WIM JAnalyzer - A visual Static Analyzer for Java'" o)

JAnalyzer

A Visual Static Analyzer for Java™

Eric Bodden

eric@bodden.de
University of Kent, Canterbury, United Kingdom
Proposed by Richard E. Jones and Andy M. King
{R.E.Jones,A.M.King}@kent.ac.uk

As contribution for the SET Awards 2003, category computing.

Eric Bodden is a student of the University of Technology Aachen (RWTH), Germany.
While spending a year abroad, he was Project Manager, Software Architect and Lead
Programmer of a project group consisting of three third-year students at the Univesity
of Kent, where he obtained a Diploma in Computer Science (Distinction).
He is currently working for the IBM Java Technology Centre in Hursley, UK,
and will continue his studies in Germany in October.

The contributions to this project by his two fellow students,
Piotr Piasecki and Jian Yang, are clarified in this report.

Further information at http://janalyzer.bodden.de

KE
WWI}!I” JAnalyzer - A visual Static Analyzer for Java'" o)

AT CANTERBURY NN NN

1. Introduction

Object-oriented (OO) programming has well-known benefiteducing reusable,
modular, well-structured code. Nevertheless, programlai@vent is still hard, espe-
cially for large programs that consist of thousandsit@racting objects. Faults in one
method can propagate to others defined in different classagen different packages.
The programmer would benefit from a high-level, intuitigeaphical view of these
method dependencies. Such a view would aid refactoring [1¢\®aling the degree
of coupling between different parts of the program as$ agsave debugging time by
allowing design faults to be visualized at implementatiore in a straightforward
way. Our research concentrated on Java due to itaasingepopularity and platform
independence.

In contrast to classic imperative programming paradighesdevelopment of such a
view is a non-trivial task for OO languages, because austlare typically invoked
throughdynamic dispatch — the type of the object on which the method will adyual
be invoked is not known at compile time. Such polymorphiasithe benefit to the
programmer of reusable code, but means that the redatprbetween caller and
callee isl:many rather tharl:1. A type analysis for Java is therefore required to syn-
thesise aet of possible types for each object identifier in the paoagrinferring these
sets is a complex task, which we explain further below

Our research concentrated on Java due to its platft@pendence and increasing
popularity. Our standalone tool, JAnalyzer, aids program dewveapby:

» construction of call-graphs by state of the art analyses

» visual representation of inter-dependencies betweehaugf thus aiding
refactoring

» comprehensible and responsive views of even very large eplhgr

2. The goal of the project

As a final-year undergraduate project at the Universitgesft, a team of three stu-
dents developed a tool intended to enable software architedtprogrammers to gain
a high level view of their application through stati@lysis of their Java code. This
analysis should include a representation of the clasarbigr as well as the caller /
callee relationship between methods; these relatiomisigpe to be displayed visually
as a graph.

3. Static call graph analysis

Research led to three approaches to type analysis Biagsarchy Analysis (CHA)
[2], Rapid Type Analysis (RTA) [3] and Variable Type Argty (VTA) [4]. CHA
constructs a call graph through application of a typdyaisa based simply on the
class hierarchy of the program. However, its analgssverly conservative, leading
to a call graph that is larger than necessary, siresdhof classes that CHA associ-
ates with an object identifier may include cases notsexhli.e. classes of which no
object has been created).

RTA and VTA prune the call graph in order to eliminate siatte postives. By
tracking object instantiation (RTA) or control flow (V)Athese techniques are able
to prune the call graph substantially.

public void aMethod() {
Libltemitem

Page 1 of 7

KE
WWI}!I” JAnalyzer - A visual Static Analyzer for Java'" o)

AT CANTERBURY NN NN

item = new Book();
item = new DVIX);
item foo("whatever");

}

In this exampleBook andDVD are considered to be subclasse&idbl t em both
override the methotloo. CHA would construct the graph for this method as:

a LibItem.foo(...)

=

aMethod () —P23 Book.foo(...)
&

As one can see, neither bl t em f oo() norBook. f oo() is ever invoked. RTA
will remove edge, sincelLi bl t emis never instantiated. VTA will also remove edge
b by propagating the type ot emto the calif 0o.

DVD.foo (...)

4. Analysis of tools and libraries

An early decision was whether to base the tool on sotwde or byte code repre-
sentation of classes. Bytecode leads to a more aea@artesentation of run-time be-
haviour (taking compile time optimisations into accQuisteasier to parse, quicker to
process and — most important — always accessible. Antiaual information pro-
vided in the source code is unnecessary for this analyseschief drawback of byte-
code is that code must be converted to a human-readaiviédiodisplay by the tool.

Research into call-graph construction tools led to thapton of the bytecode op-
timization package SOOT [5], which provides CHA and VTAthAugh these com-
ponents represent the state of the art, they may sneadh or replaced as research
proceeds. Once the SOOT package has constructed theagdd|-grcan be queried in
milliseconds, promising excellent performance for igugi representation. An added
benefit is the SOOT notion gdhantom classes which replace sub-graphs by single
leaves in the call-graph, thereby leading to sparser gaaph$aster analysis and dis-

play.

5. Implementation details
The project was designed in UML, using the CASE tool Trggef 1. The applica-
tion has three major components:
* File management, pre-processing and compilation of sdilese
» Bytecode analysis, call graph construction, pruning and query
» Graphical user interface and call graph visualization

! www.togethersoft.com.

Page 2 of 7

KE
WWI}!I” JAnalyzer - A visual Static Analyzer for Java'" o)

AT CANTERBURY NN NN

initial
Frefroc
PreProc.
] I

1: resohve(String,intintrint }

1: process{u)woid
instantiatea L
LineMapper; Il .2: mapFileName:=getMapFileName filename j:Strin, mapper
this object 1.3: <constructor>{mapFileName) LineMapper
gives a
bytecade line
fora v Q
sourcecode 1.4.1: loadOavoid |
pasiion y . .
while((s = inreadLine()) *= nully
if(count == 0)
[
Iad the map _ ficount == 2)
file
else
catch(lOException e) |
! —
16: new | JavaParser
| =
parse the o o }
oureatile | | 1.7: CompilationUnitt:CompilationUnit ! Ll
| u soher
1.8 pper, new new Buffered... | [LineResolver
creale the o= f f
visitor } }
} } mapper ==null) "y, 1Pginter checks
| [B I i added afler single
| | ifiroot == nully class tests
| |
| |
1.9: resolveL inefline, columnyint | | j resoive the itern: [0ok for the next opening
f f BTt bracket after the click site, then map this line
1940 | ine. olummind 1]] tothe bytecode line and retum

f
whileiter.hasNexl() 88 found)
iftentry] 0]== squrceLine && entry] 11|-= sourceColumn)

ffound)

ifhainvoke statement L 191421
found, threw exception 1| [how sprassion

mappingMotFoundException
) - -

ﬁ catch(Exception e)
|
|
|
|
|
|

Figure 1: Sequence diagram illustrating how a bytecodedittebe resolved after a mouse-click.

5.1. Pre-processing source code and bytecode

Analysis of Java bytecode is surprisingly awkward becayssodes identify only
theline number of the corresponding statement in the source code riunéttely, one
line of source code may map to several bytecodes, edpetitiat line contains
more than one expression. However, a key requirenfetiitegoroject was to enable
the user to switch to a high-level view of the callpgraust by clicking on source
code identifiers.

Different approaches were considered, such as propagatirgytoyfee source code
level. Our solution was to build a source code parstr JavaCC€to transform the
source code prior to compilation in such a way thahdiae contains exactly one ex-
pression. The original position of any expression insthierce code was logged in a
hash-table, which was also used for reverse lookup. Ukiegechnique, the static
type of an object can be determined by finding a matcheolutier’'s click position
(line/column in the source code) in this hash-tablerethe identifying the corre-
sponding bytecode line (see Figure 1). This bijection betweernce code and byte-
code proved to be reliable and highly efficient, as preqesing and compilation are
performed just once for each source code project.

2 JavaCC is a LL(k) parser generator.

Page 3 of 7

KE
WWI}!I” JAnalyzer - A visual Static Analyzer for Java'" o)

AT CANTERBURY NN NN

The program is analysed in several stages. In thestiage, the user to specifies a
project containing either source code or bytecode files (winigi be contained in a
JAR archive).

In the second stage, the source code (if given) is preepsed and compiled ac-
cording to classpath and compilation parameters previoasligysthe user. The pre-
processing stage includes syntax validation: any syntax isrhighlighted in the GUI.
Otherwise, the pre-processed and compiled classes ar@ @d8&0T's internal rep-
resentation, oscene. The user can now display classes in the GUI andsiigate
their members.

= BEX

File Analysis Options Help

. Recompile Perform Analysis
hoard v : board.Board

hoard.Board b i =]
[}intgetHEMhto - i public v?id load(5tring file) throws I0Exception {
— & try
[3intg8tNDEStO :; FileReader fr=new FileReader(file):
[ﬁinIQEtNStaﬂPU"“SO Ei FileTokenizer toki=new FileTokenizer(fr):
[}intgeWthHO ;; Vector parsed=new Vector(];
[y int spinTolrd(avalang St |2 boolean finished=false;

D java.lang.String infToActids|
D java.lang.String intToDir
D java.lang.String infToSp
D java.lang.String toString
D void load{java.lang.Strin
D woid randormit)

D void saveljava.lang. Strin
D woid setDestiintboard P

while [!'finished) {

parsed.clear();

parsed = toki.hear():

I System.out.println(”Parzed: "+paraed) ;

if(((Token)parsed.get(0)).sval.equals(Protocol, 3TE_BOARDSIZE]) {
this.width={int) { (Tokeh)parsed.get(l)).nval;
this.height=(int) { (Token)parsed.get(2)].nwval;
this.depth={int) { (Token)parsed.get(3)).nval;

: board=new Fj
D void setDestintintint [& foriint i=0; Show direct calltargets
v |
'?| E : for(int | Show transitive call targets
boat ghow call sites {callers)
| Show class code... 1 }
A W e s : 1
== } else if(({Token)parsed.get(0)).swval.equals(Protocol. TR BOARD)) | |
HEFhOd Af8ysten. out.println("Got a line from the field containing "-H
aﬁ;d : if (parsed.size() '= depth¥this.getwidehi)+3) {
odifiers: ;g Syatem.out.printlni”Line of the board of inwalid size rec
public B i
Gilgmature: B int row=(int) { (Token)parsed.get(l)).nval;
<board.Board: woid loaq: Field field:
Subsignature: :) ‘
int akt=2;

woid load(java.lang.Strf
i for{int i=0:i<this.gecilidch() i) |

field = new Field{depth):
for(int d=0:;d<depth:d+) |

EESun = t11: alysis: Done.
Affun Feb 09 19:12:08 GNT 2003 - Opening 'D:iyTempaipathfinderdsourceiboard\Board. jav
QESun Feb 09 19:1Z2:10 GMT 2003 - Parsing document... R

4

D

Figure 2 - Clicking on a method call in source code ingakeall-graph query.

5.2. Call graph production and query

In stage three, the analysis performs CHA, and optoNa' A, on the scene to
produce a graph object available for browsing. All thestiescribed up to this point
need just to be performed once.

The user is now able to open the source code of theegdrajlick on any method
calls and chose from options including show direct arsitave call targets (see Fig-
ure 2). The set of static types of the possible cedeta are retrieved in order to per-
form the appropriate query on the call graph using int&@&T mechanisms.

Page 4 of 7

KE
WWI}!I” JAnalyzer - A visual Static Analyzer for Java'" o)

AT CANTERBURY NN NN

& Showing transitive call targets for: <com.FileTokenizer: java.util.Vector hear()> g@

- - java.lang.Object
Java.lang.String woid =init=0
woid =init=0

java.lang.StringBuffer
woid <ihit={java.langString

J_a\ta_.lo.StreamTokemzer imfgkes
int linenod

imigkes

Java.util.Wector
boolean add{java.lang. Gbject)

) java.lang.StringBuffer
com.FileTokenizer _____IDJLD% Jjava.lang.tringBuffer appendijava.lang. Object)

Javautil Vectar g—ANOKES— (s yilvector heard

woid =init=0

java.io.PrintStream
woid printinfjava.lang String)

n java.ioStreamTakenizer
imdkes woid pushBackd

com.Token |
woid <init= | Ghow in source code

Java.langStringBuffer o
jawvalang string tostringd Show direct call targets

Show transitive call targets
Show call sites (callers)

jawa.inStreamTokenizer
int nextTokenb

[E

B 1]

Figure 3: The call-graph generated can be investigatéstfuhtrough direct user interaction.

5.3. Rendering the high-level view

The result of the query is a representation of a sulfsttte call-graph, containing
the methods of interest. The renderer, OpenJGtagisplays the graph, attaching in-
ternal objects representing methods to the appropriatesnodbe graphical display.
The end user can remain in this high-level view, browsh®y call graph directly
through operations on nodes of the displayed graph (geeeR3). No further retrieval
of static types is necessary at this stage sinceethaf fully qualified calls is attached
to each node in the graph already. This optimization prewidsp user interaction.

5.4. User guidance

It was considered to be useful to provide some guidanceghrthe application,
due to the complex nature of the topic. This was provided diylighting those but-
tons in the user interface that might be suitablestolicked in order to proceed to the
next stage (e.gcompile thenPerform Analysis, and so on).

6. Organization of the team

6.1. Project Plan

Throughout the project, the team attempted to adherestbet$t software engineer-
ing practice. Structured development process and tooling w@rtant factors for
the success of the project. A strict development psowes established, incorporating
the following tasks:

* Requirements analysis and specification

3 openjgraph.sf.net.

Page 5 of 7

KENT

ONIVERSY OF KENT JAnalyzer - A visual Static Analyzer for Java'" o)
AT CANTERBURY NEEN

» Discovery of required and existing resources

* Research into exiting algorithms and tools for statidyasrea

* The choice of working with either bytecode or sourogeco

» Design using UML class and sequence diagrams

» Breakdown and allocation of coding work

* Implementation

* Unit and Integration tests

* Documentation

Appropriate tasks were distributed between the team menalsemsding to their

skills: Bodden (Project Manager) was also responstyl¢éhke software architecture as
Lead Programmer, Piasecki focused on syntax highlighgiraph display, layout and
testing, and Yang assumed responsibility for GUI devedogm

6.2. Quality assurance

Project requirements were specified in advance in aepéacce tests document.
Standards for coding, version control, testing and testegarpise cases were inte-
grated into a quality assurance plan. In addition, a reopgnts specification for the
GUI was drawn up.

A source code skeleton was generated from a UML spatidit (e.g. see Figure 1),
based on design-purpose use cases, which again complha/éledeptance tests.

CVS was used for version control. Code was checkeddopbance with the re-
quirements specifications at reasonable intervals.r Aftanpletion of a software
module, unit tests were generated and applied to assursteang of individual
classes with their specification. On failure, a defepbrt was raised and given to the
appropriate programmer; on success, an approval fornfiledsvith the appropriate
CVS version number.

The GUI specification was used to build integrationst@storder to test the overall
functionality.

6.3. Progress tracking and process integration

Progress was tracked using a project plan comprising Glaatts and dependency
diagrams that were updated on a regular basis. Milestearesdefined and scheduled
for fixed dates. This enabled the team to identify riskssgad problems in the devel-
opment process as soon as possible.

7. Conclusion

All requirements of the project were fulfilled. Thedi application is efficient, can
use source or byte code, and is intuitive to use. Statedart type analyses allow the
user to browse the call graph, either from sourcedegttly or by following links in
a graph of method calls. The tool offers user guidanu# alows filtering of ‘unin-
teresting’ classes and packages. The implementationcusasve solutions, such as
the provision of a link between source and byte code thrpugiprocessing — this
approach is both feasible and efficient. The project wasuccess from a research
point of view, and adherence to a software engineersgpdine contributed strongly
to its timely and complete delivery.

8. Outlook
The project team is considering improvements and enhzans:

Page 6 of 7

KENT

ONIVERSY OF KENT JAnalyzer - A visual Static Analyzer for Java'" o)
AT CANTERBURY NEEN

« Integration into the Eclipentegrated development environment.
» Linking of the analysis capabilities to refactoring modwég&clipse in order
to provide semi-automated refactoring and better debugging.
Finally, JAnalyzer is available under GPL license andrdautions to its further de-
velopment are encouraged

9. Acknowledgements

Acknowledgements go to the other two project team mesnivbo contributed to
the success of this project. Much gratitude goes also teup@rvisor, Richard Jones,
who provided an enormous contribution to the researchi®foroject and helped in
many ways to find appropriate solutions to various problemsstira came across.

The whole team is also grateful for the support from Sable research group at
McGill University as well as to Andy C. King, of the Unrggy of Kent, who pro-
vided practical advice on the use of SOOT.

10. References

[1] J. Brant, W. Opdyke, D. Roberts, M. Fowler, K. Beckfdttoring: Improving the Design of Ex-
isting Code. Addison-Wesley, 1999.

[2] J. Dean, D. Grove, and C. Chambers. Optimizatib®loject-Oriented Programs Using Static
Class Hierarchy Analysis. Proceedings of ECOOP’95. urectNotes in Computer Science,
952:77-101, 1995.

[3] D. Bacon and P. Sweeney. Fast Static Analysis+of ®irtual Function Calls. In Proceedings of
OOPSLA96, pages 324-341, 1996, ACM Press.

[4] V. Sundaresan, L.. Hendren, C. Razafimahefa, &l'&e-Rai, P. Lam, E. Gagnon, and C. Godin.
Practical virtual method call resolution for Java. led@edings of OOPSLA’'00, pages 264—-280,
2000. ACM Press

[5] V. Sundaresan, P. Lam, E. Gagnon, R. Vall'ee-RalHdndren and P. Co. SOOT — a Java Opti-
mization Framework. In Proceedings of CASCON 1999, pages 1253938.

* www.eclipse.org.
® janalyzer.bodden.de.

Page 7 of 7

