
Introducing Unit Testing With BlueJ
Andrew Patterson

Faculty of Information Technology
Monash University

Australia
ajp@infotech.monash.edu.au

Michael Kölling
Mærsk McKinney Møller Institute
University of Southern Denmark

Denmark
mik@mip.sdu.dk

John Rosenberg
Faculty of Information Technology

Monash University
Australia

johnr@infotech.monash.edu.au

ABSTRACT
The teaching of testing has never been easy. The introduction
of object orientation into first year courses has made it even
more difficult, since more and smaller units need to be tested
more often. In professional contexts this is addressed by the
use of testing support software. Unfortunately, no adequate
software to support testing for introductory students is widely
available, leaving teachers and students of first year courses
struggling.

In this paper we describe an attempt to address this problem by
combining two existing systems that partly address our needs.
We describe an integration of JUnit into BlueJ, which creates a
testing tool that exhibits the flexibility and ease-of-use of the
BlueJ system combined with the structured unit test approach
provided by JUnit.

Categories and Subject Descriptors
D.2.6 [Software Engineering]: Programming Environments -
integrated environments, interactive environments,
programmer workbench

General Terms
Experimentation, Verification.

Keywords
BlueJ, testing, JUnit, CS1.

1. INTRODUCTION
The importance of testing in software development has long
been understood, and testing is an important activity in every
professional development project. Good testing requires skill,
which can be learned and practiced – a student's intuition i s
not usually enough to become a good software tester.

Several papers over many years have addressed these
observations by proposing greater emphasis on the teaching
of testing in introductory programming courses [3, 4].

Overall, these proposals did not have an overwhelming effect
on the presence of testing in introductory curricula. Most
introductory courses still cover testing only in a superficial
way, or not at all. A more thorough introduction to testing i s
often left to software engineering classes later on in the
curriculum [10]. Those who do cover it more extensively,
typically find it hard to motivate students during this stage of
the course.

Several problems make the teaching of testing in introductory
courses difficult:

• Testing is often perceived by students as boring. It is not a
creative activity, and students do not like to spend much
time on it.

• Testing properly is very time intensive. Especially when
regression tests are necessary, doing so without proper
tool support becomes tedious.

• The teaching of testing often involves students writing
detailed test plans. These test plans are usually
significantly longer than the programs they are designed
to test. Writing them creates a large overhead in workload.

• It is hard to motivate students to do good testing. In
addition to the writing of test plans being tedious and
boring, students fail to see the benefit of such a formal
approach since their programs are small and simple.

• Good tools to support testing in a student environment are
rare.

Recently, unit testing has been popularised greatly in the
general software development community as a side effect of
the popularity of the Extreme Programming methodology [1].
This popularity has been further increased by the wide
availability of a software unit testing tool, JUnit [5], which
helps to set up and automate the execution of unit tests.

In this paper, we argue that the use of unit testing in an
introductory course can be a good medium to introduce
testing to beginners, reducing some of the difficulties
outlined above.

We then present a software tool to support the use of unit
testing in a way appropriate for beginning students. This
software tool is an extension to the BlueJ environment [8], and
includes a modified interface to the JUnit tool that simplifies
its use, integrates tightly with BlueJ, and exploits interactions
between JUnit and BlueJ to offer highly interactive, flexible
and simple support for testing.

2. PREVIOUS WORK
Several proposals have been made in the past that aim at
introducing testing into introductory curricula while avoiding
some of the problems. Some of these introduce testing
methodology by requiring students to submit test plans or
test logs which are marked by teaching assistants. Other
approaches aim to give hands-on experience in the practice of
testing.

Jones [4] suggests some testing activities that can be
incorporated into introductory courses. These include:

• students grading other student’s programs using their own
test data; and

• instructors providing programs with known bugs and
assigning marks for discovering bugs and documenting
the bug discovery process.

Goldwasser [2] proposes a simple scheme to augment existing
programming assignments with the principles of software
testing. Each student submits both source code and a test set
for the assignment and these test sets are run against all other
submitted assignments from the rest of the class. A portion of
the student’s grade is based on how well the student’s test set
uncovers bugs in the other students’ assignments.

Kay [6] suggests providing the students with automated
testers as part of a comprehensive electronic submission
system. The system incorporates some initial feedback to the
student at submission time regarding the program’s
performance on a set of public tests, and reporting for teaching
assistants of the program’s performance on a set of private
tests.

The Blue system introduced interactive testing tools [7] – a
design that was later transferred into its successor system
BlueJ. These tools allow flexible ad-hoc testing, but provide
little support for a more organised approach.

3. TESTING OBJECTS
The character of testing has been changed significantly by the
introduction of object orientation into introductory courses.

While many of the techniques for testing procedural programs
are applicable in an object-oriented system, object orientation
introduces some new testing problems. One of these problems
is that the overhead for the construction of test cases is higher
in object-oriented languages because of the size and number of
separate units that require testing.

Procedural programming tended to produce large monolithic
applications with long function definitions. Whilst it was hard
to construct good tests for these, the infrastructure required to
set up and run the tests was relatively straightforward. Object
oriented programming tends to produce better separated units
of code with smaller and more precise methods. This means
that testing can be more effective because methods tend to be
more cohesive, but the sheer number of tests means that more
testing infrastructure is needed. Because of this, tools to help
manage the testing process are now more important.

4. TOOL SUPPORT FOR TESTING
We have identified three activities as being representative of
the type of testing performed by students:

1 Testing immediately after implementation is covered well
for ad-hoc testing by BlueJ, using interactive method
invocation. These tests, however, are transient and cannot
easily be repeated.

2 Testing after detecting a bug is adequately addressed by
symbolic debuggers and tools that allow object inspection.

3 Testing after fixing a bug (regression testing) is supported
by testing frameworks such as JUnit. Professional tools
such as Test Mentor [1] also offer relevant functionality,
but are too complex for use by students.

No existing tool supports well all relevant forms of testing.
The next chapter introduces a design for a tool that supports
all three testing activities in a manner appropriate for
beginning students. This tool is an extension of BlueJ, which

already includes a symbolic debugger that adequately covers
(2). Thus, our discussion concentrates on tools to support and
integrate the testing activities (1) and (3).

The tool incorporates the quick and efficient BlueJ object
interaction with the regression testing facilitated by JUnit, to
provide an easy way for students to construct and run test
cases.

5. TESTING IN BLUEJ
To prepare for discussion of the testing tool integrated into
BlueJ, we first briefly describe BlueJ's testing facilities prior
to this work.

The main display of BlueJ is a simplified UML diagram of the
classes in the system. Each class is displayed as an icon with
UML stereotypes to indicate different class types such as
«abstract», «interface» or «applet».

Each of the classes displayed has an associated popup menu
that displays all public constructors for the class, as well as all
its public static methods. When a constructor is selected, the
user is prompted to enter necessary parameters, and then a
representation of the constructed object will be created on the
object bench. Once an object is available on the object bench,
any public method can be interactively invoked. Parameters
may be entered and results can be examined.

Using the object interaction mechanism in BlueJ, a user can
create the initial setup of a test phase by instantiating objects
and placing them on the object bench. Methods can then be
tested, without the need to write specific test drivers, by
making a sequence of interactive method calls, immediately
after the code has been constructed. Parameters can be entered
and method results can be examined.

No test harnesses or test drivers are required to execute the
methods that have just been constructed. However, this testing
is ephemeral. Objects are automatically removed if any change
is made to their class or if the project is closed. In particular,
the potentially time consuming set up phase, where objects are
constructed, must be manually repeated after each compilation.
Tests cannot be easily repeated to confirm the behaviour later
on in the program development. This acts as an impediment to
using the tool to test methods.

6. TESTING IN JUNIT
The JUnit testing framework has become a de facto standard for
implementing unit tests in Java. Similar unit testing frame-
works have now been released for many other languages.

JUnit is a simple framework that defines classes for some key
testing abstractions. A programmer uses JUnit by extending
these classes. The main class that programmers extend i s
TestCase. Within the new extended class (called the test case
or test case class), the programmer defines test methods (all
methods that begin with the prefix ‘test’). These test methods
contain calls to the application’s methods and assertion
statements on the results which will be checked when the test
is run. Any assertions that fail will be displayed. The assertion
statements available in the test case class are methods such as
assertTrue(), assertSame() and assertEquals().

The test methods in a test case often need access to a set of
objects of known state. A test fixture is a common set of test
data and collaborating objects shared by many tests. They are

normally implemented as instance variables in the TestCase
class. Two special methods (the setUp() and tearDown()
methods) are responsible for initialising the test fixture
instance variables at appropriate times.

The JUnit framework provides a variety of extensible
interfaces for displaying results. One simple implementation
is the TextRunner which displays the results in a text terminal.
An alternative is the SwingRunner which displays the results
using a GUI. Whichever display class is chosen, the JUnit
framework will display for each test method the status of the
assertions, and, if any failed, provide a stack trace showing the
expected values for the assertion that failed.

Once test fixtures and test methods have been written in JUnit,
the system provides an easy mechanism to perform regression
testing. Tests can be repeatedly run and any failing tests are
highlighted.

7. INTEGRATING JUNIT AND BLUEJ
Unit testing frameworks such as JUnit support a standard way
to write tests but do not provide any tools that help in this
task. The BlueJ interaction mechanism is useful for ad-hoc
testing, but does not provide any recording facility, so tests
must be redone by hand, eliminating its usefulness for
regression testing.

A combination of the two can serve to merge the best of both
worlds. The result is not only the sum of both mechanisms, but
the creation of a new quality of testing tool with new
functionality emerging out of the combination of the two.

The design for the new testing functionality integrates BlueJ’s
object interaction facility with JUnit’s ability to perform re-
gression testing. It introduces explicit support for unit testing
into BlueJ, based on the design and implementation of JUnit.

The new BlueJ version now recognises JUnit test classes as a
special type of class. Associated with these classes, the
following functionality has been incorporated into the user
interface:

• constructing a test case class;
• running all the tests in a test case;
• running an individual test method from a test case;
• constructing a test fixture from objects on the object bench;
• moveing the test fixture from a test case onto the object

bench; and
• constructing new test methods by recording interactions

with objects on the object bench.
In order to describe this new tool in more detail, we will walk
through the process of testing a simple text based adventure
program. This assignment is a modified version of the zork
project presented in [9]. The actual example used here is not
especially relevant, and the ideas should become clear without
the need to know details of the application being tested.

Our game contains five major classes: Game, GameAction,
ActionFactory, Parser and Room. In the following example,
we assume that we have implemented the Parser class and
wish to test it. The class contains a single method:

 tokenizeAndLower(java.lang.String)

This method tokenises a string, lowercases the tokens and then
returns the tokens in an array..

7.1 Constructing a test class
As our first step we construct a unit test for the Parser by
selecting the new function “Create Test Class” from the
Parser class’ popup menu. Unit tests are represented in the
interface similar to other classes. They appear attached to a
class they were created for, are marked with a UML stereotype
«unit test» and have a distinct colour. The resulting unit test
class will automatically be named ParserTest (Figure 1). The
visual attachment to the Parser class is automatically
maintained: when the Parser class icon is moved, the
ParserTest icon moves with it.

The generated unit test class is constructed using a template
unit test file. The default template can be customised by the
user or system administrator to fit in with any local
requirements of coding style.

Figure 1: A Java class with associated test class. The
test class popup menu is also displayed.

7.2 Creating test methods
The first test we wish to create is a test to see that the Parser
class is always returning a valid String array, no matter what
the input. We start the construction of a new test case by
selecting “Create Test Method…” from the unit test class’
popup menu (Figure 1). We are prompted for the name of the
test and we enter the name “NotNull”. An “End Test” button
appears at the bottom right corner of the object bench. All our
interactions with BlueJ, from now until the “End Test” button
is pressed, will be recorded as Java source in a testNotNull()
method of the ParserTest class.

We construct a new Parser object by selecting “new Parser()”
from the Parser class’ menu. We can now execute methods of
the Parser object and BlueJ will perform the operation. We
select the tokenizeAndLower(String) method and are presented
with a dialog asking for parameters to the method call. As we
are testing to make sure the method always give us a non-null
string array, we start with a boundary case like the empty
string "". As with normal BlueJ interactions, a result dialog i s
now displayed showing the returned object. However, because
we are in test mode, the result dialog is extended to show an
assertion panel that can be used to make assertions in the
current test (Figure 2).

7.3 Asserting results
We want to assert that the result we received from the method
is not null. To do this we check the “Assert that” checkbox. We
can then select the type of assertion that we want from the drop
down list of supported JUnit assertions. In our case, we select

the “not null” assertion. When we click on the “Ok” button,
this assertion is added to the current test. We repeat this
process for some other cases we wish to test such as the strings
"a" and "AA ab". After exhausting all the cases that we wish to
check we click the “End Test” button in the bottom right
corner of the object bench. The testNotNull() method has now
been added to the ParserTest class. After compiling the test,
we are now ready to run it.

Figure 2: Creating assertions on method results

7.4 Executing tests
Whereas traditional IDE’s only allow interaction with an
application in a monolithic way (by executing the main
method of the program), BlueJ allows interaction at an object,
class and method level. Similarly, while the standard JUnit
interface only allows the execution of all tests in a test class,
its BlueJ version also allows execution of separate test
methods.

The popup menu for a unit test class in BlueJ has a menu item
for each test defined in the class and a “Run All” entry. By
selecting a test method from the popup menu, just a single test
method is run. If a test is successful then a simple message
indicating the success is displayed in the status bar at the
bottom of the screen. If the test fails then the result i s
displayed in a dialog showing the failed assertion, similar to
the dialog shown by the “Run All” menu. This allows quick
execution of specific tests which is useful when editing the
particular area of code that those tests target.

The “Run All” function in the test class’s menu runs all the
tests in the selected test case.

The results are displayed in a dialog indicating the list of test
methods and success or failure of each. As in other JUnit
implementations, a large bar is displayed in green if all the test
methods pass. If there are any failures then the bar is displayed
in red. In a case where the test has failed, the bottom half of the
dialog displays the results of the assertion, showing the line
where the assertion failed and what the actual and expected
results were (Figure 3).

BlueJ uses its own implementation of the standard JUnit
SwingRunner user interface. The BlueJ version differs
internally from the normal SwingRunner in that the execution
of the interface code and the tests occur on different virtual
machines. The interface presented however remains the same.

Figure 3: Result of test execution

7.5 Using test fixtures
In constructing tests for the Parser class we notice that there
are some objects that we use in each test (a Parser object for
example). It would be useful to be able to share the effort of
constructing the objects between all the test methods. JUnit’s
fixtures provide a mechanism for doing this.

A design goal for the integration of BlueJ and JUnit was that
BlueJ’s object interaction methods should be useable for the
construction of test fixtures in the same way that the BlueJ
interaction is being used to construct test methods. Similarly,
if JUnit test fixtures could be brought into BlueJ, then object
interaction and test generation could be performed with
existing JUnit tests.

7.5.1 Creating a test fixture
To illustrate the construction of a test fixture we will construct
some tests for the Room class.

Our first step is to construct a test class for Room. We select
“Create Test Class” from the Room class’ popup menu and the
new RoomTest class is created. We would like to make a small
set of connected rooms to test that rooms can be successfully
navigated. Creating the rooms and linking them with exits
requires a longish sequence of method calls, so we aim to
automate this task in a test fixture.

First, we construct several room objects on the object bench
with various descriptions. We then use the method interaction
facility to set the exits of each room instance, passing in the
other room objects as parameters.

We now want to use the Room objects on the object bench as a
fixture in our RoomTest class. We select “Object Bench to Test
Fixture” from the RoomTest class’ menu. The source code to
construct the objects present on the object bench in their
current state is saved into the RoomTest class’s setUp()
method. The objects which have been saved now disappear
from the object bench. They can be restored in two different
ways as explained in the next section.

7.5.2 Restoring a test fixture
A test fixture can be restored to the object bench by selecting
“Test Fixture to Object Bench” from the test class’s menu. This
will execute the setUp() method and place the constructed

objects onto the object bench. BlueJ users can interact with
these objects on the object bench the same way they do with
objects that have been constructed through normal interaction.

The other method of restoring a test fixture to the object bench
is by creating a test method. When a test class has a test
fixture, the fixture’s objects are automatically placed on the
object bench whenever the recording of a test method i s
started. Any method calls which are made on these objects are
local to the test method being recorded and will not impact
upon the state of the test fixture objects in other test methods.

8. DISCUSSION
The mechanisms discussed so far provide an easy, yet powerful
way to do unit testing in BlueJ. BlueJ's flexible interactive
testing mechanisms can still be used, avoiding the need to
write test drivers. These test sequences can now be recorded
and replayed, providing an easy way to implement regression
testing. Thus, BlueJ can now write test drivers automatically
through recorded interaction.

In addition to this functionality, the current design and
implementation also supports other uses of the mechanism.

8.1 Test-driven development
The Extreme Programming community strongly advocates the
use of test-driven development (TDD). In this style, test cases
are written after class interfaces have been designed, but prior
to their implementation.

In our integrated BlueJ/JUnit system, this style of working i s
still fully supported. The recording facilities described above
are added on to the standard JUnit functionality, but do not
replace the traditional way of writing test cases. In other
words: Test classes can still be written manually before
implementing methods. They can then be executed later. The
code that is produced by the test recording facility is standard
Java source code. The test classes are normal classes that can
be edited, compiled and executed like other classes (with some
added functionality). Thus, recorded test cases can be modified
later by directly editing the source code, and test cases can
still be coded by hand.

8.2 Testing multiple classes
The standard way to create test classes has been described
above: selecting the “Create Test Class” function from a
class’s menu creates an attached test class. In addition to this,
“free” test classes (not attached to a single class) can be created
by writing a new class that extends TestCase. BlueJ will
recognise this correctly as a test case class. (Creation of such
classes is also supported through BlueJ’s “New Class”
dialogue.)

The free test cases can then be used to hold tests that concern a
combination of other classes. All test functionality is still
available on these classes.

Test cases written in projects outside of BlueJ will also appear
as free test cases when opened in BlueJ.

8.3 Status
All functionality described in this paper has been
implemented, and is currently undergoing final testing. It i s
expected that, at the time of publication of this paper, a BlueJ
version including this mechanism will have been released.

9. SUMMARY
The unit testing extensions to BlueJ aim to improve the tool
support available for testing in introductory teaching. We
have achieved this by integrating the JUnit testing framework
into the BlueJ development environment in a manner that
diminishes neither. At its most basic, the unit testing
extensions allow the recognition and execution of JUnit test
classes. We have extended this to also allow a JUnit test
fixture to be moved onto the BlueJ object bench, and provided
a method for converting objects on the BlueJ object bench
into a JUnit test fixture. We have also developed a method for
helping in the construction of unit test methods through the
recording of object interactions on the object bench.

10. REFERENCES
[1] Beck, K. eXtreme Programming eXplained. Addison-

Wesley, (1999).

[2] Goldwasser, M., A Gimmick to Integrate Software Testing
Throughout the Curriculum. in Proceedings of the 33rd
Annual SIGCSE Technical Symposium on Computer
Science Education, (2002), 271-275.

[3] Jackson, U., Manaris, B. and McCauley, R., Strategies for
effective integration of software engineering concepts and
techniques into the undergraduate computer science
curriculum. in Proceedings of the 28th Annual SIGCSE
Technical Symposium on Computer Science Education,
(San Jose, CA, 1997), 360-364.

[4] Jones, E., An Experimental Approach to Incorporating
Software Testing Into The Computer Science Curriculum.
in 31st ASEE/IEEE Frontiers in Education Conference,
(Reno, NV, 2001).

[5] JUnit. http://www.junit.org, (accessed November 2002).

[6] Kay, D., Scott, T., Isaacson, P. and Reek, K., Automated
grading assistance for student programs. in Proceedings
of the 25th Annual SIGSCE Technical Symposium on
Computer Science Education, (Phoenix, AZ, 1994), 381-
382.

[7] Kölling, M. The Design of an Object-Oriented
Environment and Language for Teaching Basser
Department of Computer Science, University of Sydney,
(1999).

[8] Kölling, M. and Rosenberg, J. BlueJ - The Hitch-Hikers
Guide to Object Orientation. The Mærsk Mc-Kinney
Møller Institute for Production Technology, University of
Southern Denmark, Technical Report 2002, No 2, ISSN No.
1601-4219 (2002).

[9] Kölling, M. and Rosenberg, J., Guidelines for Teaching
Object Orientation with Java. in Proceedings of the 6th
conference on Information Technology in Computer
Science Education (ITiCSE 2001), (Canterbury, 2001).

[10] Shaw, M. and Tomayko, J., Models for undergraduate
project courses in software engineering. in Proceedings of
the Fifth Annual SEI Conference on Software Engineering,
(Pittsburgh, PA, 1991), 33-71.

[11] Silvermark, Test Mentor Java Edition User Reference 5.4,
http://www.silvermark.com/documentation/, (accessed
November 2002).

