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In this paper we illustrate the potential of process algebra to imple-
ment modular mental architectures of wide scope in which control is 
distributed rather than centralised. Drawing on the Interacting Cogni-
tive Subsystems (ICS) mental architecture, we present an implemented 
model of the attentional blink effect. The model relies on process ex-
changes between propositional meaning and a more abstract, implica-
tional level of meaning, at which affect is represented and experienced. 
We also discuss how the proposed mechanism of buffer movement 
can, in the context of the ICS architecture, be extended to account for 
effects of emotional stimuli and brain damage. 
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Introduction 
Production system architectures and connectionism have dominated re-
search on computational realisation of theories of cognition.  However, in 
spite of great technical progress in sub-symbolic, symbolic and hybrid 
methods, much influential theory still lacks computational realisation and 
interactions between processes, subsystems or mental modules are still often 
represented as box and arrow diagrams. These recruit the information proc-
essing metaphor but present theoretical constructs in only informal abstract 
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style. Much criticised by the computational modelling community for lack of 
specificity and their inherent ambiguity, such box and arrow models none-
theless enable hypotheses to be framed in sufficient detail for guiding ex-
perimentation in circumstances where theorists are either unable, or reluc-
tant, to commit to the kind of detailed assumptions required to run formal 
computational simulations. In many domains of enquiry, such as emotional 
influences on cognition, it is widely acknowledged that the theoretical pic-
ture must be complex, (e.g. Leventhal, 1979; Teasdale & Barnard, 1993). Mul-
tiple influences are at play which require many “modules.”  Consequently, a 
huge number of potentially unwarranted assumptions would be needed to 
simulate such models with conventional techniques, let alone to accommo-
date the kind of individual variation that lies at the heart of our understand-
ing of the effects of mood state on cognition and disorders such as anxiety or 
depression. 

The development of parallel computing and large scale networking of 
computers, typified by the world wide web, has presented computer scien-
tists with similar kinds of technical problems in modelling interactions 
amongst components of complex distributed systems. They responded by 
developing new mathematical formalisms and tools for modelling systems 
of interacting modules. These fall within the category of formal specification 
techniques. We will argue that such specification formalisms operate at a 
level of abstraction comparable to the box models of psychological theory. 
Cooper (1995) has made related arguments. Such formalisms and tools offer 
the potential for modelling complex mental architectures in either abstract 
formal mathematics (Duke, Barnard et al. 1998) or to “run” specifications 
rather like a conventional simulation (Bowman & Faconti 1999), but without 
imposing particular implementation details. 

The idea that abstract specification of cognitive models can enhance our 
understanding of the deeper properties of cognitive theories, and support 
the development of tools for their implementation, has also emerged in the 
context of production system methodologies (Cooper, Fox et al. 1996). In this 
paper, we give a new perspective on this general orientation by exploiting 
the potential of process algebra (a formal specification technique developed 
by computer scientists) to build a computationally explicit model of human 
attention in cognitive-affective settings. 

Humans pay attention to information that matters, as a result of the cog-
nitive task they are required to perform (Duncan 2000), as a function of that 
information’s personal salience (Moray 1959) or as some function of their 
motivational and emotional state. Anxious people preferentially pay atten-
tion to external threat (MacLeod, Mathews et al. 1986). Over more extended 
periods, depressed people focus their internal attention on negative self-
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related thoughts (Beck 1976). In all these domains the key questions concern 
the dynamic redeployment of attention over time.  Empirical paradigms like 
the psychological refractory period (Pashler and Johnston 1998), task shifting 
(Allport, Styles et al. 1994) or the attentional blink (Raymond, Shapiro et al. 
1992), all illustrate subtle restrictions on our ability to re-deploy attention. 
We will describe the latter of these in some depth in the subsection The At-
tentional Blink on page 7. 

The computational model presented here focuses on the attentional blink 
because it has recently been shown to be influenced by emotional factors. 
Our model development has been guided by a particular box and arrow 
mental architecture, Interacting Cognitive Subsystems, or ICS (Barnard 1985; 
Barnard 1999), which has been developed to address the effects of affect on 
cognition (Teasdale & Barnard 1993). This architecture assumes that execu-
tive control is distributed, central aspects of which emerge from interactions 
between two subsystems. These process qualitatively distinct types of mean-
ing. One is classically “rational,” being based upon propositional representa-
tion. The other involves a yet more abstract encoding, implicational mean-
ing, at which affect is represented and experienced. ICS refers not to a cen-
tral executive but to a central engine of mentation to reflect the distributed 
nature of executive control (Teasdale & Barnard 1993).  

This paper has three aims. The first is to illustrate the use of process alge-
bra to render box and arrow models of psychological theory computation-
ally explicit.  The second is to present a specific, implemented, model of 
attentional mechanisms based upon the distributed control hypothesis spe-
cifically applied to the processing of meaning. The third is to discuss how 
such modelling could in principle be extended to the effects on attention of 
emotional meanings. 

Computational Issues: Concurrency and Distributed Control 
Following Fodor (1983), among others, numerous theories now assume that 
many mental modules, or their neural substrates, are processing information 
at the same time. Consistent with this position, any realistic computational 
model of the mind must, at some level, be concurrent. The control of concur-
rent processing can be centralised or distributed, emerging from interaction 
amongst modules whose behaviour evolves independently. Historically, cen-
tralised control played a key role in the development of information process-
ing psychology (Broadbent 1958) and subsequently computational models 
(Newell and Simon 1972). Such a notion, and Von Neumann-like architec-
tures, fitted well with a restricted capacity to attend to information, to 
memorise it, or to deal with more than one task at a time. However, a sub-
stantial body of neuropsychological evidence now indicates that brain dam-
age selectively impairs particular processing capabilities, while leaving oth-
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ers intact. Even under circumstances where executive functions are im-
paired, complex behaviours can still be co-ordinated (Shallice 1988). This 
suggests that computational models should embrace some form of distrib-
uted executive control in which there is no single locus of control. 

Architectures based on the distributed control hypothesis are becoming 
increasingly common, including those that address interactions between 
motivation, affect and cognition. For example, the component process theory 
of emotion (Scherer 2000) explores interactions among five subsystems: cog-
nitive, autonomic, motor, motivational and a monitor subsystem. Interac-
tions among these subsystems determine behaviour and dynamic systems 
theory provides a perspective on self-organising patterns of control. Carver 
& Scheier (1998) also appeal to concepts of self-regulation, but emphasise the 
hierarchical organisation of control mechanisms. The systems-level theory of 
Bond (1999), which has been implemented, models motivational and social 
aspects of primate behaviour. These emerge as a function of computationally 
realised interactions among modules with no locus of central control.  The 
ICS architecture contrasts with these other approaches by assuming that all 
modules process information according to the same fundamental principles 
– subsystems differ only in the way the information they process is encoded. 
In this case, hierarchy is also implicit in the abstraction of higher order regu-
larities in information patterns (Teasdale and Barnard 1993).  

Some notion of hierarchy is essential for the sort of “distributed systems” 
modelling that we are advocating.  Not only is it parsimonious to view 
modules as being composed of modules, but the same arguments concern-
ing decentralised overall control of the mind can be applied within modules. 
This combination of distributed control and hierarchical decomposition is 
reflected in many current theories, whether implemented or not. In our case, 
subsystems in the ICS architecture are themselves systematically decom-
posed into components with distinct internal functions, such as an array 
representing the input data to a subsystem, an image record, and processes 
that transform data from one type of mental representation to another. 
Likewise, Baddeley (2000) decomposes his Working Memory model into 
phonological, visuo-spatial and executive components, each of which can be 
decomposed into storage and processing resources. Even at the level of the 
brain, coarse divisions can be subdivided. Schneider (1999) presents a hybrid 
model that reflects such a hierarchy. Thus, it appears natural when adopting 
a modular theory that the behaviour of individual components emerges 
from a set of interacting sub-modules, yielding a hierarchical component 
structure. 

The benefits of connectionist approaches have been widely discussed 
(e.g. Rumelhart, McClelland, & PDP Group, 1986) as have their drawbacks 
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(e.g. Fodor & Pylyshyn, 1988). The benefits of production system architec-
tures such as SOAR have also been extensively debated (e.g. Newell, 1990), 
as well as problematic issues that arise with them (e.g. Cooper et al., 1996). 
With respect to our particular concern with mechanisms of distributed con-
trol and hierarchy, both can of course be realised in either connectionist or 
production system frameworks. However, neither fully satisfy the require-
ments we regard as important to address when modelling complex concur-
rent systems with distributed control (Hybrid approaches, which combine 
symbolic and connectionist techniques, are also relevant, but we postpone 
their consideration until the final discussion section of this paper). 

Concurrency can, of course, be generated by allowing multiple produc-
tions to fire on each cycle of a symbolic architecture’s operation, as is done in 
the EPIC model (Meyer and Kieras 1997). However, control remains central-
ised, being focussed on the working memory embedded in their single cog-
nitive processor and since this centralised structure is not reflected in the 
brain, when relating symbolic architectures to brain-level implementation, 
some sort of re-alignment needs to be assumed. As noted earlier, postulating 
such structure re-aligning mappings from abstract architecture to brain is 
not always straightforward (again see Shallice, 1988). Also, a large propor-
tion of the psychological theories available are themselves distributed, being 
expressed in terms of independently evolving interacting modules. Thus, 
structure re-aligning maps need to be postulated both when relating “up-
wards” from production systems architectures to high-level psychological 
theories and when relating “downwards” to low-level brain models. Bond 
(1999) has also made similar arguments. 

In contrast, while connectionism inherently embraces distribution of con-
trol, it does so at a very low level. Almost all the uses of connectionism in 
cognitive modelling have been specialised in nature. Neural networks have 
proved highly effective for modelling specific cognitive phenomena, such as 
the Stroop effect (Cohen, Dunbar et al. 1990), word reading (Plaut 1998), 
serial order recall (Page and Norris 1998) and many others. However, in 
extrapolating from these specific phenomena to the big architectural picture, 
they have not done so well. This is in no small part due to the fact that it is 
very hard to construct large architectural models using connectionist para-
digms, which in turn, we would argue is influenced by the inability to de-
scribe hierarchical structures. A level of compositionality is obtained in con-
nectionism through the interconnection of layers, each of which can be 
viewed as a module. However, there is only one level of composition and it 
is not easy to nest interacting components within interacting components. 
The component structure of neural networks is essentially flat – the primi-
tive elements of neural networks are neuron-like nodes, not neural net-
works. A further reason for not using connectionism concerns abstraction. 
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Modelling based on neural networks is, in certain respects, very low-level in 
character. In particular, one has to work hard in order to obtain what are 
“primitive” constructs and data structures in higher-level computational 
notations preferred, for example, by the symbolic modelling community (see 
Newell, 1990). For the variety of modelling we are undertaking, the larger 
architectural picture is essential. In addition, the psychological theories we 
are considering are typically couched in terms of representations being 
transmitted between components and such passing of data items is charac-
teristic of symbolic computational paradigms, rather than the connectionist 
paradigm. Unlike either paradigm, process algebra was explicitly developed 
to model modular architectures with distributed control at an abstract level. 
It therefore offers a modelling paradigm that appears particularly well 
suited for implementing broadly scoped box and arrow theories. 

Process Algebra 
Process algebra originated in the late 1970’s and early 1980’s and there is 
now an extensive research literature surrounding them. They have been 
widely applied to the specification and analysis of communication networks, 
distributed systems and telecommunications systems. Here we summarise 
the key elements of process algebra, while referring interested reader to 
comprehensive texts (e.g. Hoare, 1985; Milner, 1989; Roscoe, 1998; Schneider, 
2000). We will be using a technique named LOTOS (Bolognesi and Brinksma 
1988). Throughout this paper, we will describe our model mostly in intuitive 
terms, rather than presenting detailed fragments of specification (although 
the full specification is available from the second author). Those elements of 
LOTOS notation that we do use are introduced as they arise in the text. 
Three aspects of LOTOS specifications impinge upon the arguments we are 
making here: 

1. Structural Decomposition and Distribution. We seek a notation for de-
scribing systems with distributed control. This is realised in LOTOS 
since the basic element of structuring is a process. Processes possess their 
own local state and are computationally autonomous. The reader famil-
iar with use of the term process in psychology should beware, since the 
term has a very specific meaning in the process algebra domain. In fact, 
in the context of this paper the concept is interchangeable with those of a 
module or subsystem. 

2. Interaction. Processes evolve independently and asynchronously of one 
another subject to interaction through message exchange. If a process 
wishes to communicate with another process it offers to perform an ac-
tion with that other process. If the other process is willing to perform the 
action, a synchronised message exchange occurs. Message passing inter-
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action is different to activation exchange in neural networks. On each 
update cycle of a neural network, activation is relayed over all links in 
the net and interactions between neurons are often globally synchro-
nised. In contrast, in process algebra there is no global control of interac-
tion. Processes make autonomous local decisions about when they wish 
to communicate and whom they wish to communicate with. While the 
data relayed between neurons is of a single type, a real number, this is 
not so with process algebra communication. Any data type can be sent 
from one process to another. The dynamics of communication and inter-
action that can be set-up in process algebra are thus extremely flexible. 

3. Control and Data. LOTOS is really a composite of two languages – a 
control and a data language. The previous two points focussed on the 
former, a language for describing processes and their interaction. The 
data language uses a style of data specification called algebraic data 
types (de Meer, Roth et al. 1992). Operations on data types are defined in 
an equational style and data expressions are executed through an or-
dered application of the equations. Each equation application rewrites 
the data expression towards an irreducible form. Such a declarative style 
of computation is similar to that employed in functional programming 
languages, such as Haskell (Thompson 1999) or even Lisp. Thus, the 
data language is expressively rich and allows the construction of infor-
mation-rich symbolic representations. Furthermore, the symbol system 
is combinatorial in the manner advocated by say Fodor & Pylyshyn 
(1988). Broadly speaking, the data language is as computationally ex-
pressive as Lisp, which from a theoretical perspective is justified by the 
data language being Turing complete. In fact, both the control and the 
data languages are, on their own, computationally powerful enough to 
simulate Turing machines. Finally, with regard to the relationship be-
tween data and distributed control, in LOTOS, data is fundamentally lo-
cal – operations on data have an effect, which is local to a particular 
module. This is consistent with our view that there is no shared mem-
ory, that could implicitly act as a focus for centralised control, as it does 
in production systems, such as EPIC (Meyer and Kieras 1997). 

The Attentional Blink 
Although several related phenomena predated it (e.g. Broadbent & Broad-
bent, 1987), the phenomenon, which is robust and thoroughly investigated, 
was first reported by Raymond et al. (1992). Typically, letters are presented 
using rapid serial visual presentation (RSVP) at around ten items a second. 
One letter (T1) is presented in a distinct colour. It is the target whose identity 
must be reported. A second target (T2) follows after some number of inter-
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vening items. For example, the person may have to report whether the letter 
“X” was among list items that followed T1. Detection of T2 is impaired with 
a characteristic serial position curve (fig. 1). If T2 occurs immediately after 
T1, then its presence is accurately detected. Detection then declines and re-
covers to baseline at around a half second lag. 

 The empirical literature and alternative theoretical accounts of it have 
been summarised elsewhere (Shapiro, Arnell et al. 1997; Potter 1999; Shapiro 
and Luck 1999). These authors conclude that the blink does not appear to be 
a product of simple perceptual, memory or response output limitations.  
Various theories have been advanced to account for the influences on the 
serial position curves (e.g. Chun & Potter, 1995; Duncan, Ward, & Shapiro, 
1994; Raymond, Shapiro, & Arnell, 1995). These theories all naturally assume 
that allocating attention to T1 leaves less attention for T2, but details of their 
proposed mechanisms, like decay, interference, similarity, and bottlenecks 
obviously vary. There also remain significant areas of empirical uncertainty - 
such as conditions under which effects do or do not occur with cross modal 
presentations (Shapiro, Arnell et al. 1997; Potter 1999). 

 

Figure 1. The basic “Attentional Blink” effect for letter stimuli (adapted 
from Raymond et al., 1992). Here, baseline represents a person’s ability 
to report the presence of T2 in the absence of a T1. 

As research on the blink and RSVP in general has progressed, it is becom-
ing clear that the allocation of attention is affected by the meaning of items 
(Maki, Frigen et al. 1997) and their personal salience (Shapiro, Caldwell et al. 
1997). Indeed, similar serial position curves are readily obtained when 
words are used as list items. There is also evidence from electrophysiological 
recordings that suggests that the meaning of a target is being processed even 



   9 

when it remains unreported (Shapiro and Luck 1999).  Most recently there 
are reports of specific effects of affective variables. Holmes & Richard (1999) 
report differences in target detection in the Attentional Blink (AB) paradigm 
for high and low anxious people. More dramatically, Anderson (2001) has 
shown that the blink effect is markedly attenuated when the second target is 
an aversive word. Anderson & Phelps (2001) also report data for patients 
with amygdala damage. These patients all displayed impaired T2 report 
comparable to control conditions with affectively neutral material, a stan-
dard blink effect. However, a group of patients with unilateral damage to 
left amygdala showed no attenuated blink effect to aversive words, whereas 
those with damage to the right amygdala, like the control group, showed 
reliable attenuation of the blink effect. 

Of the theories that have so far been developed, most of those reviewed 
by Shapiro et al. (1997a) would require considerable modification and exten-
sion to address, in any depth, the full range of neuropsychological and affec-
tive factors now known to shape the serial position curves. To our knowl-
edge none of them have been implemented in computational terms. Of these 
models, that proposed by Chun & Potter (1995) is most closely related to the 
computational model we will propose shortly. Their model assumes two 
stages of processing. The first stage performs an initial evaluation to deter-
mine “categorical” features of the item. This stage is not capacity limited, the 
identity of items is unavailable, and the representation is open to rapid for-
getting. The second stage builds upon and consolidates the results of the 
first in order to develop a representation of the target, sufficient for subse-
quent report. This stage is capacity-limited, invokes central conceptual rep-
resentations and storage, and is only initiated by detection of the target on 
the first stage. 
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Figure 2: Task schema for the word-based blink; adapted from 
Barnard, Scott, Taylor, May, & Knightley (2001). 

Research on the blink phenomenon has relied on marking the to-be-
reported target identity with some form of perceptual feature such as a dis-
tinct colour. In order to examine semantic effects in more detail, Barnard et 
al. (2001) used a variant of the paradigm in which no perceptual features 
were present to distinguish the target from the background list. Targets were 
only distinguishable from background items in terms of their meaning. This 
variant of the paradigm did not rely on dual target report. Rather, partici-
pants were simply asked to report a word if it refers to a job or profession 
for which people get paid, such as “waitress” and these targets were em-
bedded in a list of background words that all belong to the same category. In 
this case, they were inanimate things or phenomena encountered in natural 
environments (fig. 2). Participants could report the target word (accurate 
report), say “Yes” if they were confident a job word had been there but 
couldn’t say exactly what it was, or say “No” if they did not see a target, and 
there were, of course, trials on which no target was presented. When the 
distractors were household items, a different category from both back-
ground and target words, there was little influence on target report.  How-
ever, distractors that referenced a property of a human agent, but not one for 
which they were paid, like tourist or husband, gave rise to a classic and deep 
blink effect not unlike that already shown in fig. 1. 

Barnard et al. used latent semantic analysis (Landauer and Dumais 1997) 
to assess similarities between “human” distractors and job targets. Being 
aware of a target’s presence and being totally unaware were linked with 
rather different profiles of semantic similarities, and these authors present 
an argument that this effectively ruled out an explanation based upon posi-
tive or negative priming effects (Tipper 1985; Maki, Frigen et al. 1997). Like 
Chun & Potter (1995), they argued for a two-stage model, but this time recast 
to focus exclusively on semantic analysis and executive processing. In the 
first stage, a generic level of semantic representation is monitored and ini-
tially used to determine if an incoming item is salient in the context of the 
specified task. If it is found to be so, then the specific referential meaning of 
the word is subjected to more detailed semantic scrutiny. In this second 
stage a word’s meaning is actively evaluated in relation to the required ref-
erential properties of the target category. If this reveals a match then the 
target is reported. The first of these stages is somewhat akin to first taking a 
“glance” at generic meaning with the second akin to taking a closer “look” at 
the relationship between the meaning of the distractor and the meaning of 
the target category. Assuming that semantic processes cannot glance at in-
coming items while looking at and scrutinising another, a blink would re-
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sult. We now proceed to model this effect using mechanisms relying on dis-
tributed executive control of semantic representations. 

Interacting Cognitive Subsystems 
The account offered by Barnard et al. for their semantic effects was shaped 
by the ICS architecture, and the idea that executive processing involves dis-
tributed control of the processing of two types of meaning. This architecture 
initially decomposes into nine subsystems, each of which process different 
mental representations (fig. 3). There are three sensory subsystems, four 
central subsystems, and two effector subsystems. These representational 
subsystems are supplemented by peripheral somatic and visceral response 
systems. These realise the bodily effects of emotional reactions that are in 
turn picked up and represented by the Body State subsystem . All subsys-
tems have an identical internal decomposition. They differ only in terms of 
the representations input to them, stored in their own local memories and 
output by them as a consequence of the action of processes that transform 
inputs into outputs. 
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Figure 3: The ICS architecture in outline, showing data flow between 
two meaning subsystems.  

For full description of the ICS architecture, readers are referred to either 
informal descriptions of its operation (e.g. Barnard, 1999; Teasdale & Bar-
nard, 1993), or more formal models of its operation in complex real-world 
tasks (Duke, Barnard et al. 1998; Barnard and May 1999). Here we focus only 
on those aspects that directly constrain the modelling of the blink effect. ICS 
specifies paths of communication and makes particular assumptions con-
cerning the internal organisation, representations, and dynamics of process 
operation. As information arrives at an ICS subsystem, it is mapped into an 
input array. From this point a dedicated process copies the basic units of 
input into an image record (see key in fig. 3). This is a local memory that 
preserves a trace or image of recent input as well as preserving a long-term 
record of information patterns. In parallel with the copy process, each sub-
system contains a set of processes that transform inputs to outputs and these 
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mediate communication between subsystems, either by operating directly 
on the input array or by re-configuring to use the image record.  

Since the image record holds representations in input code, the processes 
can configure to access recently arrived material, in a mode referred to as 
buffered processing. In fig. 3, the propositional process communicating with 
the implicational subsystem is depicted as configured in this buffered mode. 
In what follows, the recent image is given computational realisation as delay 
lines. Although not a mechanism currently widely used in cognitive model-
ling, related mechanisms have been postulated for, and simulated in, neural 
systems (Abeles 1991). With its explicit hierarchical structure and definition 
of processes that communicate within and between modules, coupled with 
its adherence to the distributed control hypothesis, ICS is specified at a more 
or less ideal level of abstraction for realisation in process algebra. Here we 
concentrate on the central engine in which propositional and implicational 
representations are exchanged. 

Implicational subsystem 
This subsystem will be used to implement the kind of  “glance” introduced 
earlier. As a generic form of encoding, implicational meaning represents the 
broad “categorical” analysis of items also considered in Chun and Potter’s 
first stage of processing. This subsystem builds and uses implicational rep-
resentations. For a lexical task, one of its feeds involves rapid and direct 
recoding of visual form (via Vis → Implic, fig. 3). We shall refer later to im-
plicationally salient items, as those that “pass the implicational subsystem 
test”. Since implicational meaning takes as inputs the immediate, and rather 
unrefined, products of processing visual, auditory and body state patterns, it 
provides a platform from which, not only the rapid consequences of pre-
liminary semantic processing can be modelled, but also those associated 
with personal salience and affect.  

Propositional subsystem 
This subsystem will be used to implement the more detailed look. It builds 
upon the implicational representation generated from the glance, and it also 
takes input from the longer processing configurations, not implemented in 
the model described below, but important for later discussion, that arrive at 
this level via the object and/or morphonolexical subsystems that interpret 
visually presented words.  It builds a referentially specific, propositional, 
representation, which is sufficient for report. We will describe items that 
“pass the propositional test” as propositionally salient. The existence of a 
propositionally explicit representation is required in ICS to compute the 
word form to be passed through an output configuration for generating a 
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response. In ICS, implicational representations cannot directly pass data to 
the subsystems that mediate lexical output.  

Buffering 
Our modelling of emergent attentional mechanisms focuses on buffer 
movement. Processing activity and its distributed control is subject to spe-
cific constraints. In ICS, a process can only be in one of three modes: direct, 
buffered, or record access (not discussed here), it can only process one co-
herent stream of data at any instant, and only one process in a wider con-
figuration can be buffered at a given time. The buffered mode of processing 
enables a process to deal with novel combinations of units of representation 
that have recently arrived. It is also linked to focal awareness of a particular 
representation (Teasdale and Barnard 1993) and thus implies the allocation 
of limited attentional resources to a particular process. With a delay line 
representation, the automatic copying of data to the image record means 
that all input is represented in temporally extended form.  

A Computational Model of the Attentional Blink 

Specification Structure 
The top-level structure of our model is shown in fig. 4. The heart of the 
model is the central-engine. In accordance with the wider ICS specification, 
we assume that input into the central-engine is received from perceptual 
systems and output from the central-engine is relayed to a response system 
from which detected targets are reported. Our modelling of these “periph-
eral” systems is however not detailed. While this figure seems like an infor-
mal box-and-arrow diagram like fig. 3, in fact, the specification exactly fol-
lows the structure of this diagram. At the top-level of decomposition, our 
specification contains three processes, one encapsulating the perceptual sub-
systems, another modelling the central-engine and a third encapsulating the 
response subsystems. This fits with the observation that we have been mak-
ing that explicitly having facilities to express distributed control in a model-
ling notation yields a natural formalisation of psychologist’s box and arrow 
diagrams. The specification evolves through message exchange based inter-
action between the three top-level processes. The links over which message 
exchanges occur are indicated by action names. At the top level these actions 
are ext_implic_data and prop_ext_data. 
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Figure 4: Top-level Structure of Model 

The central-engine contains two interacting processes, represented as in-
ternal boxes – IMPLIC and PROP. These implement the implicational and 
propositional systems respectively. The fact that we can structure our speci-
fication in this way indicates one of the strengths of process algebra – since 
arbitrary process hierarchies are available to us, the complex decomposi-
tional structure of theories such as ICS can be directly represented. The be-
haviour of the central-engine emerges through interaction between proc-
esses at this level, with the communication channels between IMPLIC and 
PROP playing a major role. These channels are divided into two types – a 
data channel (implic_prop_data) and control channels (im-
plic_prop_cont and prop_implic_cont). The former of these is used 
to relay item representations from the implicational to the propositional 
system, while the latter two links are used in order to control buffer move-
ment. As an indication of the style of specification arising with LOTOS, the 
central-engine in our specification would have the following basic format 
(although, of course, the specification is in fact much more complex than this 
and in addition, in order to simplify presentation, we have pared down the 
LOTOS syntax somewhat). 
process CENT_ENG :=  

hide implic_prop_data, implic_prop_cont, prop_implic_cont in 
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  IMPLIC 
   |[ ext_implic_data, prop_implic_data, implic_prop_data, 
      implic_prop_cont, prop_implic_cont ]| 
    PROP 

where 

  process IMPLIC := 
  (* The body of the Process would go here. *) 
  endproc 

  process PROP := 
  (* The body of the Process would go here. *) 
  endproc 

endproc 

To pick out a few aspects of this specification, notice that there is a separate 
definition for each process (e.g. the IMPLIC and PROP definitions). Also the 
syntax “hide x1,..,xn in Y” states that the synchronisation actions 
x1,..,xn are local and thus, not available to the context in which a process 
(here CENT_ENG) is placed. The expression: 

IMPLIC 
|[ ext_implic_data, prop_implic_data, implic_prop_data, 
   implic_prop_cont, prop_implic_cont ]| 

 PROP 

denotes that the implicational and propositional systems execute independ-
ently in parallel subject to interaction via the actions: ext_implic_data, 
prop_implic_data, implic_prop_data, implic_prop_cont and 
prop_implic_cont. Thus, the, so called, parallel composition operator, 

P |[ y
1
,..,y

n
 ]| Q 

yields distributed control, it allows two processes (here P and Q) to execute 
independently of one another. However, it states that the two processes can 
interact by exchanging messages over the action links y1,..,yn. 

Data Representations 
The entities in the RSVP task we are modelling are words and our data rep-
resentations need to reflect this. Firstly, note that there are three types of 
words in the paradigm – background, target and distractor. Secondly, at this 
level of theoretical abstraction, all we need from our data representations is 
to distinguish between the different word types. We use an enumerated 
type, which states that a word identifier can either be Back, Targ or Dist. 
  Word_id ::= Back | Targ | Dist 

 
The purpose of the model is to associate salience assessments with words 

in the RSVP. As a result, the actual data representation passed through the 
model is a triple that contains three “slots” – a word identifier (as just intro-
duced), an implicational salience assessment and a propositional salience 
assessment, i.e. 
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 Rep ::= ( Word_id , Sal , Sal ) 
 

When entering the central engine, the last two slots would be set to U, in-
dicating that they are un-interpreted. The IMPLIC process strives to place a 
T or an F in the second slot (indicating True if the word is implicationally 
salient or False if it is not) and PROP has a similar role for the third slot. 

We could have constructed our model with complete words as the items 
entering and being passed through it. A new item would then enter the 
model at RSVP rates of between 90 and 120ms per item (the SOA rate of the 
experiment). In fact, we use a more fine-grained timing compatible with the 
assumption that underlying neural mechanisms can represent updates 
around every 20ms (e.g. see Bond, 1999; Rolls & Stringer, 2001). Thus, a new 
item enters the system every 20ms. An item can be thought of as a word 
constituent and a 90-120ms word is comprised of 5 to 6 items. Each item is 
modelled as a triple in the form of Rep above. Our explanation of the blink 
data will be in terms of the time-course of allocation of attentional resources. 
Consequently, it is useful to have a fine grain of timing so that we can be 
more discriminating with regard to this time-course. Also, we wish ulti-
mately to refine the model in terms of the temporal build-up of perceptual, 
semantic and affective aspects of word representations. We would not be 
able to do this if every update corresponded to a complete word. 

An important aspect of this approach is that we largely abstract away 
from the process of mapping words to meanings. Word category is built into 
our representation in that the first slot contains Back, Targ or Dist, which 
is available when items enter the central engine. This may seem strange 
when modelling an experiment that concerns assessing whether or not 
words are in particular categories. However, in common with the majority of 
the literature on the attentional blink, we explain the phenomenon in terms 
of how attentional resources are allocated and this can be done without de-
tailed modelling of the extraction of meaning from words. In fact, abstract-
ing away from such analysis allows us to concentrate our efforts on model-
ling the time-course of information processing which is the pivotal issue. 

Thus, our items do not directly correspond to either letters, graphemes or 
even features (which are standard components of word recognition). Al-
though we would accept the involvement of such entities at some level of 
analysis, we have abstracted from these here. Our delay lines are time con-
strained and this is reflected in our items, each of which represents a 20ms 
time slice and, as previously discussed, 5-6 items correspond to a word. One 
can interpret the first item in such a sequence of 5-6, as something like the 
amount of information in the first 20ms of processing the word. Thus, the 
model employs a time sliced decomposition of words rather than an object 
based or featural decomposition. 
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We would argue that such an abstract encoding of words is an advantage 
since we are not imposing any constraints on the nature of the word recogni-
tion process. All we are assuming is that there are two salience assessment 
mechanisms, which when completed are registered in item representations. 
Thus, we impose no constraints on the mechanism by which salience as-
sessment is achieved. All we need for the model to work is to know that 
salience assessments are made and that different types of words have differ-
ent salience outcomes, viz background words, target words etc. 

 

Figure 5: (a) Example delay line; (b) typical delay line state; (c) IMPLIC 
processing in buffered mode. 

Delay-Lines 
At one level, we can view the model as implementing a pipeline. New con-
stituent items enter the pipeline via action ext_implic_data, items are 
then fed through IMPLIC and passed into PROP via action im-
plic_prop_data and then they reach the end of the pipeline via action 
prop_ext_data. Every 20ms a new item enters the pipeline and all items 
currently in transit are pushed along one place. The IMPLIC and PROP sub-
systems perform their corresponding salience assessments as items pass 
through the pipeline. The key data structure that implements this pipeline 
metaphor is a delay-line. This is a simple data structure for recording time 
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constrained serial order. Thus, it is a very natural mechanism to use for cap-
turing the temporal properties of the blink experiment, which is a time con-
strained order task. A simple delay-line of 4 elements is depicted in fig. 5(a). 
This records the last 4 time instants of data. In our model, each instant corre-
sponds to a 20ms time-slice. The pipeline employed in our model is, in over-
all length, considerably longer than 4 units and we will not depict it in full 
here. However, it is worth representing a typical state of a 12 item portion of 
the overall delay-line during our blink simulations (fig. 5(b)). As a simple 
approximation some 6 updates correspond to a 120ms SOA, i.e. to one word, 
or, in other words, one RSVP word is modelled by a sequence of 6 delay-line 
items. 

Salience assessment, Buffering and Attention 
Each central-engine subsystem contains an input array and a main subsys-
tem delay-line, which represent, in simplified form, the  “image” of recently 
arrived data. As previously suggested, every 20ms a new item enters a sub-
system’s input array, which, in effect, acts as a mini (3 item) delay-line for 
the most recently arriving data. As shown in fig. 5c, items in the main sub-
system delay-line (in ICS terms, basic units) are constructed by looking 
across the input array to see how the representation builds-up over time. At 
this level, updates are made every 60ms corresponding to update of the en-
tire input array (i.e. 3 times 20ms). In this kind of paradigm, each new word 
has to be assessed for salience in the context of the instructed category. Our 
theoretical proposal is that in the context of “novel” information patterns in 
each subsystem salience assessment is performed by this processes of look-
ing across the input array (fig. 5c). 

We should note in passing that basic units of implicational representation 
are effectively composed by summarising the current dynamic state of the 
input array and placing this in a higher order delay line with a slower rate of 
change. It also captures, in elemental form, what amounts to a hierarchical 
structuring of information content. In the broader ICS architecture, constitu-
ents arrive from multiple sources and this mechanism allows for multimodal 
integration into higher order units of representation. 

In the model, a process in a buffered state represents the focusing of cen-
tral attentional resources at that subsystem. In particular, a subsystem can 
only assess salience of novel, unautomated patterns, if it is buffered. Since, 
as previously stated, only one subsystem can be buffered at any one instant 
internal attention can only be focussed at one processing location. Thus, in 
terms of the current model, only one subsystem can be assessing salience at 
any instant. Buffering ensures the serial allocation of attentional resources. 
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In understanding the model, it is important to realise that all constituent 
items entering the central engine (at action ext_implic_data), will pass 
through the pipeline (coming out at prop_ext_data) and they will be out-
put in the same order that they are input. However, due to the seriality of 
buffering there is no guarantee that the item will have been assessed for 
salience at both IMPLIC and PROP. If a subsystem is not able to perform a 
salience assessment on an item, because it is not buffered, then the corre-
sponding slot in the item representation is left as U (i.e. un-interpreted). In 
addition, a word will only be reported if both its implicational and proposi-
tional salience have been assessed and both have been found to hold, i.e. 
both the second and third slots in the item representation are T. 

The algorithm that controls buffer movement is thus central to realising 
the attentional blink. Two principles control buffer movement: 

1. The subsystem that is buffered decides when the buffer moves and ac-
tively passes it on to the other subsystem (by sending a signal down a 
control link, see Figure 4). 

2. A subsystem decides to pass on the buffer by observing the representa-
tions it is processing. 

The exact algorithm can be explained as follows: 

  Initially IMPLIC is buffered 

  If IMPLIC is buffered and it detects an implicationally salient item 
  then the buffer is passed to PROP 

  If PROP is buffered and it detects an implicationally un-interpreted item 
  then the buffer is passed to IMPLIC 

There is a delay between the time at which a subsystem decides that the 
buffer should move and when it actually does. This is justified on the 
grounds that redirection of attentional resources is computationally de-
manding and thus, time constrained. In other words, the system becomes 
“locked into” a particular processing configuration, which causes inertia 
when the buffer needs to move. This inertia will provide the explicit under-
lying mechanism for the delayed onset of the attentional blink that, accord-
ing to Shapiro et al. (1997a), is only accounted for in a rather post-hoc man-
ner by most existing theories. 

Summary of how the model blinks 
1. Targets are missed when an earlier distractor is found to be implication-

ally salient, causing the buffer to move from IMPLIC to PROP. While the 
system is buffered at PROP, implicational salience cannot be assessed. 
Consequently, the implicational salience of a target would fail to be as-
sessed and hence, during the reporting phase, the system would fail to 
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register the overall salience of the word. In other words, the model 
would have blinked! 

2. The delayed onset of the blink arises because (as just mentioned) there is 
a delay between implicational salience assessment of an item and that 
item passing out of IMPLIC. Thus, closely following items will be at 
early stages in the pipeline before the distractor item has fully passed 
out of it and the buffer moves. This ensures that targets immediately fol-
lowing a distractor are likely to be processed for implicational salience. 

3. Recovery from the blink arises because if there is sufficient separation 
between the distractor and the target, PROP level assessment of salience 
of the distractor will have completed before the target enters IMPLIC. 
Consequently, the buffer will have returned to IMPLIC in time to assess 
the implicational salience of the target. 

Results 
The key parameters that need to be set when running simulations are the 
buffer movement delays and the salience assessment thresholds for both 
subsystems. In standard fashion, we add noise into our simulations by sam-
pling our parameters randomly from distributions. This is done in order to 
give variability between simulation runs and thus to reflect individual dif-
ferences. For the simulations reported here buffer movement delays were set 
as follows: 

1. Implicational Buffer Movement. The delay between an implicationally sali-
ent item entering IMPLIC and the buffer moving is set to either 180 or 
240ms. These correspond to 9 and 12 update cycles, and act to represent 
individual differences in redirecting attentional resources from IMPLIC. 
We sample randomly from these possibilities with equal probability.  

2. Propositional Buffer Movement. The delay between an implicationally un-
interpreted item entering PROP and the buffer moving is sampled from 
the following six possibilities: 60, 120, 180, 240, 300 and 360ms. Again we 
sample randomly, however, here the probability mass associated with 
each possibility is determined according to a normal distribution. A 
probability mass of 0.341 is associated with 180 and 240; 0.136 with 120 
and 240; and 0.023 with 60 and 360.  

Broadly speaking, the speed of implicational buffer movement controls 
the shape of the blink onset. Smaller implicational buffer movement values 
reduce lag 1 performance. This is because the longer the gap between impli-
cational salience detection of the distractor and the buffer moving to PROP, 
the more the chance that following target items are completely processed for 
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implicational salience. Values of 180 and 240ms ensure that lag 1 perform-
ance is not impaired. In addition, because the distribution of values is small, 
just two values, there is not a great deal of variability in assessment outcome 
at early serial positions; this ensures that blink onset is steep. 

In contrast, the propositional buffer movement value plays a significant 
role in controlling the shape of the blink offset, although it is not the only 
factor. As previously suggested, recovery from the blink arises because the 
gap between distractor and target is long enough that PROP salience assess-
ment of the distractor has been completed and the buffer has moved back to 
IMPLIC by the time that the target starts being processed. Consequently, 
longer PROP buffer movement times tend to slow blink recovery. Further-
more, the fact that propositional buffer movement values range over a sam-
ple set of 6 values (compared to the 2 for IMPLIC) contributes to obtaining a 
slow blink offset. In psychological terms this implies that there is greater 
variability in the time course of propositional evaluation than implicational 
evaluation. This fits with the perspective that, over the range of possible 
distractor and target items, there is a greater diversity of propositional sali-
ence levels, which in turn yields greater variability in the processing re-
quired to assess propositional salience. 

Salience assessment thresholds also have to be set. Assessing an item for 
salience yields a value. The smaller the value, the more salient the item. The 
salience assessment threshold determines how small this value has to be for 
an item to be adjudged to be salient. 

1. IMPLIC Threshold. The salience assessment threshold used at IMPLIC is 
sampled from three possible values, each has equal probability of being 
selected (one third). For all the three possible threshold values, back-
ground words will be judged not to be implicationally salient.  For the 
smallest threshold value, neither distractor nor target words will be 
judged to be salient. For the intermediate value, target words will be sa-
lient and distractor words will not be salient, while for the largest value, 
both target and distractor words will be salient. 

2. PROP Threshold. The PROP salience assessment threshold is not randomly 
sampled. It is set to a value that ensures that background and distractor 
words are not propositionally salient and target words are. 

These threshold settings enable us to capture psychologically plausible 
ideas concerning salience in our task setting. Rather like wide and narrow 
sensory filters, there is considerably less precision in implicational salience 
assessment than in propositional salience assessment. For example, PROP 
will never mistakenly interpret a distractor word as propositionally salient. 
In contrast, not only can IMPLIC interpret distractor words as implication-
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ally salient, it can also assess target words as not implicationally salient, 
although this is a low probability outcome. This could be argued to fit in 
with the theory that IMPLIC is implementing a “superficial glance”, while 
PROP is implementing a “detailed look”. In other words, IMPLIC can more 
easily be fooled than PROP. 

Figure 5 reproduces a subset of behavioural data from the Barnard et al 
paradigm. In these data, no blink effect was obtained for the control condi-
tion in which the control distractors were words that were members of the 
background list category. When the distractors were in the category human 
and thus semantically related to the job/occupation target words, a substan-
tial blink occurs. The model fit to these curves is shown. The fit to the data is 
very close across the first few serial positions, but the simulation of report 
levels recovers for human distractors faster than the behavioural data. How-
ever, it will be recalled that the Barnard et al. paradigm made use of three 
response categories - full and accurate report of the identity of the job word, 
reporting that they saw a job but were not sure what it was, and no they 
didn’t see a job. In fact, in the Barnard et al data, failure of report levels to 
recover to control levels over the later serial positions could be attributed to 
reports of target presence but lack of identity. In our existing model, we 
made no attempt to implement the  stage of deciding exactly which response 
to give. Indeed, other than a steeper onset, the shape of the blink function in 
the simulation is very similar to that observed in the original report of a 
letter-based blink (fig. 1) in a dual target setting where the only requirement 
is to report awareness of T2.  
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Figure 5: Simulation results from 3000 trials using the parameter 
settings given above. 

Barnard et al. also found that accurate report of the job targets was re-
lated to their semantic similarity to distractors. At least qualitatively, our 
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model will give this effect. If we make the IMPLIC salience assessment 
threshold more generous, then more distractors will be assessed as IMPLIC 
salient and consequently, more targets will be missed, i.e. the blink will be-
come deeper. A larger IMPLIC threshold could model a smaller distance 
between distractor and target in semantic space. Indicating that more dis-
tractor assessment mistakes will be made in IMPLIC. 

Discussion 
Our first aim was to illustrate the potential of process algebra to implement 
modular mental architectures of wide scope. Those aspects of psychological 
theory captured are the idea that executive control is distributed, illustrated 
here by interactions between ICS subsystems that represent two types of 
meaning. Each of these subsystems only had access to its own internal state. 
Executive control emerged as a function of their interaction which itself in-
volved an exchange of data and control information. The internal structure 
of each subsystem was represented by component processes operating on 
the content of delay lines that represented an image of those basic units that 
have recently arrived. For the purposes of presentation, discussion of both 
mental architecture and the actual model have necessarily been brief. The 
full specification and how its behaviour depends on the parameters are 
rather more intricate than we have been able to elaborate here. An extended 
presentation of the computational issues, as well as a more detailed com-
parison with other psychological models, and a discussion of the extent to 
which the buffering and pipeline mechanisms fully capture processing 
modes in ICS is provided in Bowman & Barnard (2001). The full specifica-
tion is available from Bowman. 

From a computational perspective, the core mechanisms involve concur-
rent processing of different types of representation. They also realise the 
idea that information can be processed within a subsystem in a number of 
different modes, with a state of buffered processing being associated with 
focal awareness and the consequent allocation of limited attentional re-
sources. Effectively, the buffer acts as a movable locus of control within dis-
tributed processing activity. Our account of the blink phenomena rests upon 
the ideas that buffer movement from one subsystem, which represents ge-
neric meaning, to another, which represents more specific meaning, takes 
time, and that the state of buffering is intimately connected to “what” repre-
sentations get processed in real time. The particular trajectory of representa-
tional exchange that determines “what” gets processed is also only a func-
tion of the representation that is locally available. Here those representations 
merely marked class, salience and state of interpretation. The process alge-
bra notation enabled us to capture the hierarchical composition of process-
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ing resources, the emergence of executive control from distributed activity 
and it enabled us to deal with explicit process action at a level of abstraction 
comparable to the original psychological reasoning. The model runs and 
produces a blink effect without requiring more detailed assumptions about 
perceptual, lexical or semantic representations. 

In the introduction we discussed why we have preferred process algebra 
to either connectionism or production systems. However, the status of hy-
brid techniques in this debate is also worth dwelling on. Such techniques 
combine symbolic and connectionist ideas. One element of, which is indeed 
adding a form of, distributed control to symbolic approaches. This might, for 
example, allow activation levels to be associated with concepts and symbolic 
computations. Although these techniques have made an important contribu-
tion to topics such as representation of semantic concepts, planning and 
analogical reasoning, they do not really fulfil our modelling requirements. 
For example, in many of these techniques, especially those that have their 
roots in semantic networks, the unit of distributed control is much more fine 
grain and computationally limited than we seek. For example, the units of 
distribution in (Hendler 1989) are at the level of concepts and do not have 
threads of computational control associated with them. In contrast, each ICS 
subsystem (our unit of distribution) is computationally rich and this needs 
to be reflected in the modelling paradigm chosen. 

Some of the more recent agent-based hybrid techniques come closer to 
our requirements. For example, in the DUAL architecture (Kokinov 1994; 
Petrov and Kokinov 1999) the units of distribution – agents – are computa-
tionally more rich and it would indeed be interesting to attempt to imple-
ment an architecture such as ICS in a framework such as DUAL. However, 
we believe such an implementation would still be limited in respect of our 
requirements. In particular, we have advocated abstract specification of cog-
nitive behaviour without the imposition of implementation assumptions. 
Formal specification techniques, such as process algebra, are exactly targeted 
at obtaining such a non-prescriptive style of description. In contrast, hybrid 
agent-based models, such as DUAL, are tied to programming-level imple-
mentation in languages such as Lisp. It is also unclear whether the commu-
nication between distributed units (either of the marker passing or activation 
exchange variety) is as rich as it is in process algebra. However, a detailed 
comparison of the techniques would be required in order to answer this 
question. 

Our second objective was to outline an implementation of a specific 
model of the attentional blink based upon the distributed control hypothesis. 
Throughout the history of attention research, from Broadbent (1958) on-
wards, much research has been directed at positioning “the serial bottle-
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neck” and its attributes, in a chain of processing through sensory, perceptual 
and central mechanisms. Over time, concern has increasingly drifted to-
wards post-perceptual factors. From a psychological perspective, we have 
effectively moved this argument to an extreme point. The running model 
shows that the basic blink phenomenon is open to explanation in terms of 
entirely central, or executive processing activity determined by meaning. 
Although the wider ICS architecture does allow for earlier effects of stream 
selection in terms of what is passed from visual processing through to the 
centre, the serial position curves for the blink are determined entirely by 
semantic stages. Teasdale and Barnard (1993) also equate buffered process-
ing in ICS with focal awareness of the content of a particular type of mental 
representation at the subsystem where buffering resides. Hence, buffering of 
the implicational image would be directly linked to momentary generic 
awareness of the arrival of a salient item, while buffering of the proposi-
tional image would be associated with focal awareness of the referential 
identity of an item, and that this current propositional information affords 
report. 

Bowman and Barnard (2001) provide more detailed comparisons with 
other models, and in particular, that advanced by Chun and Potter (1995). 
Among the key comparisons, our model does not rely on interference or 
similarity effects at perceptual levels of encoding, decay of stored material, 
or a simple filter-like “bottleneck”, since in our architecture data can pass 
from one stage to another differing only in its representational attributes. 
Central to these differences is the handling of concurrency. The serial pipe-
line of processing is a central metaphor in our approach. Nonetheless, differ-
ent items are being processed simultaneously at different stages in that pipe-
line (e.g. at IMPLIC and PROP). We are aware of no other running models 
against which the present one can be compared in detail, and without such 
implementation ambiguities arise. For example, we could directly compare 
the Chun and Potter first stage with our “glance” mechanism and our “look” 
with their capacity limited, second stage. However, we could also regard 
their first stage as more equivalent to the process in our model that passes 
data to the central engine (Vis → Implic), and consider our “look and 
glance” to be more of an elaboration of their second stage in which material 
is consolidated for report. 

Our account of the blink phenomenon in terms of central mechanisms 
alone may appear to fit quite uncomfortably in this empirical domain. The 
vast bulk of the research has focused upon influences such as lexical priming 
(Shapiro, Driver et al. 1997), perceptual masking, or interference effects 
(Raymond, Shapiro et al. 1992; Chun and Potter 1995; Shapiro, Arnell et al. 
1997). It is, for example, clear from these latter studies that the T1+1 and 
T2+1 items play an important role in obtaining the blink. It has been argued 
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that they act as masks for the T1 and T2 items, and that they prevent con-
solidated processing of the targets. For example, Chun and Potter reduced 
the strength of the blink by placing a blank at the T1+1 position. Further-
more, they varied the ease with which the T1+1 item could be discriminated 
(by type) from T1 and found that the blink deepened with increased diffi-
culty in discriminating T1+1 from T1.  

Qualitatively such an effect could occur in our semantic subsystems by 
adapting the implicational buffer movement mechanism without recourse to 
peripheral mechanisms. Currently, IMPLIC passes the buffer to PROP at the 
point at which implicationally salient items start to be output from IMPLIC. 
However, we could assume that the buffer  moves earlier if the level of im-
plicational salience of items on the input array (i.e. at the input end of the 
IMPLIC part of the pipeline) falls below a certain level. Then the buffer 
would move more quickly from IMPLIC to PROP if the T1+1 item could 
easily be distinguished from T1, the extreme case being when T1+1 is a 
blank. Now if the buffer moves more quickly to PROP, it will also return 
more quickly to IMPLIC. As a result, the blink will be shorter and is also 
likely to be shallower. Such an adaptation is psychologically really rather 
plausible. It would enable processing resources to be re-directed under low 
demand as well as high demand. This would be the case if a blank, or easily 
discriminated items, appear on the IMPLIC input array. Although unim-
plemented, such arguments suggest that a range of effects may be open to 
explanation in terms of mechanisms evaluating semantic representations of 
current input in relation to semantic representation of the current task de-
mands. 

Naturally, the basic blink effect is open to a number of alternative expla-
nations (e.g. see Shapiro, Arnell et al., 1997), each of which could potentially 
be given computational realisation, although we are currently aware of no 
published implementations. Our reproduction of human data gives our ex-
isting model the status of a candidate explanation of the basic attentional 
blink effect. As with all such models, it serves first to illustrate that an in-
formal explanation of the blink (see the section Summary of how the model 
blinks) can be realised computationally, and developed to frame predictions 
that can be tested in further empirical research. In this context, an important 
aspect of our work is that we have developed our model in terms of a 
macro-theoretic architecture, ICS, that has already been extensively devel-
oped to address the influence of emotion on normal and dysfunctional cog-
nition (e.g. see Barnard, 1999; Teasdale & Barnard, 1993).  Our current im-
plementation of the distributed control hypothesis thus provides a basic 
platform which can be readily extended to address not only how attention is 
captured by emotionally, as well as cognitively, salient material, but also 
some reported effects of brain damage. 
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For example, our choice of a delay-line representation for the image re-
cord component in an ICS subsystem is motivated in part by the require-
ment to enable a process to be able to see over data that arrives via different 
configural routes through a distributed processing mechanism (see Fig 3).  
Word meanings derived from longer routes that involve sequential parsing 
through object and morphonolexical subsystems, will not necessarily arrive 
in the propositional image of the ICS architecture at exactly the same mo-
ment as perhaps coarser grain information arriving by different routes.  
Some information extracted directly from sensory patterns like facial expres-
sion or tone of voice may arrive earlier, while the build up of bodily experi-
ences and the feedback this generates could even arrive somewhat later. 
Delay lines provide a simple mechanism whereby a locally represented state 
can bring temporally offset information into a unified structure. Our expla-
nation of the blink effect relies on buffer movement that is in part deter-
mined by the concurrent states of both propositional and implicational 
meaning. The implicational level of representation represents generic mean-
ings that can be affectively charged on receipt of appropriate combinations 
of constituents arriving from the sensory subsystems and the propositional 
subsystem. The representations are built concurrently in the ICS architec-
ture, but out of different inputs with different lags. Reference back to fig. 3 
will show that four subsystems send constituent data to the implicational 
subsystem: the acoustic, visual, body state and propositional subsystems. In 
effect, the implicational subsystem builds schematic models of meaning in 
the context of particular sensory patterns. It is at this level, for example, that 
tone of voice, facial expression and activated or lowered body states can 
influence our “understanding”.   

Such an approach provides a relatively straightforward way of address-
ing other influences on the blink effect while retaining the same core mecha-
nisms. The onset of the blink in our model is effectively determined by the 
time that the buffering mechanism dwells at the implicational level of repre-
sentation, while the recovery of report depends on the dwell time of buffer-
ing at the propositional level of representation. This allows relatively 
straightforward extensions to deal with emotional influences on the shape of 
the report function as well as the effects of neurological damage. For exam-
ple, the build up of affect depends upon the current state of implicational 
representations. The presence of a “threat marker” at that level of represen-
tation can be assumed to influence implicational salience assessment, and 
this provides a means whereby aversive words occurring as a second target 
(T2) can break through the blink, i.e. can interrupt T1 processing. In ICS, 
information can be processed in direct mode rather than buffered mode if 
the transformation is fully automated. So, one’s own name or even threat 
material for anxious individuals, can be assigned salience without requiring 
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buffering and this would enable data to be passed from implic to prop with 
its implicational salience parameter set. Were this to be implemented in the 
model, our own names or threat words could break through the blink. Both 
types of effect have been reported, the former by Shapiro, Caldwell, et al., 
(1997) and the latter by Anderson & Phelps (2001).  Of potentially far greater 
importance are interactions. So, for example, Anderson & Phelps (2001) also 
found that the attenuated blink, with aversive T2s, does not occur in several 
cases of left amygdala damage. If we were to assume that salience is influ-
enced by feedback from body state representations, via the implicational-
body state loop, and that the amygdala is among those brain structures that 
mediate body state representation of attributes related to fear, then any dis-
ruption to that circuitry would prevent the body state consequences of threat 
being fed back to the implicational subsystem. This is a more or less direct 
analogue of the somatic marker hypothesis proposed by Damasio, Tranel, 
and Damasio (1991). Importantly, the prevention of body state feedback 
does not affect our core blink mechanism of buffer movement based upon a 
semantic “glance” and a more detailed “look.” Accordingly the model al-
lows a normal blink to occur while enabling us to accommodate the absence 
of an attenuated effect with amygdala damage.  

Another key finding from neuropsychological studies of the blink effect 
is that patients with right parietal brain damage, giving rise to visual ne-
glect, also display a blink effect, but one that shows very shallow recovery to 
baseline levels of accurate report (Husain, Shapiro et al. 1997). Indeed, it can 
take around 1500ms for report to fully recover to baseline levels.  It seems as 
if such patients have a massively protracted “look” stage of processing. We 
can assume that a full account of what goes on in our look stage involves not 
only implicational input to propositional representations but later arriving 
inputs from more extended processing of visuo-spatial (via the object sub-
system) and lexical form (via the morphonolexical subsystem in ICS). Con-
sequently, brain damage impairing the capabilities of either of these subsys-
tems would then require more extensive exchanges between these subsys-
tems and the propositional subsystem before a stable propositional repre-
sentation emerges. Accordingly, buffering would dwell in the propositional 
subsystem, or at object and MPL subsystems, for a considerably extended 
duration prior to returning to implic and hence lead to a shallower recovery 
curve. As with the arguments concerning feedback of body state informa-
tion, the basic mechanisms of buffer movement dependent on salience as-
sessment would be retained, the only thing that alters concerns the time 
taken to build either the implicational or propositional representations re-
quired to trigger buffer movement. 

These particular ideas are naturally speculative, since the details are as 
yet unimplemented. They nonetheless provide concrete illustrations of how 
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the distributed control of two qualitatively distinct types of semantic repre-
sentation, each preserved in functionally dissociated delay line memories, 
can yield explanations of related phenomena without a requirement to in-
corporate additional processing resources or mechanisms.  More widely, the 
approach itself adds a new tactic for macro-theoretic level modelling of the 
behaviour of complex mental architectures to supplement the use of connec-
tionist, symbolic or hybrid modelling technologies. Barnard, May, Duke, and 
Duce (2000) present a more detailed discussion of the use of computer sci-
ence based methods for modelling macro-theoretic, as opposed to mi-
crotheoretic, issues in the governance of behaviour. Our use of process alge-
bra in this paper has provided the means for demonstrating how interac-
tions between two subsystems with decentralised or distributed control can 
give rise to behavioural data. It does so at a level of abstraction that limits 
the number of micro-theoretic commitments, which go beyond what the 
psychological theory was seeking to implement.  We have effectively im-
plemented a core model of executive control of attention, and extensions to 
it require us to implement, at an equally abstract level of specification, inter-
acting loops between meaning subsystems and other subsystems such as 
body-states or object and lexical levels of representation. Process algebra 
provides us with a notation that makes such modelling tractable. Indeed, we 
believe that specification languages of this class could well open up many 
domains of cognitive-affective enquiry, that have either been closed to or 
only so far exposed to computational modelling of restricted scope. 
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