabric.

10.4.1 Output queueing

Output queueing is the simplest model considered here. We assume that there is a perfect switching
fabric, ie. it introduces no loss or delay, which transports packets from the inputs to queues located
at the outputs.

2A perfect switching fabric does not have any contention issues; that is, it does not introduce loss or delay.



CHAPTER 10. MODELLING REAL NETWORKS 159

Port

Port

Port

Port

Object A Object B

Switch/Router

Figure 10.4: Input/Output Queueing

Figure 10.3 shows this graphically. Flows that arrive at this kind of switch do so at a single input
object. This object then has a port, with associated QDF, for each of the output ports that we are
attempting to model. Note that we send tra�c directly to the object irrespective of which port it
would have arrived on in a real switch.
We use this model of switches extensively in this thesis. This is because they lend themselves to
easy implementation of the Calculator and Simulator. However, it would not be di�cult to change
the way that scenarios are modelled to be based on another method of switching.

10.4.2 Input Queueing

Input queueing is the opposite to output queueing. Here packets arrive at an input interface and
are queued, then, once they have been serviced, they are transmitted over the switching fabric to
the outputs. This is again assuming that we have a perfect switching fabric.
Figure 10.4 show how we construct the scenario graphically. Tra�c arriving at this sort of switch
does so at the �rst object (Object A), here it is queued per input port and subjected to the QDF
de�ned by that port. All the ports in the �rst object send their tra�c to the second object (Object
B), this simulates our perfect switching fabric. The second object (Object B) is used to make a
decision as to which output port to send a �ow to; the QDF for all the ports is set to the identity
(id) QDF which has no e�ect on the tra�c.
Alternately we can change the QDF function of the second object (Object B) to a standard queue
based QDF. In this case we can model a switch that has both input and output queueing with a
perfect switching fabric.



CHAPTER 10. MODELLING REAL NETWORKS 160

Port

Port

Port

Port

Port

Object A

Switch/Router

Object B Object C

Figure 10.5: Input and Output Queueing

10.4.3 Combined Input and Output Queueing

Our �nal model of a switch has input and output queueing as well as an imperfect switching fabric.
By an imperfect switching fabric we mean that it is possible to lose and delay packets as they
traverse across the switching fabric.
Figure 10.5 shows graphically how we would construct such a switch in a scenario. Flows arrive at
Object A and are passed through a port, and associated QDF, representing the input queue. Next
all the �ows from Object A are sent to Object B; this models the switching fabric and has a single
QDF that encapsulates the degradation that would be su�ered. Finally all the tra�c from Object
B is sent to Object C; this object models output queueing, and has a port per output port that we
wish to model. The following snippet of scenario shows this:

<object name="inputs">

<port name="port1" qdf="mm1k" rate="1.0" buffers="100" sendsTo="fabric">

<select id="1" class="be"/>

</port>

<port name="port2" qdf="mm1k" rate="1.0" buffers="100" sendsTo="fabric">

<select id="2" class="be"/>

</port>

</object>

<object name="fabric">

<port name="port" qdf="crossbar" rate="2.0" sendsTo="outputs">

<select id="1" class="be"/>

<select id="2" class="be"/>

</port>



CHAPTER 10. MODELLING REAL NETWORKS 161

</object>

<object name="outputs">

<port name="port1" qdf="mm1k" rate="1.0" buffers="100" sendsTo="next">

<select id="2" class="be"/>

</port>

<port name="port2" qdf="mm1k" rate="1.0" buffers="100" sendsTo="next">

<select id="1" class="be"/>

</port>

</object>

We do not have a QDF to represent a crossbar as it stands. In the next section we will investigate
how this could be accomplished.

10.5 Performance and Modelling Issues

In this section we will take a look at some of the performance issues inherent in the di�erent types
of switch design. This section is intended to be a brief overview of the current literature in this
area. We also look the how the choice of switch design e�ects the accuracy of our models. Finally
we will look at QoS problems associated with switching technologies.

10.5.1 Output Queueing

Output queueing is the ideal switch architecture when it comes to performance. There are generally
two ways to construct an output queued switch. The �rst method (crosspoint queueing) connects
each input to a bu�er on each output, where each output has a separate bu�er for each input.
The output port then schedules packets for departure from each of the queues it manages (one per
input). The second method is to use a shared memory between all of the inputs and outputs. Both of
these methods have implementation drawbacks, especially when dealing with high valency switches.
When using crosspoint queueing the number of internal links grows by the square of the number of
ports, and this can quickly become impractical. There is a variant of crosspoint queueing, called
block crosspoint queueing, whose link requirements grow at a slower rate. When using a shared
bu�er the bandwidth requirements of the bu�er memory can quickly become impossible to satisfy.
However, these issues are less of a problem for low valency switches.
Output queueing does have a number of bene�ts. These are:

• Very high throughput.



CHAPTER 10. MODELLING REAL NETWORKS 162

• No head-of-line (HOL) blocking [54].
• Low delay in crossing the switch.
• Does not su�er from fairness problems.

Modelling Output queued switches is simple, we do not have to model contention or correlation
issues within the switching fabric. Each of the output ports can be modelled as a number of queues
serviced by a single service facility. In this thesis the model of QDFs that we have used is derived
from queueing theory, as such we could also derive a model for this type of queue with relative ease.
One of the key bene�ts of output queueing, from a QoS perspective, is that there is only a single
point of contention within the switch - the output port. This allows us to place a QoS scheduler
in one place, and it is easier to model. However, output queueing is only practical for low valency3
switches and as such is less common. The drawback of output queueing is that the throughput has
to grow linearly with the number of ports; adding more ports requires a growth in fabric capacity
or memory speed. This is why output queueing is generally only used on low valency switches - as
larger valencies become impractical.

10.5.2 Input Queueing

Input queueing generally uses a bu�er-less switch fabric, although it is possible to construct a multi-
stage switch fabric with limited bu�ering. Packets arrive at the switch and are queued in an input
bu�er. Each input must attempt to send the packet at the head of its queue to the destination port.
As the switching fabric is bu�er-less the input port must �rst request the use of the fabric. Once
this has been granted the packet can be transfered across the switching fabric.
As the switching fabric is based on the concept of request-grant it arbitrates, or schedules, access
to the fabric. The scheduler inside the switching fabric must attempt to make a stable marriage
between its inputs and outputs, in other words it must attempt to match inputs to outputs without
contention. This presents a problem in terms of fairness and of e�ciency. Any matching algorithm
must attempt to give each of the inputs a fair share, while not taking to long to make a decision
(which become more di�cult as the valency increases).
A well known problem that naive input queueing can cause is called head of line (HOL) blocking,
this occurs when each input has a single FIFO queue. The packet at the front of the queue may not
be granted access to the switching fabric, because of contention for the output port. However, the
packet behind, if it were at the front, would have been granted access to its output port. The e�ect
is that the packet at the front of the queue blocks other eligible packets from being serviced. To
overcome this problem it is common to �nd switches based on input queueing to use virtual output

3We take low valency to mean switches with anything up to 32 ports.



CHAPTER 10. MODELLING REAL NETWORKS 163

queueing; here each input has a separate queue for each of the output ports, and hence overcomes
the problem of HOL blocking.
Despite the use of virtual input queueing we are still left with the problem of matching inputs
to outputs; to this end, a number of algorithms have been proposed [60, 68, 6, 91]. From a QoS
perspective there is still only a single source of contention - gaining access to the switching fabric.
The problem with input queueing switches, from a modelling perspective, is that they have back-
pressure and are loss-less in the operation. It is quite likely that there are a number of inputs
attempting to reach the same output, in this situation the scheduler has to choose which input port
will be granted access. To model this sort of switch in our methodology is non-trivial, as we have
chosen a generally Markovian approach. Clearly switches with this kind of back pressure are not
Markovian, as there is a work-conserving deterministic choice being made about the input port that
is chosen. In some situations, with a synthetic load, it may be possible to bound these decisions;
however, this is unlikely to result in an accurate answer.

10.5.3 Combined Input and Output Queueing

Combined input and output queueing switches, as the name suggests, use queues on both the input
and the output. Packets arrive at the switch and are queued, next they are transported across a
switching fabric and enqueued on the output queue, where they are �nally serviced. This type of
switch typically has an internal speed-up (ie. the switching fabric is faster than the incoming links);
the motivation for this is to ensure that packets are serviced from the input queues as quickly as
possible such that a backlog does not build up. This essentially pushes the contention towards the
output queues. It is possible to emulate an output queued switch where the internal speed-up is
su�ciently high, see [22, 58] for more details.
Combined input output queueing is more complex to model. There are a number of sources of
contention within this type of switch. Firstly they su�er from similar issues to input queued switches,
as there is contention to get across the switching fabric. However, this can be overcome by internal
speed-up in some situations. Secondly there is the contention for resources in the output queue,
which is again similar to output queueing. From a QoS perspective all of these sources of contention
need to be managed in order to provide quality guarantees.

10.6 Summary

In this chapter we looked at how to model networks using scenario XML descriptions. This included
modelling sources, sinks and switches (routers). The main area of interest has been switch modelling.
There are a number of di�erent architectures we have looked at, each constructed in a scenario in



CHAPTER 10. MODELLING REAL NETWORKS 164

a di�erent way. In order to simulate or calculate the network we need a model of each of the QDFs
that we are using in the scenario. This presents more of a problem, depending on the switch design.
For pure output queued switches we are able to use standard queueing theory models, as there is
no contention for the switching fabric. Input queued switches cause more of a problem because
of internal back-pressure, this is an area for more research. Finally combined input and output
switches have similar modelling problems to input queueing switches. We have emphasised that in
order to predict and control quality we must manage all sources of contention, both in the network
and its internals. This will require us to have detailed models of the queues, and service disciplines
used throughout.



Chapter 11

Conclusion

11.1 Aims and Motivation

In this thesis it was our aim to take a fresh look at the area of QoS. There are many solutions
to speci�c problems in this area in the current literature; however, at the present time there is no
coordinated solution that encompasses all of the problems and solutions into a single framework.
What is required is a methodology for QoS that can yield results in the areas of network planning,
provisioning, quality delivery and �nally expectation management.
Ultimately it is our aim to allow the construction and management of predictable multi-service net-
works; able to deliver di�erentiated quality to a number of subscribers with con�dence. The problem
with current networking technologies is the lack of predictability under many conditions - not least
of which is overload. A solution in this area must have a well de�ned emergent behaviour at all
operating points. Today we see that major Internet back-bone providers dramatically underutilised
their networks, thus ensuring minimum contention, and as a result predictable quality. While this
is certainly an e�ective solution in terms of its outcome, few would argue that it is cost e�ective or
sustainable.
Currently there is a gulf between what a network can deliver, the operations, and how we reason and
express our desires, the aspirations. We may, for example, have a network that is capable of delivering
a prede�ned amount of bandwidth between two points; such a network can be instrumented and
tested to make sure that it does indeed achieve this. The problem occurs when we realise that we
specify our requirements in terms of acceptable loss and delay at a given bandwidth. While we know
the network can deliver the bandwidth we do not know, or cannot assert with con�dence, what the
observed loss and delay will be. Until this gulf is closed it looks unlikely that multi-service networks
will ever live up to their promise.

165



CHAPTER 11. CONCLUSION 166

Recent research has highlighted the fact that any �nite queue has two degrees of freedom; this
relationship is a fundamental property of any �nite queue, irrespective of the queueing discipline.
When you �x any one of throughput, loss or delay you create a relationship between the other two.
So, for example, �xing the throughput (bandwidth) creates a relationship between loss and delay.
The problem with doing this, as the majority of queues do, is that the relationship between loss
and delay is not managed. This, in turn, makes it impossible to predict the e�ect of a queue on
the tra�c it services in terms of loss and delay. This is clearly a major problem; especially when
we specify our aspirations in terms of loss and delay at a given bandwidth. It provides us with our
�rst insight into solving the QoS problem, namely, managing bandwidth alone is not a complete
solution.
The same research has also proposed a new type of queue called a loss-delay multiplexer. This
queue di�ers from others in the literature by simultaneously managing loss and delay, leaving the
throughput to vary. Tra�c is classi�ed in terms of cherish, the desire to experience less loss,
and urgency, the desire to experience less delay; giving us a more natural way to reason about
performance. In addition this queue has a sound mathematical basis, allowing us to investigate it
analytically. Taking this approach gives us the potential, but not all the answers, to close the gap
between aspirations and operations.
Our aim is to demonstrate that it is possible to build a network whose behaviour we can predict,
even when the network is in saturation or overbooked. The predictions should also be comparable
to our aspirations, thus allowing us to assert whether or not a given con�guration will satisfy our
needs. This will require a sound mathematical basis from which to approach the problem. Queueing
theory provides us with such a platform, using statistics to express our expectations of performance.
This work should be carried out in a broader framework which allows us to reason about QoS and
to arrive at useful solutions.

11.2 Summary of Work

In chapter one we introduce the area of multi-service networks. One of the key requirements for
building such networks is support for di�erentiated servicing or QoS. Current large scale networks,
such as the Internet, do not on the whole support such services. The reason for this is the gap
between what users desire, their aspirations, and what the network can deliver, the operations. In
this chapter we also introduce the concept of treating a network like a utility and relate this to
people's expectations of a network utility.
In chapter two we examine the previous literature in the area of QoS. We start by looking at
measurements of real Internet tra�c, and highlight how their self-similar, or fractal nature, makes
the provision of QoS di�cult. Next we look into the behaviour of applications, in an attempt to
explain the emergence of self-similar tra�c. We �nd that on-o� sources with Pareto on-o� periods



CHAPTER 11. CONCLUSION 167

can lead to this behaviour through aggregation. We then look at bandwidth management techniques,
while these do indeed work correctly it is not clear how to make predictions in terms of loss or delay.
These bandwidth management techniques are then contrasted to some quality-centric approaches
that deal with loss and delay, as opposed to bandwidth alone. Finally we look at the current �best
practise� for managing QoS on todays networks.
In chapter three we take a high-level view of the area of QoS. We start by looking at the aspirations
and responsibilities of the stake-holders in a multi-service network, and highlight what requirements
these place on our choice of implementation strategy. The concept that quality is the absence of
degradation is introduced. The degradation can be captured intuitively by the concept of ∆Q, which
represents the change in quality as tra�c crosses a network. Finally we outline the requirements for
a methodology for tackling the end-to-end QoS problem.
In chapter four we introduce the mental model and associated insights that we use throughout the
thesis. We start with the concept of intrinsic quality, which states that there is a �nite amount of
quality available in any network element, and hence the whole network; the choice that we have
is how to share this quality out. Next we show that quality is lost through the actions of quality
degraders, which represent where loss and delay are introduced into the network. This concept is
then extended to allow us a de�nition of a Quality Degradation Function, which is a mathematical
representation of the quality degradations. Finally we introduce the concept of instantaneous quality,
that is the quality that you are likely to receive irrespective of the period of observation.
In chapter �ve we look at how we can start to attack the end-to-end QoS problem. Our starting point
is to use simple Markovian queueing theory to allow us to compose queues. While the output from
a �nite queue is never truly Poisson we conjecture that we will be able to break such assumptions,
allowing us to compose queues. Next we look at queueing theory in more detail to �nd ways of
calculating network performance. This include strategies for handling networks with mixed packet
sizes, and models of burst loss.
In chapter six we explain the design of the test system that we will use in the rest of the thesis; this
consists of a calculator and a simulator. The calculator is based on the mathematics and methods
presented in chapters four and �ve. It allows us to predict the behaviour of a network of queues
under a given set of stationary sources. The simulator allows us to simulate the network we are
investigating. By comparing the results between the simulator and calculator we can validate our
assumptions and methods for solving end-to-end QoS.
In chapter seven we make some comparisons between our predictions and simulations; using a few
simple test cases, each designed to a�ect the accuracy of the results. The test cases do not provide
any di�erentiated QoS, they concentrate on the base line predictability. Packets are modelled
initially as point processes, to be as close to the mathematical models as possible. We then continue
this to look and �xed and mixed packet size networks.



CHAPTER 11. CONCLUSION 168

In chapter eight we take a closer look at requirements for individual applications. For each applica-
tion we look at its sensitively to loss and delay, and the bandwidth at which it operates. Using the
concept of cherish and urgency we classify the applications relative to each other. We also outline
what the conditions for success are for each of the sample applications.
In chapter nine we present results for a comparison between bandwidth-centric and loss-delay style
queue disciplines. Using the sample applications in the previous chapter we construct a scenario
of usage for a given network. Using the same topology we change the queueing discipline and
perform some simulations. The results show that concentrating on bandwidth alone is not enough
to guarantee the performance of an application, even when that application has indeed received the
correct amount of bandwidth. Bandwidth does not adequately capture the required performance
metrics such as loss and delay; however, the methodology and model that we have developed does
uniquely address this issue.
Finally in chapter ten we look at how closely we could model real networks. The main focus is
capturing the design of the networking hardware, so that we can model it within our calculator. We
�nd that in some situations we can indeed produce acceptable models, but in others more work is
needed. While we may have a theoretical solution to the end-to-end QoS solution there is some way
to go before this becomes a reality in the hardware.

11.3 Major Contributions

In chapter four we introduced our QoS methodology; which, as will be discussed shortly, includes
the following concepts: two degrees of freedom, quality degradation, intrinsic quality, ∆Q and
instantaneous quality. We believe that this model provides a simple way of reasoning about quality.
Such a model is important because to gain wide adoption QoS solutions must be easy to understand
by the people who have to use them. Our model has allowed us to explain our work to a number of
people not related to Computer Science, and all with great success. While we agree that bandwidth
is also simple to reason about, we do not believe that it is su�cient to explain the problem area
completely.
The underpinning of this methodology is the relationship between loss, delay and throughput. While
it is well known that this is an inherent property of �nite queues, the implications are less well
understood. By specifying requirements in terms of cherish and urgency we can provide a more
appropriate language in which to reason about quality. This is especially powerful when used with
the loss-delay queueing discipline, which naturally handles speci�cations of this form.
We have introduced degradation as a key concept for reasoning about QoS. Quality is the absence
of degradation to a particular �ow, and not something special that happens to improve the quality.
It is clear that in order to degrade one �ow less, other �ows have to be degraded more. This brings



CHAPTER 11. CONCLUSION 169

us to another important concept - intrinsic quality. Under a given loading every network element
has a �nite amount of quality, or expressed another way, a given amount of degradation which has
to be shared out. Degradation is therefore conserved once created, and can only be di�erentially
apportioned. Providing QoS support is deciding how the degradation inherent in every network
element should be distributed to meet the requirements that have been set.
Another important concept that we have developed is that of ∆Q. As �ows of packets traverse
a network they become degraded; their throughput drops, and their loss and delay increase. The
concept of ∆Q captures this change in quality between two points in the network. For each network
element, from the point of view of a �ow, there is a change in quality as you traverse it. As a �ow
traverses an entire network it is subject to a number of changes in its quality (which is an increase
in degradation), these changes are cumulative and allow us to capture the end-to-end degradation.
To reason about quality end-to-end we must be able to reason about the change in quality over
a single network element. We de�ne the concept of a Quality Degradation Function (QDF) to
capture the change in quality over a particular network element. By modelling each of the network
elements as a QDF we can essentially add up the degradation that a �ow would su�er as it crosses
the network, through our theory of ∆Q. Currently evaluating a QDF results in a loss probability,
average delay and decrease in throughput; although as we will see later there are other ways of
attacking this problem.
The �nal concept that we introduce is that of instantaneous quality; which is the quality that you
receive irrespective of the length of your measurement period. Assuring quality over a long period
does not necessarily imply that applications will work over that period (see section 4.6). It is this
concept that allows us pull together our methodology. The model of QDFs that we use allows us to
calculate a degradation, and this degradation can be considered instantaneous as it is true over all
intervals of time. By using the concept of ∆Q we can convolve the degradation of individual QDFs
to arrive at the overall end-to-end degradation.
In chapter �ve we developed a simple example of how it is possible to implement our methodology.
This model essentially uses queueing theory to build a mathematical model of each of the QDFs
that we wish to use; these are later tested in chapter seven. While we have chosen simple Markovian
servicing disciplines to demonstrate our point, it is likely that the same process can be applied to
other more complex servicing disciplines if required. One of the bene�ts of using a Markovian-based
service discipline is that we can reason about the performance of the queue under saturation; this
is important as greedy protocols, such as TCP, will continually push queues into overload. During
periods of overload the most quality degradation occurs, it is clearly essential to be able to model
such conditions accurately.
In chapter seven we have shown that it is possible to predict the behaviour of certain types of
networks, speci�cally, those based on Poisson distributions and Markovian servicing. Queueing
theory allowed us to explore this area, and by challenging some of the assumptions we were able



CHAPTER 11. CONCLUSION 170

to extend the work further. For example, where the output from a �nite Markovian serviced queue
is not strictly Poisson, we can indeed assume that it is. The predictions we performed were only
on networks where there was one class of service; however, the same techniques can be applied to
multi-service networks. A key underpinning of this technique is to use �randomness� to make the
solution statistically tractable. While this may seem �wasteful� by the standards of today's typical
engineering practise, we believe it is justi�ed, as the consequential ability to accurately predict
network behaviour more than outweighs the apparent waste.
In chapter eight we tie network quality to application behaviour. For each of the applications that
we study we are aware of the failure conditions that exist. By engineering quality constraints for
each of the applications we can ensure that failure conditions do not occur, or only when another
application is more important. Using the cherish-urgency model proved to be excellent at capturing
these requirements. In applying our methodology we had to extend some techniques in queueing
theory. The main contribution in this area is the modelling of burst-losses using a Markov chain.
This allows us to predict the probability of application failure due to burst losses. We also show
how it is possible to use some well known queues to model more complex networks, by breaking the
assumptions we outlined above.
In chapter nine we present a comparison between bandwidth management and a loss-delay model of
network management. We found that although the bandwidth management did work correctly, in
that each application did indeed receive its contracted bandwidth, it was not su�cient to deliver the
quality required. By using a loss-delay style of multiplexing, with the same transmission speeds and
bu�er sizes, we show that it is possible to meet the requirements of the applications with con�dence.
Today much of the networking industry is primarily concerned with bandwidth management; enga-
ging with these results implies the need for this to change. Such a change is vitally important, if we
are to see a shift to multi-service networks.

11.4 Future Work

During the course of this thesis we have highlighted a number of areas that warrant more investig-
ation. In this section we will take another look at these areas, and where possible we will propose
some possible courses of investigation that may lead to a solution.

11.4.1 Modelling Mixed Packet Sizes

In section 5.4 we looked at how to model queues that service packets of variable sizes. Such a
model is necessary because the majority of networking technologies, such as IP, handle packets with



CHAPTER 11. CONCLUSION 171

variable sizes. Modelling technologies, such as ATM, which carry �xed sized packets can be achieved
using standard queueing formulae, which model packets as point processes.
The model that we proposed, in section 5.4.4, uses an M/G/1/k priority queue with classes but
no priorities. The key feature of this type of queue is that it supports a number of classes, where
each class can have a di�erent service rate. Di�erent service rates are required because packets of
di�erent lengths take a di�erent amount of time to service; by placing packets of a given size in their
own class we can model a queue that handles packets of di�ering sizes. Ultimately we can calculate
the loss and delay that each class will su�er.
One drawback of this approach is that it requires one class per packet size. Given that most
technologies support a large range of packet sizes this could result in a rather large number of
classes. However, research [95] has shown that packet lengths tend to cluster around well known
MTU sizes; this would make it possible to have classes representing common packet sizes, and not
classes for all sizes of packet. This is likely to introduce some calculation errors, which should be
investigated before this approach can be used.
The M/G/1/k queueing formula can accurately calculate the performance of a singe queue handling
mixed sized packets. However, when we attempted to extend this to a number of queues, see
section 7.7, we found that the calculations became inaccurate. Even for the simplest of examples of
composed queues we found discrepancies of hundreds of packet service times between calculations
and simulations. This clearly makes such a model unusable in the real world.
We know by looking at the results that increasing the bu�er size makes the predictions accurate
at high loading factors. This is because adding more bu�ers reduces the loss probability for lower
loading factors. This suggests that the inaccuracies in the calculations are caused by loss, where no
loss occurs the predictions are accurate. The inaccuracies in the loss calculations could be caused
by the fact that the packet arrival distribution is not strictly Poisson. Another cause is that the
steady-state loss probabilities are not su�cient to model systems with mixed sized packets.
There are a number of avenues for further investigation open to us. We could consider modelling
packet arrivals using di�erent distributions, such as hyper-exponential or an Erlang-k distribution.
Such an investigation could be started by looking at the distribution of inter-packet times observed
in the simulator. If we �nd that steady-state loss probabilities are insu�cient we could investigate
using a di�erent method of convolution, such as Laplace (see below).

11.4.2 Burst-loss Probabilities

In section 5.6 we looked at a burst-loss model for an M/M/1/k queue. We found that there is a
probability of an initial loss, and another probability of additional losses. This gives us a power law



CHAPTER 11. CONCLUSION 172

distribution of losses, which is very di�erent from the evenly distributed losses that λPk suggests.
This has important implications for applications like VoIP, where burst-losses are important. It may
also a�ect the way in which we solve queueing systems at the moment.
The method that we presented for calculating the burst loss probabilities relies on compressing all
the queue states into a single state, and then extending the state space to produce a chain of losses;
each state greater than zero represents a burst loss of that length, and a departure resets the system
to the zero state. The bene�t of such an approach is that it allows us to ignore the semantics of
a particular queue, so long as we know what the probability is of the system being full, Pk. Some
further investigation is required to ensure that compressing states in this way is mathematically
sound. It would also be nice to extend this work to queues other than the M/M/1/k queue.
Another use of the burst-loss work is in producing better models of queues. By attaching the loss
states to the end of a standard Markov chain we can model the loss process, and hence the average
waiting time, much better than before. This may be an extremely useful tool for investigating how
to model mixed sized packets, given that loss appears to be one of the dominating factors. The
model presented for capturing burst-loss only considers a single arrival stream. It would also be nice
to extend this work to cover multiple arrival streams.

11.4.3 Laplace Convolution

The method of convolution that we present in this thesis involves addition of mean values for delay
and loss. On the whole this approach appears to work well where the network carries packets of a
�xed size. However, when the network carries mixed packet sizes the results are less accurate. We
have suggested that steady state predictions may be insu�cient for modelling mixed packet sized
networks, and that evenly distributed loss probabilities are unrealistic. What is required is another
approach that can overcome these problems.
Laplace transforms could provide another, more accurate, method of convolution. By transform-
ing the formulae for QDFs (Quality Degradation Functions) into Laplace space we can convolve
them using multiplication. The bene�t of such an approach is that we can extract distributions
of interesting parameters, such as delay, by performing an inverse Laplace transform at the end of
the convolution. Having an accurate approximation of the delay, loss and inter-packet distributions
would provide us with much more useful information than averages alone. We would be able to
compute con�dence intervals and percentiles of the expected averages giving the approach more
strength. It would also be possible to investigate the transient behaviour of networks caused by
periodic changes in load or topology, and ultimately the change in quality that this would cause.
To apply such an approach would require us to represent the system in semi-Markov processes
(SMPs). Given that we have chosen to represent our queueing systems as Markov-chains this would



CHAPTER 11. CONCLUSION 173

not be too di�cult to achieve. Recent research [14] on computing passage time using a distributed
cluster of computers would provide a good starting point.

11.4.4 Distributions

Throughout this thesis we have restricted ourselves to reasoning about Poison distributed inter-
packet times. We chose this approach due to its easy analytical properties, and well known queueing
formulae. However, the Poisson distribution introduces a high variance into inter-packet times
which may be undesirable in a number of situations. On the other hand it is this high variance,
or 'randomness', that provides us with desirable properties such as independent arrivals and fair
merging properties.
There are a whole series of well known distributions that have similar properties to Poisson, Erlang-k
distributions for example, while not having such a large variance. It is worth investigating these
distributions with respect to their e�ect on performance and predictability. It may be the case, and
indeed quite likely, that other distributions with less variance than Poisson would still allow us to
use the techniques presented in this thesis while increasing the overall packet-by-packet performance
of the network.

11.4.5 Bu�er Size E�ects

In section 4.7.2 we highlighted the fact that choosing an appropriate bu�er size, for queues within
a network, has a dramatic e�ect on the performance of the network. Bu�ers can be considered to
introduce 'memory' into the network, making it less tolerant of changes in o�ered load. Bu�ers also
e�ect both the loss and delay that packets experience while crossing the network. Adding more
bu�ers increases the delay but reduces the loss, similarly reducing the bu�er size decreases the delay
but increases the loss. Therefore, the bu�er size is yet another parameter that we can use to tune
the behaviour of the network.
The bu�er size also a�ects the performance of queues in transient conditions, such as start-up and
sudden changes in load. Theoretically it is possible to calculate the time it takes, after a change in
o�ered load, for a queue to reach steady state. Understanding such e�ects is important, as sudden
changes in load can adversely e�ect the delivered quality. Today it is quite common to �nd network
devices that contain bu�ers measured in Megabytes; such large bu�ering could potentially take days
to reach steady state, assuming the load remains constant during this period � which is unlikely.
Investigating the e�ects of such large bu�ers could also yield interesting information on achieving
consistent quality.
In this thesis we have concerned ourselves with investigating QoS using loss-delay models, and not
bandwidth based approaches. Given that bu�er capacity a�ects both loss and delay it is worth



CHAPTER 11. CONCLUSION 174

investigating the e�ects that bu�er size has on quality. In addition it is also worth investigating
what e�ects bu�er size has on quality under transient conditions. One possible avenue for research
in this area is provided by Laplace transforms, which can reveal detailed information about the long
term behaviour of queues and the use of instantaneous generator functions can provide information
about their transient behaviour.

11.4.6 Adaptive Source Models

The adaptive rate source that we have presented in this thesis is intended to model simple greedy
sources in steady state. A common example of a greedy source would be TCP, which attempts to
utilise as much of the available bandwidth as possible. Such sources are responsible for pushing
queues into overload, as they continually increase their bandwidth until they experience loss. They
are also believed to be one of the causes of the observed self-similar, or fractal, behaviour of networks.
The �rst area for more investigation is that of the model itself. We have not made any attempts
in this thesis to accurately model TCP. As a result we do not have any detailed understanding of
the behaviour of TCP under our proposed network architecture. It is our hope that we can destroy
the self-similar behaviour of networks by introducing exponential, or other, types of servicing. By
building a better model of TCP we could investigate this area more throughly.
The second area of interest is modelling transaction-based TCP applications. This style of applic-
ation usually transfers small amounts of data for which a quick response is required. By their very
nature they do not use the parts of TCP that are designed to maximise throughput. For this type
of application we would like to know the distribution of transaction times, so we can give realistic
bounds on the performance of the application itself. To achieve this would require building an
accurate model of TCPs state transitions.
The third area of interest is understanding the resulting behaviour of TCP. Like other reliable
transport protocols, TCP essentially hides loss by introducing delay. The delay that is introduced is
dependent on where losses occur within the packet exchange and the end-to-end delay. By possessing
an accurate model of TCP we could investigate the e�ect of our chosen architecture on the behaviour
of TCP. Ultimately it would be nice to provide predictions on the behaviour of TCP under the chosen
con�guration of the network.
Finally, it would be nice to incorporate some better tra�c models for adaptive sources. Applications
such as HTTP generate variable amounts work. A model based on Poisson thinking time, Pareto
distributed �le and request sizes may provide a better model for such applications. These models
could be based on empirical measurement and previous literature [74, 5, 105, 18].



CHAPTER 11. CONCLUSION 175

11.4.7 Changing Topology and Load

One of the assumptions we have used throughout this thesis, see section 9.2.3, is that both the
topology and o�ered tra�c remains constant throughout our experiments. While this reduces the
problem space, allowing us to make a number of discoveries, it is not consistent with a real world
view of networking. The load placed on a network changes depending upon the time of day, and is
in�uenced by real world events like the 11th of September. Routing nodes within a network can,
and do, fail causing changes in the path that packets take through the network. All of these factors
a�ect the quality that is observed by the users of the network, and as such should be investigated.
To overbook resources successfully requires us to have a detailed understanding of the e�ects of the
changing tra�c patterns. To a large degree much of this information can be gathered by monitoring
the edges of the network to collect statistical data. The question remains what to do with this
data in order to make the network run smoothly. By adapting the con�guration of the network at
di�erent time intervals we can change the behaviour of the network to reach our goals. We could
even envisage penalising certain activities, such as large �le transfers, at given times of the day
to increase the overall performance of the network. To achieve this requires us to understand, in
a su�ciently accurate way, how a given network con�guration will a�ect the quality of the tra�c
that �ows across it. Understanding the transient behaviour of changes in con�guration is key in
achieving this goal.
Adapting to failures, of for example routing elements, within the network is a harder task. It is
unlikely that we will know the point of failure before it happens. When a failure does occur tra�c
should be, although it is not always, rerouted via another path. This could potentially cause quality
problems for the tra�c currently �owing across the backup path, as well as problems for the tra�c
that is being rerouted. There are two areas of interest here. The �rst is to look at quality routing
protocols that will redirect tra�c in such a way as to minimise the overall e�ect on quality, this
requires us to have an understanding of the current and expected level of utilisation across the whole
network. The second is to look at mechanisms for controlling delivered quality; it would be possible,
for example, to modify the con�guration of a multiplexing point to deliver the best quality it can,
depending on policy.

11.4.8 Correlation and Multicast Modelling

In section 6.2.2 we noted that, although it is possible to support multicast, with a few minor
modi�cations to the system, we have chosen not to investigate it in this thesis. This choice was
again taken to reduce the problem space. Multicast �ows introduce a much higher occurrence of
correlation in the network, this is because the same �ow can be found in more than one part of
the network. We believe that such correlation issues can be destroyed by stochastic service, which



CHAPTER 11. CONCLUSION 176

ultimately destroys time dependent correlation at a low level. However, we have not investigated
correlation issues or multi-cast in this thesis.
Correlation occurs when the same temporal pattern is experienced by a number of �ows which
later interact. The temporal pattern is caused by the multicast �ow interacting with other �ows in
the network. These �ows interact with each other after being correlated by the multicast �ow. In
section 7.4.3 we present a simple test case that highlights the problem. However, we found that no
serious correlation was introduced in this experiment, perhaps providing justi�cation for stochastic
service destroying correlation. Unfortunately this simple example does not provide enough evidence
in itself and more results are needed. Multicast would provide an excellent vehicle for investigating
this problem.
Multicast �ows are also an interesting area of quality delivery. Given that a multicast �ow is
consumed by a number of end-points it requires a higher quality than the same unicast �ow would
require. It would be interesting to investigate what level of quality should be delivered to a multicast
�ow to match the quality delivered to a similar unicast �ow. Indeed, it may be bene�cial to
allocate higher quality to multicast �ows to encourage their usage over unicast �ows, so long as any
correlation issues do not a�ect the overall performance of the network.

11.4.9 Shared Media and Switching Fabrics

In this thesis we have considered queues that have unrestricted use of the outgoing link, this is
useful for technologies such as point-to-point Ethernet; however, it does not currently model links
such as shared Ethernet segments, wireless Ethernet (Wi-Fi) and cable modems. Where there is a
shared link there is the possibility that an attempt to service a packet will fail, because the link is
currently being used by another station. Commonly this causes the transmission of the packet from
both sending stations to cease, before being resumed after a random time out.
It is possible by using queues with vacations to model contended links of this type. This approach
has been used recently to model wireless Ethernet and similar technologies. It would be nice to
include such models into our methodology, to broaden the scope of its applicability. Assuming that
exponential service is still used, which may be plausible due to back-o� timers, similar bene�ts in
predictability may be gained.
We have also investigated models of switching fabrics in this thesis; however, these models are
extremely limited. Switching fabrics have contention issues that are not dissimilar to those found
on shared network segments. By again modelling queues with vacations it may be possible to make
more accurate predictions of the performance of �ows crossing a switching fabric.



CHAPTER 11. CONCLUSION 177

11.4.10 Provisioning using Loss-Delay

The �nal area of research that deserves consideration is that of provisioning. In this thesis we have
concentrated on using the loss-delay model to provide QoS support. The loss-delay model is unique
in that it explicitly manages the two degrees of freedom found in any �nite queue. By specifying
an ordering in terms of loss and delay we can accurately control the throughput. Another way of
viewing the loss-delay queue is its ability to provide a quality, measured in loss and delay, at a given
bandwidth. This allows the possibility of doing accurate provisioning.
For a given o�ered load, that is a bandwidth and associated cherish-urgency classi�cation, we can
predict the performance of the network. As it stands we have been doing just that with a �xed set
of o�ered loads and network con�gurations. While a �xed network con�guration, which in terms of
the loss-delay queue is the link service rate, bu�ers and watermarks, is quite likely - a �xed load is
not. However, by policing the edges of the network it is possible to restrict the o�ered load to some
well known maxima.
When the o�ered load is �xed to some maximum value it is possible to calculate the worse case
performance of the network. That is the condition when all classes of service are at their maximum
value. From this point it is possible to evaluate how successful a given application, such as VoIP,
would be. Where there are performance problems the con�guration can be changed so that they do
not occur. Ultimately this process should be automated in some way.

11.4.11 Loss-delay implementation for NS2

In this thesis we have performed simulations using a custom built simulator written in C. This
approach was taken as it allowed us a much greater understanding of how the simulator was written,
and what design decisions were taken. Indeed it has served its purpose well, allowing us to investigate
the methodology.
In the future we would like to implement some of our ideas in the NS2 [98] simulator. This would
allow us to use a large volume of research that has already been implemented in NS2. Comparisons
between our methodology and others could be performed, but with the bene�t of using a more
standard platform.

11.5 Final Words

In this thesis we have attempted to �nd solutions to the problem of providing end-to-end QoS
support. We started by abstracting the network into a set of connected queues with �ows of tra�c



CHAPTER 11. CONCLUSION 178

Real World

Real World
Solution

Solution

Model

Figure 11.1: The philosophy

crossing them. Next we restricted the problem space to queues with Markovian service facilities
carrying tra�c with Poisson inter-packet times; by doing so we showed that it is possible to predict
the performance experienced by the �ows crossing the network. We then extended our model of
queues to include the loss-delay model, which explicitly manages the two degrees of freedom (two
of: loss, delay, throughput) inherent in �nite queues. We believe that the work presented here o�ers
a new way of approaching the problem of end-to-end QoS, although there is still more work to be
done.
In this section we would like to explain one of the fundamental philosophies behind the approach
that we have taken; namely that, we can arrive at useful real world solutions to the problems that
we trying to solve. Figure 11.1 shows the mental steps we progress through to arrive at a solution.
Ultimately we want to create a real world solution to a real world problem, but we cannot do this
directly. First we must abstract away from the real world to arrive at a model, in doing so we
discard some information and potentially introduce some errors. We will only know if this is a good
abstraction when we return to solve the real world problem later. In this thesis, as we have already
mentioned, we have chosen to restrict ourselves to Markovian models which are mathematically
tractable. Having done this we can set about searching for a solution, in the model that we have
chosen. The �nal and most important challenge is turning our solution into a real world solution
than can be implemented and will work as intended.
In this thesis we have not had the opportunity of implementing our solution in the real world; how-
ever, we have been able to investigate our �nding through simulation. By choosing our abstraction
carefully we have been able to provide realistic predictions about the performance of the network
under all conditions. We have also shown that other abstractions, such as bandwidth-centric ap-
proaches, do not provide similar bene�ts in prediction and performance; although such approaches
are used in the real world. Clearly the approach that we have presented here could work in the real
world, but cannot be investigated in detail until hardware exists to test the theories1.
As computer scientists we have a luxury that other sciences do not; namely, we can decide how

1U4EA Technologies are starting to produce hardware that does indeed implement the loss-delay model.



CHAPTER 11. CONCLUSION 179

the systems that we build will operate. Other �elds, such as Physics, have to build models that
represent the real word. Currently much e�ort in the QoS �eld is expended trying to accurately
model networking equipment. The author believes that we should concentrate our e�orts into
creating the correct model �rst, and then set about creating the hardware and software to support
it.



Appendix A

Queueing Theory in Brief

A.1 Distributions

Throughout this thesis we will primarily be concerned with the exponential distribution. For us this
has a number of interesting properties that make it suitable for designing a network.
The �rst property of the exponential distribution is that it closely approximates the Poisson dis-
tribution (which is a discrete-time distribution). This approximation makes it easier to model
mathematically. In general we will use the term Poisson in this thesis, although we generally model
this as exponential.
Exponential distributions are also memoryless (otherwise known as the Markov property). This
means that no matter how long the system has been running the probability of a new event remains
constant. In e�ect it does not age. This is useful as we do not need to account for time in our
models.
The exponential distribution is also easy to generate. The function to do this is shown below:

F (x) =

{
1− e−λx, if 0 ≤ x < ∞
0, otherwise

A.2 About Queueing Theory

Queueing theory is a broad area of mathematics that attempts to model the behaviour of queues
(as the name would suggest). It does not just apply to computer science but many other �elds from

180



APPENDIX A. QUEUEING THEORY IN BRIEF 181

K

λ µ

Figure A.1: A Queue

airport parking to production control. The following has a computer science slant, but the formulae
are generally applicable.
Queues are usually drawn as in Figure A.1. Jobs arrive at a rate of λ with a given arrival pattern.
They are then bu�ered; if there are a �nite number of bu�ers then this is usually referred to as K.
Finally the jobs are serviced by one or more service facilities (represented by the circle) with rate µ,
again with a given distribution. In this context, when we talk about jobs we are referring to packets.
There are a number of con�icting names for describing where a packet is in the system. Throughout
we shall use the term bu�ered to describe when the packet is awaiting service; note this is sometimes
called �in-line� or �in the queue�. When the packet is either bu�ered or in the service facility we
shall call this �in the queue�; note, this is sometimes called �in-system�.
In order to identify di�erent types of queue we use Kendall's notation. The form of this notation is
A/B/C/D/E where:

• A Distribution of inter-arrival times of customers
• B Distribution of service times
• C Number of servers
• D Maximum total number of customers which can be accommodated in system
• E Calling population size

Both D and E are sometimes omitted, in which case they are assumed to be in�nite. A and B can
represent a number of distributions, however, in this thesis we shall generally use the following:

• M Exponential Distribution (Markovian)
• D Degenerate (or Deterministic) Distribution
• Ek Erlang Distribution (k = shape parameter)
• G General Distribution (arbitrary distribution)



APPENDIX A. QUEUEING THEORY IN BRIEF 182

The following symbols are used to represent properties of a queue:

• ρ The tra�c intensity
• λa The amount of tra�c accepted into a �nite queue
• Pn The probability of there being n jobs in the queue
• Pk The probability of the queue being full
• LqThe number of jobs in the bu�ers
• L The number of jobs in the queue
• Wq The average waiting time in the bu�ers
• W The average waiting time of the queue

The ratio of arrivals to departures is called the loading factor, measured in Erlangs. An Erlang is a
dimensionless unit of the average tra�c intensity (occupancy) of a facility during a period of time.
This is used to give an indication of how heavily the queue is loaded. We can calculate the loading
factor of any queue as follows.
ρ = λ

µ

Additionally for queues that have �nite bu�ers we can calculate the amount of tra�c that is suc-
cessfully accepted into the bu�ers. This is as follows.
λa = (1− Pk)λ

One �nal piece of useful information is Little's Law, which states: The average number of customers
in a queueing system L is equal to the average arrival rate of customers to that system λ, times the
average time spent in that system W.
L = λW

A.3 Well Known Queues

There are a number of well known queues covered in the literature, in this section we will show the
formulae for these. Interested readers are directed to one of the many books on queueing theory
[3, 96] for an explanation of how the various formulae are derived. Throughout the thesis we will
rely on these formulae for our calculations.



APPENDIX A. QUEUEING THEORY IN BRIEF 183

A.3.1 The M/M/1 Queue

The M/M/1 queue has in�nite bu�ers and one service facility. Both the arrivals and service facility
are Markovian, or exponentially, distributed.
Pn = (1− ρ)ρ2

L = ρ
1−ρ

Lq = ρ2

1−ρ

Ws = ρ
λ

W = Ws

1−ρ

Wq = ρWs

1−ρ

A.3.2 The M/M/1/K Queue

The M/M/1/K queue is essentially the same as a M/M/1 queue, other than it has a �nite number
of bu�ers denoted by K.

Pn =

{
(1−a)an

1−aK+1 , if λ 6= µ
1

K+1 , if λ = µ

L =

{
a[1−(K+1)aK+KaK+1]

(1−a)(1=aK+1)
, if λ 6= µ

K
2 , if λ = µ

Lq = L− (1− P0)

W = L
λa

Wq = Lq

λa

A.3.3 The M/G/1 Class Queue

The M/G/1 Class queue represents a queue with in�nite bu�ers and one service facility where the
arrivals are Markovian. However, it allows for more than one class of tra�c to arrive, where the
classes have di�ering service requirements. These classes are serviced to a mean rate with no other
stipulation. We also introduce E[x], which is the expected value of x (or the service, s, as used
here).



APPENDIX A. QUEUEING THEORY IN BRIEF 184

n2

...

...

0 1

Figure A.2: A Simple Markov Chain

λ = λ1 + λ2 + ... + λn

E[si] = 1
µi

Ws = λ1
λ E[s1] + λ2

λ E[s2] + ... + λn

λ E[sn]

Wq = λE[s2]
2(1−ρ)

Wi = Wq + E[si]

W = λ1
λ W1 + λ2

λ W2 + ... + λn

λ Wn

A.4 Markov Chains

This sections outlines some of the underlying mathematics required in order to solve queueing
systems. It is our intention to cover this only brie�y as any textbook on the subject will give a much
better introduction to the subject than we have space for here.
Figure A.2 shows a simple birth-death Markov chain for a queue with n bu�ers. Each of the states
represents the number of jobs that are in the system, starting at 0 and �nishing at the maximum
number of bu�ers (which may be in�nite). As a job arrives we change states (to the right) with an
average rate of λ. As jobs are serviced we change down states (to the left) with an average rate of
µ. This is not the only sort of chain that we can construct, others will be covered as we progress
through the thesis.
There are two methods for solving this chain. The �rst is empirically, for continuous-time chains.
Here we are assuming that the chain is in a steady state, and hence no build up occurs in any state.
For each state we construct balance equations, these are simply the sum of the rate of entering
transitions minus the rate of leaving transitions. From this we can rearrange and solve for a general
solution. It is these general solutions that we have shown above.
Another method to get the steady state probabilities is to use matrices. The following method
is known as the 'power method'. First we construct the transition probability matrix (sometimes



APPENDIX A. QUEUEING THEORY IN BRIEF 185

called a stochastic matrix), Q, as follows: For each of the transitions in the Markov-chain we enter
the probability into a matrix, i.e. q01 is the rate of transitions from state 0 to 1.

Qij =


qoo q01 .

q10 q11 .

. . .


In the case of discrete-time Markov-chains each row must sum to 1; however, we are more interested
in continuous-time Markov-chains, here each row must sum to zero. To achieve this we use self
transition probability, i.e. q00, q11..., to make the sum of the row equal 0. For example:
q00 = −(q01 + q02 + ... + q0n)

q11 = −(q10 + q12 + ... + q1n)

The next step is to �nd qmax; the highest absolute value in the matrix Q. In this case we already
know that the most likely candidate for such a value will be the top-left to bottom-right diagonal
of the matrix Q. The formula is as follows:
qmax = max|Qii|

Using the following iterative formula we can now use are values of Q and q to �nd the steady state
probabilities. This formula is obtained by rearranging and simplifying the steady state formula; this
can be found in [96].
π(i) = π(i−1)Q∗

Q∗ = I + Q
qmax

The value of the initial vector, π(0), is de�ned by placing a 1 in the column of the starting state. I
is the identity matrix. We now iterate until the changes in the resulting value of π settle; however,
this may never happen or take inordinately long. This is the drawback of this method, and its
variations. Other methods, described in [96, 3], can overcome some of these di�culties but not all.



Appendix B

The Simulator Queue Model

This is an attempt to create the right simulation object for queues. The approach that is taken here
is that a queue is an object that has state, an arrival operation and a departure operation.

module SimulatorQueueModel

(

SimulatedQueue(..),

SimulatedQueueEmptyPredicate,

queueSimulator

)

where

import Maybe

The following data type holds the basic continuation information, at any step something either
arrives (like a packet) or some departure occurs (at some time in the future - which could of course
be immediately).

data SimulatedQueue qstate action interval

= Running

{

stateOf :: qstate,

doArrival :: !(qstate -> action ->

SimQYeild qstate action interval),

doDeparture :: (qstate -> SimQYeild qstate action interval)

}

| Stopped

186



APPENDIX B. THE SIMULATOR QUEUE MODEL 187

In this approach the queue object does not have a local concept of time and returns only relative
time interval (therefore non-negative) at which a self-generated action will occur. The simulation
methodology makes the assumption that all actions of a time step occur during that time step - an
assumption that can be made true within a simulation environment.
There will need to be a later re�nement of this model to explicitly manage time.
To make the above de�nition more readable here is a type de�nition of the return from each con-
tinuation step.

type SimQYeild qstate action time

= (SimulatedQueue qstate action time, [action], Maybe time)

This gives us the individual steps in the �nite state automata representing the basic operation of
the queue - but does not give us a process that is easy to use elsewhere.
The �rst externally viable variant that we need to build is one in which a timed stream of actions
is input into a queue and the output from this queue is also a timed action stream.
We need to handle two edge conditions:

• Empty input stream: We will make the assumption that when the input stream becomes
empty that the output stream will empty itself and when it is empty the output stream will
also terminate.

• The SimulatedQueue enters the Stopped state. In this case the output action queue will
immediately terminate.

To cope with the �rst termination condition we will need an additional piece of information supplied
by the queue implementation.

type SimulatedQueueEmptyPredicate qstate

= qstate -> Bool

This now allows us to de�ne what this process evolution looks like:

simQTimedActionStream

:: (Num time, Ord time)

=> SimulatedQueueEmptyPredicate qstate

-> Maybe time

-> SimulatedQueue qstate action time

-> [(time, action)]

-> [(time, action)]



APPENDIX B. THE SIMULATOR QUEUE MODEL 188

Termination cases:
First the case when the queue itself decides to stop.

simQTimedActionStream _ _ Stopped _

= []

Next the case when the input queue has dried up. We will terminate on the �rst occurrence of one
of two conditions: The �rst is that the queue becomes empty, the second is that the queue yields
Nothing as its action time. This means that the queue process's evolution is dependent on an arrival
- which will never come. There is a particular edge condition here that will result in an error being
reported, when the queue is non-empty and the input list terminates and the time of the next action
is Nothing. This would be a strange condition for a queue to be operating in - an example would be
queues that keep a packet in the bu�er until the next packet arrives. The reporting of an error in
that case would be the same as reporting that a packet was not handled by the system. If this sort
of behaviour is needed at some later date then the termination conditions will need to be amended
accordingly.

simQTimedActionStream isemptyp suppliedtime simq []

| isemptyp $ stateOf simq

= []

| otherwise

= let

(simq', actions, nextactiontime)

= (doDeparture simq) (stateOf simq)

currqtime

= fromJust suppliedtime

timedactions

= [(currqtime, a) | a <- actions]

continuation

= case nextactiontime of

Nothing -> []

(Just t) -> simQTimedActionStream isemptyp

(Just (currqtime + t)) simq' []

in

timedactions ++ continuation



APPENDIX B. THE SIMULATOR QUEUE MODEL 189

Now the more general case, where the input queue is not empty. We need to decide whether the
next evolution step is driven by a departure or an arrival. If the evolution time is Nothing then the
queue can not evolve until some input action occurs.
Note that the queue has no internal concept of time, so whenever it yields a action it is calculated
relative to the time of the action. In the arrival case, it is relative to the time of input action and,
if not speci�ed, it is the (original) time of the next departure action. For departure it is relative to
current departure time.

simQTimedActionStream

isEmptyP suppliedTime simQ

allActions@((actionTime, action):futureActions)

| isNothing suppliedTime || actionTime < currQtime

= arrivalEvolution

| otherwise

= departureEvolution

where

currQtime

= fromJust suppliedTime

arrivalEvolution

= let

(simQ', actions, nextActionTime)

= (doArrival simQ) (stateOf simQ) action

timedActions

= [(actionTime, a) | a <- actions]

internalActionTime

= case nextActionTime of

Nothing -> suppliedTime

Just i -> Just (actionTime + i)

continuation

= simQTimedActionStream isEmptyP

internalActionTime simQ' futureActions

in

timedActions ++ continuation

departureEvolution



APPENDIX B. THE SIMULATOR QUEUE MODEL 190

= let

(simQ', actions, nextActionTime)

= (doDeparture simQ) (stateOf simQ)

timedActions

= [(currQtime, a) | a <- actions]

internalActionTime

= case nextActionTime of

Nothing -> Nothing

Just i -> Just (currQtime + i)

continuation

= simQTimedActionStream isEmptyP

internalActionTime simQ' allActions

in

timedActions ++ continuation

This supplies us with the evolution of the process given an input timed action stream. All that is
now missing is the way in which the creation of the process occurs.

queueSimulator

:: (Num timeType, Ord timeType)

=> SimulatedQueueEmptyPredicate localState

-> SimulatedQueue localState actionType timeType

-> ([(timeType, actionType)]

-> [(timeType, actionType)])

queueSimulator pred simQ

= simQTimedActionStream pred Nothing simQ



Bibliography

[1] Henrik Abrahamsson and Bengt Ahlgren. Using empirical distributions to characterize web cli-
ent tra�c and to generate synthetic tra�c. In IEEE/Globecomm'00, San Francisco, November
2000.

[2] R. Agrawal, R. L. Cruz, C. Okino, and R. Rajan. Performance bounds for �ow control
protocols. IEEE Transactions on Networking, 7(3):310�323, June 1999.

[3] Arnold O. Allen. Probability, Statistics and Queueing Theory with Computer Science Applic-

ations. ISBN 0120510510, Academic Press, 1990.
[4] P. Almquist. RFC 1349, Type of Service in the internet protocol suite, July 1992.
[5] Eitan Altman, Konstantin Avrachenkov, and Chadi Barakat. A stochastic model of TCP/IP

with stationary random losses. In SIGCOMM, pages 231�242, 2000.
[6] T. Anderson, S. Owicki, J. Saxe, and C. Thacker. High-speed switch scheduling for local-area

networks. ACM Transactions on Computer Systems, 11(4):319�352, November 1993.
[7] F. Baker. RFC 1812, Requirements for IP version 4 routers, June 1995.
[8] Paul Barford and Mark Crovella. Generating representative web workloads for network and

server performance evaluation. In Measurement and Modeling of Computer Systems, pages
151�160, 1998.

[9] F. Baskett, K. Mani Chandy, R. Muntz, and F. G. Palacios. Open, closed and mixed networks
of queues with di�erent classes of customers. Journal of the ACM, 22(2):248�260, April 1975.

[10] J. C. R. Bennet and H. Zhang. WF2Q: Worst-case fair weighted queueing. In IEEE Infocom

'96, pages 120�128, 1996.
[11] Razvan Beuran, Mihail L. Ivanovici, Bob Dobinson, and Peter Thompson. Network quality

of service measurement system for application requirements evaluation. In 2003 Interna-

tional Symposium on Performance Evaluation of Computer and Telecommunication Systems

(SPECTS'03), Montreal, Canada, July 2003.

191



BIBLIOGRAPHY 192

[12] M. Borella, D. Swider, S. Uludag, and G. Brewster. Internet packet loss: Measurement and
implications for end-to-end QoS. In International Conference on Parallel Processing, 1998.

[13] R. Braden, D. Clark, and S. Shenker. RFC 1663, Integrated services in the internet architec-
ture: an overview, June 1994.

[14] J. T. Bradley, N. J. Dingle, P. G. Harrison, and W. J. Knottenbelt. Distributed computation
of passage time quantiles and transient state distributions in large semi-markov models. In
PMEO. IEEE Society, April 2003.

[15] J. T. Bradley and N. Thomas. Putting quality of service into a network by making the tra�c
markovian. In Proceedings of the Fifteenth European Simulation Multiconference, Prague, June
2001.

[16] Jin Cao, William S. Cleveland, Dong Lin, and Don X. Sun. Internet tra�c tends to poisson
and independent as the load increases. Technical report, Bell Labs, 2001.

[17] K. V. Cardoso and J. F. de Rezende. Design and use of an aggregated HTTP tra�c model.
Technical report, Universidade Federal do Rio de Janeiro.

[18] Neal Cardwell, Stefan Savage, and Thomas Anderson. Modeling TCP latency. In INFOCOM

(3), pages 1742�1751, 2000.
[19] Junghoo Cho and Hector Garcia-Molina. Parallel crawlers. In The 11th International World�

Wide Web Conference, pages 124�135, 2002.
[20] Hyoung-Kee Choi and John O. Limb. A behavioral model of web tra�c. In Seventh Annual

International Conference on Network Protocols, pages 327�334, Toronto, Canada, November
1999.

[21] Gagan H. Choudhury, Kin K. Leung, and Ward Whitt. Calculating normalization constants
of closed queuing networks by numerically inverting their generating functions. Journal of the
ACM, 42(5):935�970, 1995.

[22] S. Chuang, A. Goel, N. McKeown, and B. Prabhakar. Matching output queueing with a
combined input output queued switch. IEEE Journal on Selected Areas in Communications,
17(6):1030�1039, June 1999.

[23] K. Cla�y, G. Miller, and K. Thompson. The nature of the beast: recent tra�c measurements
from an internet backbone. In INET98, 1998.

[24] William S. Cleveland and Don X. Sun. Internet tra�c data. Journal of the American Statistical

Association, 95:979�985, 2000.
[25] Professor Peter Cochrane. Highlights of the 1998 3M innovation lecture, 1998.

www.cochrane.org.uk/opinion/papers/backto.htm.



BIBLIOGRAPHY 193

[26] A. Conway, de Souza e Silva, and S. Lavenberg. Mean value analysis by chain of product form
queueing networks. IEEE Transactions on Computers, 38:432�442, 1989.

[27] A. Conway and N. Georganas. Decomposition and aggregation by class in closed queueing
networks. IEEE Transactions on Software Engenieering, 33:768�791, 1968.

[28] M. Crispin. RFC 2060, Internet Message Access Protocol - version 4 revision 1, December
1996.

[29] R. Cruz. A calculus for network delay: Part I: Network elements in isolation. IEEE Transac-

tions on Information Theory, 37(1), January 1991.
[30] R. Cruz. A calculus for network delay: Part II: Network analysis. IEEE Transactions on

Information Theory, 37(1):132�141, January 1991.
[31] R. Cruz. Quality of service guarantees in virtual circuit switched networks. IEEE Journal on

Selected Areas in Communications, 13(6):1048�1056, 1995.
[32] Peter B. Danzig, Ramon Caceres, Danny Mitzel, and Deborah Estrin. An empirical workload

model for driving wide-area TCP/IP network simulations. Journal of Internetworking, 3(1):1�
26, March 1992.

[33] Peter B. Danzig and Sugih Jamin. TCPLib: A library of TCP/IP tra�c characteristics.
Technical Report TR CS-SYS-91-01, USC Networking and Distributed Systems Laboratory,
October 1991.

[34] Neil Davies, Judy Holyer, and Peter Thompson. An operational model to control loss and
delay of tra�c at a network switch. In Third IFIP workshop on the Management and Design

of ATM Networks, pages 218�231, Queen Mary and West�eld College, University of London,
March 1999.

[35] J. D. Day and H. Zimmermann. The OSI reference model. In Proceedings of the IEEE, pages
1334�1340. IEEE Press, December 1983.

[36] A. Demers, S. Keshav, and S Shenker. Analysis and simulation of a fair queueing algorithm.
Computer Communication Review, 19(4):1�12, September 1989.

[37] Agner Krarup Erlang. The theory of probabilities and telephone conversations. Nyt Tidsskrift
for Matematik B, 20, 1909.

[38] Agner Krarup Erlang. Solution of some problems in the theory of probabilities of signi�cance
in automatic telephone exchanges. Elektrotkeknikeren, 13, 1917.

[39] Anja Feldmann, Anna C. Gilbert, Polly Huang, and Walter Willinger. Dynamics of IP tra�c:
A study of the role of variability and the impact of control. In SIGCOMM, pages 301�313,
1999.



BIBLIOGRAPHY 194

[40] D. Ferrari and D. C. V. Verma. A scheme for real-time channel establishment in wide-area
networks. IEEE Journal on Selected Areas in Communications, 8(3):368�379, 1990.

[41] R. Fielding, U. C. Irvine, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and
T. Berners-Lee. RFC 2616, Hypertext transfer protocol � HTTP/1.1, June 1999.

[42] Mike Flannagan. Administering Cisco QoS for IP Networks. Ingress Media Inc, 2001.
[43] S. Jamaloddin Golestani. A self-clocked fair queueing scheme for broadband applications. In

IEEE INFOCOM '94, pages 636�46. IEEE Computer Soc. Press., 1994.
[44] Pawan Goyal, Harrick M. Vin, and Haichen Cheng. Start-time fair queueing: a scheduling

algorithm for integrated services packet switching networks. IEEE/ACM Transactions on

Networking, 5(5):690�704, October 1997.
[45] Timothy G. Gri�n and Gordon T. Wilfong. An analysis of BGP convergence properties. In

Proceedings of SIGCOMM, pages 277�288, Cambridge, MA, August 1999.
[46] IETF Network Working Group. RFC 2205, Resource ReSerVation protocol, September 1997.
[47] IETF Network Working Group. RFC 2475, An architecture for di�erentiated services, Decem-

ber 1998.
[48] C. Hedrick. RFC 1058, Routing Information Protocol, June 1988.
[49] G. Heide, C. J. Vowden, G. Willmott, and N. Davies. Evolution of tra�c patterns in a multi-

hop network. In 18th UK Performance Engineering Workshop, University of Glasgow, July
2002.

[50] P. Hurley, Mourad Kara, J. Y. Le Boudec, and P. Thiran. ABE: Providing a low-delay service
within best e�ort. IEEE Network Magazine, 15(3), May 2001.

[51] James R. Jackson. Networks of waiting lines. Operations Research, 5(4), August 1957.
[52] V. Jacobson. Congestion avoidance and control. ACM Computer Communication Review;

Proceedings of the SIGCOMM '88 Symposium in Stanford, CA, 18(4):314�329, August 1998.
[53] Xusheng Tian Jie. A uni�ed framework for understanding network tra�c using independent

wavelet models. In IEEE INFOCOM, 2000.
[54] M. Karol, M. Hluchyj, and S. Morgan. Input versus output queueing in a space division switch.

IEEE Transactions Communication, 35:1347�1356, 1987.
[55] M. Katevenis, S. Sidiropoulos, and C. Courcoubetis. Weighted round-robin cell multiplexing

in a general-purpose ATM switch chip. IEEE Journal on Selected Areas in Communications,
9(8):1265�1279, October 1991.

[56] F. Kelly. Notes on e�ective bandwidths. In F. P. Kelly, S. Zachary, and I. Zeidins, editors,
Stochastic Networks: Theory and Applications, pages 141�168. Oxford University Press, 1996.



BIBLIOGRAPHY 195

[57] J. F. C. Kingman. On queues in heavy tra�c. Journal of the Royal Statistical Society, Series
B(24):383�392, 1962.

[58] P. Krishna, N. Patel, A. Charny, and R. Simcoe. On the speedup required for work-conserving
crossbar switches. IEEE Journal on Selected Areas in Communications, 17(6):1057�1066, June
1999.

[59] S. Lam and Y. Lien. A tree convolution algorithm for the solution of queueing networks.
Communications of the ACM, 26:203�215, 1983.

[60] R. LaMaire and D. Serpanos. Two-dimensional round-robin schedulers for packet switches
with multiple input queues. IEEE/ACM Transactions on Networking, 2(5):471�482, October
1994.

[61] Will E. Leland, Murad S. Taqq, Walter Willinger, and Daniel V. Wilson. On the self-similar
nature of Ethernet tra�c. In Deepinder P. Sidhu, editor, ACM SIGCOMM, pages 183�193,
San Francisco, California, 1993.

[62] Dong Lin and Robert Morris. Dynamics of random early detection. In SIGCOMM '97, pages
127�137, Cannes, France, September 1997.

[63] J. Luthi and G. Haring. Bottleneck analysis for computer and communication systems with
workload variabilities and uncertainties. In I. Troch and F. Breitenecker, editors, 2nd Int.

Symposium on Mathematical Modelling, pages 525�534. Technical University Vienna, February
1997.

[64] J. Luthi, S. Majumdar, and G. Haring. Mean value analysis for computer systems with
variabilities in workload. In IEEE International Computer Performance and Dependability

Symposium, IPDS, 1996.
[65] Reiser M. and So S. Lavenberg. Mean value analysis of closed multi-chain queueing networks.

JACM, 27(2):313�322, April 1980.
[66] Bruce A. Mah. An empirical model of HTTP network tra�c. In INFOCOM (2), pages

592�600, 1997.
[67] G. Malkin. RFC 2453, RIP version 2, November 1998.
[68] Nick McKeown. The iSLIP scheduling algorithm for input-queued switches. IEEE/ACM

Transactions on Networking, 7(2):188�201, April 1999.
[69] David L. Mills. RFC 1303, Network Time Protocol (version 3) speci�cation, implementation

and analysis, March 1992.
[70] P. Mockapetris. RFC 1035, Domain names - implementation and speci�cation, November

1987.



BIBLIOGRAPHY 196

[71] Robert Morris and Dong Lin. Variance of aggregated web tra�c. In INFOCOM, pages 360�
366, 2000.

[72] J. Moy. RFC 1583, OSPF version 2, March 1994.
[73] J. Myers and M. Rose. RFC 1939, Post O�ce Protocol - version 3, May 1996.
[74] J. Padhye, V. Firoiu, D. Towsley, and J. Krusoe. Modeling TCP throughput: A simple

model and its empirical validation. Proceedings of the ACM SIGCOMM '98 conference on

Applications, technologies, architectures, and protocols for computer communication, pages
303�314, 1998.

[75] A. K. Parekh and R. G. Gallager. A generalized processor sharing approach to �ow control in
intergrated services networks. IEEE/ACM Transactions on Networking, 2(2):137�150, April
1994.

[76] Vern Paxson. End-to-end Internet packet dynamics. In Proceedings of the ACM SIGCOMM

'97 conference on Applications, Technologies, Architectures, and Protocols for Computer Com-

munication, September 1997.
[77] Vern Paxson and Sally Floyd. Wide area tra�c: the failure of Poisson modeling. IEEE/ACM

Transactions on Networking, 3(3):226�244, 1995.
[78] J. Postel. RFC 768, User Datagram Protocol, August 1980.
[79] J. Postel. RFC 792, Internet Control Message Protocol, September 1981.
[80] J. Postel. RFC 821, Simple Mail Transfer Protocol, August 1982.
[81] J. Postel and J. Reynolds. RFC 854, Telnet protocol speci�cation, May 1983.
[82] J. Postel and J. Reynolds. RFC 959, File Transfer Protocol (FTP), October 1985.
[83] DARPA Internet Program. RFC 793, Transmision Control Protocol, September 1981.
[84] DARPA Internet Program. RFC 971, Internet Protocol, September 1981.
[85] Pradeep Ramakrishnam. Self-similar tra�c models. Technical Report CSHCN TR 99-5, Center

for Satellite and Hybrid Communication Networks, 1999.
[86] Alastair Reid and Sigbjorn Finne. GreenCard: A Haskell FFI preprocessor.

http://haskell.org/greencard/.
[87] Y. Rekhter and T. Li. RFC 1771, A border gateway protocol 4 (BGP-4), March 1995.
[88] J. Reynolds and J. Postal. RFC 1060, Assigned numbers, March 1990.
[89] H. Sariowan, R. Cruz, and G. Polyzos. Scheduling for quality of service guarantees via service

curves. In International Conference on Computer Communications and Networks (ICCCN),
pages 512�520, September 1995.



BIBLIOGRAPHY 197

[90] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. RFC 1889, RTP: A transport
protocol for real-time applications, January 1996.

[91] D. Serpanos and P. Antoniadis. FIRM: a class of distributed scheduling algorithms for high-
speed ATM switches with multiple input queues. In IEEE Infocom 2000 Conference, Tel Aviv,
Israel, March 2000.

[92] S. Shenker, D. Clark, D. Estrin, and S. Herzog. Pricing in computer networks: Reshaping the
research agenda. ACM Computer Communication Review, 26:19�43, April 1996.

[93] M. Shreedhar and G. Varghese. E�cient fair queueing using de�cit round-robin. IEEE/ACM
Transactions on Networking, 4(3):375�385, June 1996.

[94] W. Richard Stevens. TCP/IP Illustrated Volume 1. ISBN 0201633469, Addison-Wesley, 1994.
[95] K. Thompson, G. J. Miller, and R. Wilder. Wide-area internet tra�c patterns and character-

istics. IEEE Network, 11(6):10�23, November/December 1997.
[96] Kishor S. Trivedi. Probability and Statistics with Reliability, Queueing and Computer Science

Applications. Wiley, 2002.
[97] International Telecommunication Union. "one-way transmission time", transmission systems

and media: General characteristics of international telephone connections and international
telephone circuits, February 1996.

[98] Berkley. University of California. NS2 simulator, the LBLN network simulator.
[99] D. C. Verma, H. Zhang, and D Ferrari. Delay jitter control for real-time communication in a

packet switched network. In Tricomm 91, pages 35�46, April 1991.
[100] Chris Vowden. Con�dential technical U4EA report, 1998.
[101] Chris Vowden and Gerhard Heide. Con�dential technical U4EA report, Feb 2002.
[102] S. Wang, D. Xuan, R. Bettati, and W. Zhao. A study of providing statistical QoS in a di�er-

entiated services network. In The 2nd IEEE International Symposium on Network Computing

and Applications, 2003.
[103] W. Willinger, M. S. Taqqu, and R. Sherman. Proof of a fundamental result in self-similar

tra�c modeling. ACM SIGCOMM Computer Communication Review, 27(2):5�23, April 1997.
[104] R. Wol�. Poisson arrivals see time averages. Operations Research, 30(2):223�231, 1982.
[105] Ikjun Yeom and A. L. Narasimha Reddy. Modeling TCP behavior in a di�erentiated services

network. IEEE/ACM Transactions on Networking, 9(1):31�46, 2001.
[106] T. Ylonen. The SSH (secure shell) remote login protocol, November 1995.
[107] L. Zhang. Virtual clock: A new tra�c control algorithm for packet switching networks. In

ACM SIGCOMMN'90, Philadelphia, September 1990.


