
JAnalyzer - A visual Static Analyzer for JavaTM

JAnalyzer

A Visual Static Analyzer for JavaTM

Eric Bodden

eric@bodden.de
University of Kent, Canterbury, United Kingdom

Proposed by Richard E. Jones and Andy M. King
{R.E.Jones,A.M.King}@kent.ac.uk

As contribution for the SET Awards 2003, category computing.

Eric Bodden is a student of the University of Technology Aachen (RWTH), Germany.
While spending a year abroad, he was Project Manager, Software Architect and Lead
Programmer of a project group consisting of three third-year students at the Univesity

of Kent, where he obtained a Diploma in Computer Science (Distinction).
He is currently working for the IBM Java Technology Centre in Hursley, UK,

and will continue his studies in Germany in October.

The contributions to this project by his two fellow students,
Piotr Piasecki and Jian Yang, are clarified in this report.

Further information at http://janalyzer.bodden.de

JAnalyzer - A visual Static Analyzer for JavaTM

Page 1 of 7

1. Introduction
Object-oriented (OO) programming has well-known benefits, producing reusable,

modular, well-structured code. Nevertheless, program development is still hard, espe-
cially for large programs that consist of thousands of interacting objects. Faults in one
method can propagate to others defined in different classes or even different packages.
The programmer would benefit from a high-level, intuitive, graphical view of these
method dependencies. Such a view would aid refactoring [1] by revealing the degree
of coupling between different parts of the program as well as save debugging time by
allowing design faults to be visualized at implementation time in a straightforward
way. Our research concentrated on Java due to its increasing popularity and platform
independence.

In contrast to classic imperative programming paradigms, the development of such a
view is a non-trivial task for OO languages, because methods are typically invoked
through dynamic dispatch — the type of the object on which the method will actually
be invoked is not known at compile time. Such polymorphism has the benefit to the
programmer of reusable code, but means that the relationship between caller and
callee is 1:many rather than 1:1. A type analysis for Java is therefore required to syn-
thesise a set of possible types for each object identifier in the program. Inferring these
sets is a complex task, which we explain further below.

Our research concentrated on Java due to its platform independence and increasing
popularity. Our standalone tool, JAnalyzer, aids program development by:

• construction of call-graphs by state of the art analyses
• visual representation of inter-dependencies between methods, thus aiding

refactoring
• comprehensible and responsive views of even very large call-graphs

2. The goal of the project
As a final-year undergraduate project at the University of Kent, a team of three stu-

dents developed a tool intended to enable software architects and programmers to gain
a high level view of their application through static analysis of their Java code. This
analysis should include a representation of the class hierarchy as well as the caller /
callee relationship between methods; these relationships were to be displayed visually
as a graph.

3. Static call graph analysis
Research led to three approaches to type analysis: Class Hierarchy Analysis (CHA)

[2], Rapid Type Analysis (RTA) [3] and Variable Type Analysis (VTA) [4]. CHA
constructs a call graph through application of a type analysis, based simply on the
class hierarchy of the program. However, its analysis is overly conservative, leading
to a call graph that is larger than necessary, since the set of classes that CHA associ-
ates with an object identifier may include cases not realised (i.e. classes of which no
object has been created).

RTA and VTA prune the call graph in order to eliminate such false positives. By
tracking object instantiation (RTA) or control flow (VTA), these techniques are able
to prune the call graph substantially.

public void aMethod(){
 LibItem item;

JAnalyzer - A visual Static Analyzer for JavaTM

Page 2 of 7

 item = new Book();
 item = new DVD();
 item.foo("whatever");
 }

In this example, Book and DVD are considered to be subclasses of LibItem: both
override the method foo. CHA would construct the graph for this method as:

aMethod() Book.foo(...)

DVD.foo(...)

LibItem.foo(...)a

b

c

As one can see, neither LibItem.foo() nor Book.foo() is ever invoked. RTA
will remove edge a, since LibItem is never instantiated. VTA will also remove edge
b by propagating the type of item to the call foo.

4. Analysis of tools and libraries
An early decision was whether to base the tool on source code or byte code repre-

sentation of classes. Bytecode leads to a more accurate representation of run-time be-
haviour (taking compile time optimisations into account), is easier to parse, quicker to
process and — most important — always accessible. Any additional information pro-
vided in the source code is unnecessary for this analysis. The chief drawback of byte-
code is that code must be converted to a human-readable form for display by the tool.

Research into call-graph construction tools led to the adoption of the bytecode op-
timization package SOOT [5], which provides CHA and VTA. Although these com-
ponents represent the state of the art, they may be enhanced or replaced as research
proceeds. Once the SOOT package has constructed the call-graph, it can be queried in
milliseconds, promising excellent performance for its visual representation. An added
benefit is the SOOT notion of phantom classes which replace sub-graphs by single
leaves in the call-graph, thereby leading to sparser graphs and faster analysis and dis-
play.

5. Implementation details
The project was designed in UML, using the CASE tool TogetherTM 1. The applica-

tion has three major components:
• File management, pre-processing and compilation of source files
• Bytecode analysis, call graph construction, pruning and query
• Graphical user interface and call graph visualization

1 www.togethersoft.com.

JAnalyzer - A visual Static Analyzer for JavaTM

Page 3 of 7

Figure 1: Sequence diagram illustrating how a bytecode line is to be resolved after a mouse-click.

5.1. Pre-processing source code and bytecode
Analysis of Java bytecode is surprisingly awkward because bytecodes identify only

the line number of the corresponding statement in the source code. Unfortunately, one
line of source code may map to several bytecodes, especially if that line contains
more than one expression. However, a key requirement of the project was to enable
the user to switch to a high-level view of the call graph just by clicking on source
code identifiers.

Different approaches were considered, such as propagating types to the source code
level. Our solution was to build a source code parser with JavaCC2 to transform the
source code prior to compilation in such a way that each line contains exactly one ex-
pression. The original position of any expression in the source code was logged in a
hash-table, which was also used for reverse lookup. Using this technique, the static
type of an object can be determined by finding a match of the user’s click position
(line/column in the source code) in this hash-table, thereby identifying the corre-
sponding bytecode line (see Figure 1). This bijection between source code and byte-
code proved to be reliable and highly efficient, as pre-processing and compilation are
performed just once for each source code project.

2 JavaCC is a LL(k) parser generator.

JAnalyzer - A visual Static Analyzer for JavaTM

Page 4 of 7

The program is analysed in several stages. In the first stage, the user to specifies a
project containing either source code or bytecode files (which may be contained in a
JAR archive).

In the second stage, the source code (if given) is pre-processed and compiled ac-
cording to classpath and compilation parameters previously set by the user. The pre-
processing stage includes syntax validation: any syntax error is highlighted in the GUI.
Otherwise, the pre-processed and compiled classes are added to SOOT’s internal rep-
resentation, or scene. The user can now display classes in the GUI and investigate
their members.

Figure 2 - Clicking on a method call in source code invokes a call-graph query.

5.2. Call graph production and query
In stage three, the analysis performs CHA, and optionally VTA, on the scene to

produce a graph object available for browsing. All the steps described up to this point
need just to be performed once.

The user is now able to open the source code of their project, click on any method
calls and chose from options including show direct or transitive call targets (see Fig-
ure 2). The set of static types of the possible call targets are retrieved in order to per-
form the appropriate query on the call graph using internal SOOT mechanisms.

JAnalyzer - A visual Static Analyzer for JavaTM

Page 5 of 7

Figure 3: The call–graph generated can be investigated further through direct user interaction.

5.3. Rendering the high-level view
The result of the query is a representation of a subset of the call-graph, containing

the methods of interest. The renderer, OpenJGraph 3, displays the graph, attaching in-
ternal objects representing methods to the appropriate nodes in the graphical display.
The end user can remain in this high-level view, browsing the call graph directly
through operations on nodes of the displayed graph (see Figure 3). No further retrieval
of static types is necessary at this stage since the set of fully qualified calls is attached
to each node in the graph already. This optimization provides crisp user interaction.

5.4. User guidance
It was considered to be useful to provide some guidance through the application,

due to the complex nature of the topic. This was provided by highlighting those but-
tons in the user interface that might be suitable to be clicked in order to proceed to the
next stage (e.g. Compile then Perform Analysis, and so on).

6. Organization of the team

6.1. Project Plan
Throughout the project, the team attempted to adhere to the best software engineer-

ing practice. Structured development process and tooling were important factors for
the success of the project. A strict development process was established, incorporating
the following tasks:

• Requirements analysis and specification

3 openjgraph.sf.net.

JAnalyzer - A visual Static Analyzer for JavaTM

Page 6 of 7

• Discovery of required and existing resources
• Research into exiting algorithms and tools for static analysis
• The choice of working with either bytecode or source code
• Design using UML class and sequence diagrams
• Breakdown and allocation of coding work
• Implementation
• Unit and Integration tests
• Documentation

Appropriate tasks were distributed between the team members according to their
skills: Bodden (Project Manager) was also responsible for the software architecture as
Lead Programmer, Piasecki focused on syntax highlighting, graph display, layout and
testing, and Yang assumed responsibility for GUI development.

6.2. Quality assurance
Project requirements were specified in advance in an acceptance tests document.

Standards for coding, version control, testing and test-purpose use cases were inte-
grated into a quality assurance plan. In addition, a requirements specification for the
GUI was drawn up.

A source code skeleton was generated from a UML specification (e.g. see Figure 1),
based on design-purpose use cases, which again comply with the acceptance tests.

CVS was used for version control. Code was checked for compliance with the re-
quirements specifications at reasonable intervals. After completion of a software
module, unit tests were generated and applied to assure consistency of individual
classes with their specification. On failure, a defect report was raised and given to the
appropriate programmer; on success, an approval form was filed with the appropriate
CVS version number.

The GUI specification was used to build integration tests in order to test the overall
functionality.

6.3. Progress tracking and process integration
Progress was tracked using a project plan comprising Gantt charts and dependency

diagrams that were updated on a regular basis. Milestones were defined and scheduled
for fixed dates. This enabled the team to identify risks and spot problems in the devel-
opment process as soon as possible.

7. Conclusion
All requirements of the project were fulfilled. The final application is efficient, can

use source or byte code, and is intuitive to use. State of the art type analyses allow the
user to browse the call graph, either from source text directly or by following links in
a graph of method calls. The tool offers user guidance, and allows filtering of ‘unin-
teresting’ classes and packages. The implementation uses creative solutions, such as
the provision of a link between source and byte code through pre-processing — this
approach is both feasible and efficient. The project was a success from a research
point of view, and adherence to a software engineering discipline contributed strongly
to its timely and complete delivery.

8. Outlook
The project team is considering improvements and enhancements:

JAnalyzer - A visual Static Analyzer for JavaTM

Page 7 of 7

• Integration into the Eclipse4 integrated development environment.
• Linking of the analysis capabilities to refactoring modules of Eclipse in order

to provide semi-automated refactoring and better debugging.
Finally, JAnalyzer is available under GPL license and contributions to its further de-
velopment are encouraged5.

9. Acknowledgements
Acknowledgements go to the other two project team members who contributed to

the success of this project. Much gratitude goes also to our supervisor, Richard Jones,
who provided an enormous contribution to the research of this project and helped in
many ways to find appropriate solutions to various problems the team came across.

The whole team is also grateful for the support from the Sable research group at
McGill University as well as to Andy C. King, of the University of Kent, who pro-
vided practical advice on the use of SOOT.

10. References
[1] J. Brant, W. Opdyke, D. Roberts, M. Fowler, K. Beck. Refactoring: Improving the Design of Ex-

isting Code. Addison-Wesley, 1999.
[2] J. Dean, D. Grove, and C. Chambers. Optimization of Object-Oriented Programs Using Static

Class Hierarchy Analysis. Proceedings of ECOOP’95. Lecture Notes in Computer Science,
952:77–101, 1995.

[3] D. Bacon and P. Sweeney. Fast Static Analysis of C++ Virtual Function Calls. In Proceedings of
OOPSLA’96, pages 324–341, 1996, ACM Press.

[4] V. Sundaresan, L.. Hendren, C. Razafimahefa, R. Vall´ee-Rai, P. Lam, E. Gagnon, and C. Godin.
Practical virtual method call resolution for Java. In Proceedings of OOPSLA’00, pages 264–280,
2000. ACM Press

[5] V. Sundaresan, P. Lam, E. Gagnon, R. Vall´ee-Rai, L. Hendren and P. Co. SOOT — a Java Opti-
mization Framework. In Proceedings of CASCON 1999, pages 125–135, 1999.

4 www.eclipse.org.
5 janalyzer.bodden.de.

