
Supporting Interactive Invocation of Remote Services
within an Integrated Programming Environment
Bruce Quig

Faculty of Information Technology
Monash University

Australia

bquig@infotech.monash.edu.au

John Rosenberg
Faculty of Information Technology

Monash University
Australia

johnr@infotech.monash.edu.au

Michael Kölling
Mærsk Institute

University of Southern Denmark
Denmark

mik@mip.sdu.dk

ABSTRACT
Building distributed systems is an inherently difficult and
complex task. Modern middleware architectures assist developers
by providing abstractions that hide transport layer functionality.
This paper argues that the development of such systems can be
aided by the availability of appropriate, integrated tools. We
discuss ways in which the building of such systems can be
supported by development tools, focusing particularly on
interactive testing and debugging mechanisms.
A prototype system based on the BlueJ programming environment
has been developed to support the development of Java RMI
applications as a basis for further investigation. The tools
developed as part of this prototype are presented and discussed.

Categories and Subject Descriptors
D.2.6 [Software Engineering]: Programming Environments -
integrated environments, interactive environments, programmer
workbench; D.2.5 [Software Engineering]: Testing and
Debugging

General Terms
Experimentation, Verification.

Keywords
Distributed Systems, testing, debugging, BlueJ.

1. INTRODUCTION
The evolution of modern computing applications has been
influenced by a number of continuing trends. Computing devices
continue to become more powerful and smaller in physical size.
Networking infrastructure is also becoming more widespread,
higher in capacity and more accessible. This has led to a
continued interest in the use and development of distributed
applications, potentially targeting a wide variety of networked
computing devices.

Distributed applications have numerous potential advantages,
such as increased reliability, performance and maintainability [1].
Building systems that realise these advantages, however, is an

inherently difficult task. It requires developers to deal with the
unique characteristics of distributed systems such as increased
latency, bandwidth restrictions and fluctuations, security
implications and requirements, and the increased risk of partial
and complete failure of other network nodes.

Middleware architectures such as Java Remote Method Invocation
(RMI), Common Object Request Broker Architecture (CORBA),
and Microsoft’s Distributed Component Object Model (DCOM)
are commonly used to allow developers to concentrate on the
application logic. These architectures manage the lower level
details of distributed communication between application
components. The development process however is still difficult
and complex. Such systems continue to be considered difficult to
design, build, configure, test and execute.

We believe that the process can be simplified and improved by the
availability of appropriate integrated software development tools,
particularly those that support easy prototyping, testing and
debugging. This paper describes an integrated programming
toolset based upon the existing BlueJ Programming Environment
[2] and extensions to BlueJ to support distributed programming
with Java RMI.

2. TOOLS FOR DISTRIBUTED SYSTEMS
Object-oriented (OO) systems are now commonly used to develop
modern computing systems. The object-oriented paradigm is seen
to provide a good conceptual fit with distributed systems [3]. The
notion of objects as autonomous individuals, and messages as the
communication mechanism between objects, closely matches the
structure and behaviour of distributed systems.

There is a continuing trend towards the use of object-oriented
middleware for building distributed systems [4]. Examples of
these include CORBA, Java RMI, Microsoft‘s COM/DCOM and
.NET Framework. These architectures, while providing their own
use and design idioms, rely upon a similar set of abstractions ([5,
6]). The core activities of building these systems are similar.

Distributed object systems, like traditional OO systems, are peer-
to-peer in nature. Objects can act as both consumers and providers
of services. Within the context of a particular invocation, an
object may be deemed to be either a client or a provider of a
service. The following subsections look at the typical
development stages for client and server objects

2.1 Developing Remote Service Objects
2.1.1 Define Interface
One of the first steps in developing distributed objects is the
definition of interfaces as the means by which clients and servers

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
PPPJ 2003, 16-18 June, 2003, Kilkenny City, Ireland.
Copyright 2003 ISBN: 0-9544145-1-9…$5.00.

conform to a contract representing the allowed interactions.
CORBA and COM/DCOM use a separate contract language for
defining these interfaces. CORBA uses its own Interface
Definition Language (IDL), as does COM/DCOM, which uses
Microsoft IDL (MIDL). These definitions are then used to
generate appropriate proxies through which distributed
communication is marshalled. As a single language platform,
RMI remote object interfaces can use an existing language
Interface construct to define remote interfaces. RMI interfaces
use the existing Java language Interface construct. Early versions
mandated that remote interfaces needed to inherit a methodless
parent interface Remote to flag their remote capabilities to both
the system compiler and Java Virtual Machine (JVM). Latter
versions only require the implementation of interfaces whose
methods provide remote exception handling.

2.1.2 Generate Service Stubs
CORBA and DCOM implementations contain tools that perform
the task of producing remote stubs. On the service side these act
as a local proxy [7] for the client. Conversely on the client side
the stub acts as a local proxy for the remote service. The stubs act
to hide the distributed nature of the method invocations. In RMI
the process is slightly different. RMI concerns itself only with
Java objects on both the client and server. As it therefore deals
with a single type system, there is no need for an intermediary
definition language to specify remote interfaces. Stub generation
is still carried out by a separate compiler; however the service
implementation class file is used as the input source of the
compilation process. Early versions of Java produced separate
stubs for servers and clients (skeletons). As of Java version 1.2 a
unified stub provides client and server capabilities.

2.1.3 Create Service Implementation
Service implementations are created typically using some form of
inheritance or interface implementation. Depending on the
capabilities of the implementation language, this may be direct
inheritance of a base or abstract class. In languages such as Java
that support a separate notion of an interface type, it is typically
through the implementation of such a type.

2.1.4 Service Registration
For a service to be available to respond to requests it needs to
undergo some form of registration so it can be successfully
located. In CORBA the most basic form is the implementation
repository which resides on each host. It associates service
objects with the means to start up the server process.
COM/DCOM uses the Windows registry as an implementation
repository. RMI uses Activation interfaces in conjunction with
the RMI daemon to start up processes.

It is common for services to be placed in some form of repository
for access by clients. Examples of these are Naming services that
allow the lookup of services by matching with an identifying
name, and Trading services where lookup is based on service
type. The CORBA standard [8] includes specifications for both
Naming and Trading services [9]. RMI provides a simple naming
registry (rmiregistry) as part of the standard Java software
development kit (SDK) distribution.

2.2 Developing a client to consume services
A number of the steps involved in creating a client object are the
same as in producing remote services as outlined in Section 2.1.

The definition of interfaces is the same as for services. The client
will use the same interface or type definition as provided by the
remote service object. The service stub generation process is also
similar if not identical to that of services. In some cases
mechanisms exist for the dynamic discovery of these. CORBA
provides a Dynamic Invocation Interface (DII). Whilst RMI does
not have an equivalent, similar functionality can be achieved
through the use of Java’s reflection API with RMI.

Clients need to gain a reference to the remote object. This may be
a persistent reference that is available to the client or can be
through some form of registry or broker such as a naming, trading
or directory service. Once the client has access to a reference to
the remote object it can send requests to the remote service in a
transparent manner similar to the way it would to a local object.

The above description of both services and clients provides a
simplistic overview of their respective roles. In practice the roles
of each may be merged. As mentioned earlier, objects that take on
a role as a client may also provide remote services. These may be
in the form of callback mechanisms where an object forwards a
remote reference to itself as part of its communication with other
objects, or by making different remote

2.3 Development Issues and Tool
requirements
One of the advantages of distributed object-based systems is that
they are designed to reduce complexity by providing transparency
to the underlying communication protocols and mechanisms.
However, there are still a range of challenges and difficulties
faced by developers.

There is a growing interest in highly iterative development
methodologies such as extreme programming (XP) and Scrum
[10]. These are also referred to as lightweight or agile
development processes. At the heart of these processes is the
notion of developing complex systems by a finely grained
iteration of developing prototypes that are constantly evolved,
tested, refactored and enhanced. In such systems the roles of unit
testing and debugging are extremely important.

At the same time, the field of ubiquitous computing [11], also
known as pervasive computing, is quickly gaining importance and
attention. In ubiquitous computing systems, small devices
communicate over wireless networks, forming highly dynamic and
flexible distributed applications.

2.3.1 Difficult to create services in isolation
While remote services may be part of a larger overall application
they are potentially difficult to test and debug in isolation. To
support lightweight development processes, there are now a
number of unit test frameworks available such as JUnit [12] for
Java-based applications. To test remote services it is currently
necessary to develop client code to use the remote services and to
test its functionality. It is therefore necessary to either write extra
client code in the form of unit tests or simultaneously develop
clients of these services to test their correctness. This needs to be
repeated at every iterative step in development, discouraging
developers from adopting a fine-grained iterative approach to
development.

Additionally if these objects do not perform correctly, it is
currently difficult to debug them without using some form of
driver program that can then be run using a debugger. It would be

easier to test and debug services if they could be tested and
debugged at an object level via direct interaction mechanisms.
The Blue programming environment [13], and its successor BlueJ
[2], are examples (at a non-distributed level) of systems which
support such interaction.

2.3.2 Clients need to understand services
In an environment where distributed object systems are deployed
there is likely to be a need to re-use existing services just as would
be done in local OO systems. This leads to the inevitable situation
in which developers are using services written by others. It is
therefore an important capability to be able to browse repositories
of existing objects and retrieve data about them. Even more useful
than retrieving data may be the ability to interact with them.
Valuable information about services could be gained if it were
possible to dynamically interact with these services. By this we
mean the ability to directly call methods of these remote objects
and receive the results of these invocations. This facility would
also be useful in the testing and management of pervasive
computing systems, which often incorporate types of objects
introduced dynamically after initial system development.

3. PROTOTYPE SYSTEM
We have built a prototype system to address these issues. Our
design goals were to:

• provide visualization of relevant system abstractions:
repositories, services and interfaces;

• allow direct interaction & manipulation of these entities;
• provide direct visual feedback of changes in state;
• allow users to avoid the writing of unnecessary code;
• ensure tools appear as an integrated toolset; and
• be supportive of contemporary development

methodologies, but non-prescriptive.
The design and implementation of the prototype system was
greatly influenced by earlier work on the development of the Blue
system [13] and its successor, BlueJ [2].

Our wider aim is to investigate development tools applying to a
range of distributed object technologies with architectural
similarities. In the first instance we have selected to support Java
RMI as a vehicle for researching appropriate tools. The reasons
for choosing RMI over other architectures include widespread
availability and platform support, relative maturity, a relatively
simple programming model, and its use as a basic infrastructure
component of a number of other Java-related, distributed
computing models such Jini and Enterprise JavaBeans (EJB).

From a pragmatic point of view, it also allowed us to leverage our
existing work with BlueJ, a Java-based development environment
designed to support teaching Java in university undergraduate
courses. Our prototype system is an extended version of BlueJ
that adds support for developing applications using Java RMI.

3.1 Java RMI
Remote Method Invocation (RMI) is a distributed object model
[14] specifically designed for the Java programming language. It
is essentially an object-oriented version of Remote Procedure
Calls (RPCs). Objects residing in one Java Virtual Machine
(JVM) can invoke methods upon remote objects that reside within
different JVMs. These JVMs may reside on different host
machines.

The uniform nature of Java bytecode across platforms allows RMI
to send bytecode from one JVM to another, enabling objects to be
passed by value either as parameters or return types of method
requests. This allows the distributed interaction between objects
to appear to be fairly transparent. There are some subtle semantic
differences, however, in the behaviour of remote method
invocations and local ones. In local Java method invocations,
parameters that are primitive types are passed by copy. Object
parameters are also passed by copy, it is however a copy of a
reference to the particular object not a copy of the actual object
[15].

In remote method invocations, non-remote objects are passed by
copy. Java uses serialization to send a copy of the object as a
stream to the target JVM. Non-remote objects parameters are
therefore required to conform to the java.io.Serializable
interface. Remote objects passed as parameters are passed as a
copied reference to the remote object. Primitive types are passed
by copy as in non-remote calls.

As a middleware platform, RMI does not offer the level of
supporting services found in some other middleware architectures
such as CORBA. It does not provide inbuilt support for services
such as transactions, persistence and event notification. It does,
however, provide the architectural basis upon which a number of
more sophisticated and specialized architectures are built. Jini
[16] and Enterprise JavaBeans [17] leverage RMI capabilities and
provide additional services.

3.2 BlueJ
The BlueJ environment was developed as part of a university
research project about teaching object-orientation to beginners.
Special emphasis has been placed on visualisation and interaction
techniques to create an environment that encourages
experimentation and exploration.

BlueJ combines a number of unique features with more
conventional development tools to assist university students in
learning how to develop object-oriented programs using the Java
programming language. The overriding principle behind BlueJ is
to allow manipulation of OO programs using graphical
representations of the key OO abstractions such as classes and
objects.

This emphasis on the fundamental abstractions allows students to
gain a greater understanding of the underlying principles of OO
development. While BlueJ is aimed at programmers with little
programming experience, the underlying principle of using
graphical representations of the system as a means of managing
complexity is also relevant to professional software development.

Figure 1 The BlueJ Development Environment

3.2.1 Class Diagram
The main project view within BlueJ is at a class level. It
represents a Java package (Figure 1). The diagram uses a subset of
Unified Modelling Language (UML) notation to represent classes
and their relationships. These relationships can be interactively
manipulated by the user, but are also automatically generated by
the environment. Users can edit the source of these classes via the
graphical screen representation. Right or double-clicking allows
an integrated text editor to be opened. Class and project level
compilation is also integrated into the environment.

3.2.2 Object Bench
A key component of BlueJ is its Object Bench, which is used to
allow testing and debugging of classes individually by allowing
the creation of object instances without any form of static main
method to bootstrap an instance of a class. This means that testing
and debugging can occur from the moment that the first method in
the first class is created.

The Object Bench appears in the user interface below the class
diagram (Figure 1). Right-clicking a class displays a popup menu
with static methods and constructors of that class. If a constructor
is selected an instance of this class is dynamically created using
this constructor.

By right-clicking on the object it is possible to browse the
available methods that can be invoked on this object. These
include inherited and redefined methods. Selection of a method
invokes that method on the instance. Parameters can be provided,
including passing other objects from the object bench. Possible
return results are presented via a dialog. If the return value is an
object type it is possible to place that object onto the Object
Bench for further testing and inspection.

Another important aspect of the Object Bench is the ability to
inspect the internal state of objects. Double-clicking an object
allows access to an Object Inspector window, which displays the
internal state of the objects including all static and private fields.
This allows users to note and test for the side effects of method
invocations. If the instance fields of the object are also objects
they can be inspected in turn.

3.3 Prototype for Distribution
The distribution prototype is based upon the BlueJ system and
builds upon its base functionality. A main goal was to extend the
direct interaction model that BlueJ supports for local objects to
distributed objects. At the same time, the new prototype should
follow the same interface construction guidelines that have led to
the design of the BlueJ interface: that the main concepts of the
problem domain should be graphically represented and available
for interaction while incidental complexity should be avoided by
automating underlying bookkeeping tasks.

Figure 2 Remote Object Browser

The ability to test and debug at an object level provides a strong
foundation for adding support for distributed browsing and
interaction mechanisms. We have added remote object browsing
capabilities that integrate with the Object Bench in a consistent
and relatively transparent manner. The resultant prototype
provides a set of specific, integrated tools that support partial
functionality of an integrated programming environment for
distributed objects. Its main aim is to act as a testing ground for
integrated distributed object development tools.

One of the main visible components that have been added is the
remote object browser (ROB). The browser allows connection to
one or more RMI Naming services that can be operating locally or
remotely.

Once connected to a naming service, the browser shows in tree
form connected registries, services registered and service
information (Figure 2). Services are listed by their registration
name. Expanding a service allows it to show the interfaces that it
implements. Selection of any of these will list the methods that
this interface provides in the right hand pane.
The remote object browser is integrated with a remote interaction
and invocation system (RIIS). Right-clicking a registered service
brings up an option to “Get” this service object onto the Object
Bench. Then very similar functionality for testing and interaction
is available for these remote objects as for local objects. This
includes direct interaction with object methods, leading to a much
more direct access for testing purposes without the need to
develop test clients.

In distributed terms, getting an object means downloading a
remote stub that acts as a local proxy for the remote object. This

stub is then acts as the object’s representation on the Object
Bench and marshals the calls.

Figure 3 Remote Object Stub on Object Bench

Once a remote object has been selected for retrieval it appears on
the Object Bench with a similar appearance and behaviour to local
objects. Right-clicking the object lists available methods which
may be invoked (Figure 3). Methods on the remote object can be
directly executed by selecting them from the popup menu, and
method results are displayed in a result dialog (Figure 4). If the
return type is an object, it is possible to select it and place it on
the Object Bench. It is then possible to directly interact with the
returned object, including the inspection of their internal state.
Any objects on the object bench can be composed by passing the
object as a parameter to methods of other objects.

Figure 4 Result of Remote Method call

The browser can work with any remote registry with no prior
knowledge of the services, classes and interfaces that may be
available. The java.rmi.server.codebase property is
used to annotate the stream that transports the interface stub to the
client with the remote codebase site from which class definitions
can be downloaded. The browser can also work with locally based
class files.

Uses of this tool include the use as a testing and debugging
mechanism when developing new remote services, as well as
investigating existing services while developing client objects.

4. RELATED WORK
4.1 Toad
Toad is a development environment produced by IBM as a
research project [18]. It is not a complete set of development tools
and does not include conventional elements such a source code
editor or source compiler. Toad comprises a range of post-
production static and runtime development tools including a class
file bytecode browser, code coverage tools, distributed system
monitoring tools and an RMI registry browser. The RMI registry
browser allows users to browse systems and make remote
invocations upon remote methods. Return results of invocations
are cached and can be used as parameters of further invocations.

Toad does not provide the ability to inspect the state of objects
that have been returned, or the ability to directly interact with
them at a local level. It also provides monitoring tools that
monitor a number of protocols including the Java Remote Method
Protocol (JRMP) used by RMI. The dynamic components of
TOAD such as the RMI components are no longer under
development. Whilst providing some similar functionality to our
prototype system, the emphasis of Toad is quite different. It aims
to provide post-production support for monitoring, understanding
and optimising applications.

4.2 NetBeans
The open source NetBeans Integrated Development Environment
(IDE) provides a plug-in module that supports RMI development
[19]. It provides an RMI Registry Browser that allows remote
registries to be browsed. It provides information on interfaces and
methods supported. Interaction with these services is limited to
the generation of code snippets that bind and then invoke
particular methods on services and with downloading the interface
class file for that service. These are the two main requirements in
developing a client that can then invoke this method on this
service. It also provides an Activation Browser that shows
services that use RMI’s activation framework. The RMI module’s
website lists the dynamic invocation of methods from RMI
Registries as a future possible enhancement to the module.

5. CONCLUSIONS AND FUTURE WORK
We have presented two tools of an integrated development
environment for the development of distributed systems. They are
a remote object browser and a direct invocation and interaction
system for remote objects.

The tools presented provide a useful base toolset that supports
iterative development processes such as Extreme Programming
for the construction of distributed software systems. The
debugging and testing capabilities do not replace the more
formalised unit testing strategies mandated by XP, but rather
provide a complimentary toolset. In fact we see great potential to
integrate the two approaches. For example, recording the
interactions with remote objects could be used to create
reproducible test fixtures using existing unit test frameworks such
as JUnit.

The combination of browsing, interaction and inspection makes it
very easy to test remote objects early and often during the
development process. The tool in its current state, while useful,
could potentially become more productive when also integrated
with additional tools. The types of tools that it could interoperate
with and leverage include tools to assist with interactive and
dynamic client code generation, service refactoring, service
wrapping, service configuration and system performance
monitoring and logging.

As system development moves from static distributed systems to
more dynamic and flexible ubiquitous computing systems, we
envisage the importance of tools of this nature to increase. In
addition to initial development and testing, such tools can support
ongoing system monitoring and maintenance.

There are a number of planned enhancements to the environment.
Firstly we wish to investigate more thoroughly additional
complimentary tools to support RMI based systems as described

above. These include adaptive source code generation, activation
support and service configuration tools.

There is also potential for this prototype to provide a base upon
which more specialised tools for technologies that build upon
RMI such as Jini and EJB could be developed. The dynamic and
temporal nature of Jini based systems for instance, provides a
number of interesting challenges to system as well as tool
developers.

6. REFERENCES
[1] Coulouris, G., Dollimore, J. and Kindberg, T. Distributed

Systems, Concepts and Design. Addison Wesley, 1994.
[2] BlueJ. BlueJ Programming Environment,

http://www.bluej.org
[3] Schmidt, D.C. and Vinoski, S. Introduction to Distributed

Object Computing. The C++ Report, 7 (1).
[4] Emmerich, W. Engineering Distributed Objects. J. Wiley &

Sons Ltd, 2000.
[5] Watkins, D. and Thompson, D. Comparisons between

CORBA and DCOM: Architectures for Distributed
Computing. in Chen, J., Li, M., Mingins, C. and Meyer, B.
eds. TOOLS Asia 24, 1997.

[6] Plasil, F. and Stal, M. An Architectural View of Distributed
Objects and Components in CORBA, Java RMI and
COM/DCOM. Software-Tools & Concepts, Springer
Verlag, 19 (1). 14-28.

[7] Gamma, E., Richard, H., Johnson, R. and Vlissides, J.
Design patterns : elements of reusable object-oriented
software. Addison-Wesley, Reading, Mass., 1995.

[8] OMG. The Common Object Request Broker Architecture
and Specifications., Object Management Group, 2000.

[9] OMG. Trading Object Service Specification 1.0, Object
Management Group, 2000.

[10] Beedle, M., Devos, M., Sharon, Y., Schwaber, K. and
Sutherland, J. SCRUM: An extension pattern language for
hyperproductive software development. in Harrison, N.,
Foote, B. and Rohnert, H. eds. Pattern Languages of
Program Design 4, Addison-Wesley, 1999.

[11] Weiser, M. The computer for the 21st Century. Scientific
American, 265 (3). 94-104.

[12] JUnit. JUnit, Testing Resources for Extreme Programming,
http://www.junit.org

[13] Kölling, M. and Rosenberg, J., Blue - A Language for
Teaching Object-Oriented Programming. in 27th SIGCSE
Technical Symposium on Computer Science Education,
(1996).

[14] Sun Microsystems Java Remote Method Invocation
Specification.

[15] Gosling, J., Joy, B. and Steele, G.L. The Java language
specification. Addison-Wesley, Reading, Mass., 1996.

[16] Arnold, K. The Jini Specification. Addison Wesley,
Reading, Mass., 1999.

[17] Matena, V. and Hapner, M. Enterprise JavaBeans 1.0
Architecture Specification, Sun Microsystems Inc., 1998.

[18] IBM. Toad Development Enviroment,
http://www.haifa.il.ibm.com/projects/systems/cot/toad/

[19] NetBeans RMI. NetBeans RMI Module Home Page,
http://rmi.netbeans.org/

