
Computer Science at Kent

Mobile Processes in Unifying Theories

Xinbei Tang

Technical Report No. 1-04
January 2004

Copyright c© 2004 University of Kent at Canterbury
Published by the Computing Laboratory,
University of Kent, Canterbury, Kent, CT2 7NF, UK

Mobile Processes in Unifying Theories

Xinbei Tang

Computing Laboratory

University of Kent

Canterbury, Kent, CT2 7NF, UK

xt2@kent.ac.uk

January 2004

Abstract

This report presents the initial work in the development of a theory of
mobile processes in Circus, a language for describing state-based reactive
systems. The mathematical basis for the work is Hoare and He’s Unify-
ing Theories of Programming (UTP), where the alphabetised relational
calculus is used to provide a common framework for the semantics and
refinement calculus of different programming paradigms.

As our first step, we study the denotational semantics of mobile pro-
cesses in UTP. Process mobility is interpreted as the assignment or com-
munication of higher-order variables, whose values are process constants
or parameterised processes, in which the target variables update their val-
ues and the source variables lose their values. We then present a set of
algebraic and refinement to be used for the development of mobile sys-
tems. The correctness of these laws can be ensured by the UTP semantics
of mobile processes.

We illustrate our theory through a simple example that can be im-
plemented in both a centralised and a distributed way. First, we present
the π-calculus specification for both systems and demonstrate that they
are observationally equivalent. Next, we show how the centralised system
may be derived into the distributed one using our proposed laws.

By formalising mobile processes and studying their refinement laws in
the same semantic framework of Circus, they can be included in Circus’
refinement calculus to enhance Circus with the ability to develop networks
of mobile processes.

Keywords. Mobile process, refinement, UTP, higher-order program-
ming

Contents

1 Introduction 1

2 The Unifying Theories of Programming 2

3 A Simple Example in the π-Calculus 4

4 Syntax 10

5 Semantics 11
5.1 Refinement orderings . 11
5.2 UTP semantics model . 12

5.2.1 Alphabet . 13
5.2.2 Healthiness conditions . 14

5.3 Higher-order assignment . 19
5.4 Denotational semantics of mobile processes 21

5.4.1 Primitive processes . 21
5.4.2 Parallel composition . 32
5.4.3 Iteration . 33
5.4.4 Internal choice . 34
5.4.5 External choice . 34
5.4.6 Hiding . 35

6 Algebraic Properties and Laws 35
6.1 Variable declaration and undeclaration 35
6.2 Assignment . 39
6.3 Process variable activation . 41
6.4 Prefix . 42
6.5 Iteration . 42
6.6 Other processes . 43

7 Development Method for Mobile Processes 44
7.1 Abstracting process variable . 44
7.2 Moving process variable . 46

8 Decentralising the Data Centre 49

9 Conclusions and Future Work 51

1 Introduction

Mobile processes are becoming increasingly popular in software applications;
they can roam from host to host in a network, carrying their own state and
program code. A common example is a Java applet that is downloaded from a
server across the Internet, and then executed in a client. Such processes bring
new programming problems, and so require their own theoretical foundations
for the correct and rigorous development of applications.

The most well-known formal theory for mobile processes is the π-calculus
[18, 20, 27]. Extended from Milner’s CCS [19], the π-calculus is a process
algebra that provides a conceptual framework for understanding mobility, and
mathematical tools for expressing mobile systems and reasoning about their
behaviours [27]. In the π-calculus, it is links that move, whose simple idea is to
allow processes to exchange channel names, thus change their interconnection
structures dynamically. The higher-order π-calculus (HOπ in short) [26] treats
mobility by process passing. In the π-calculus and the HOπ, the mobile and
dynamic features of mobile systems can be modelled.

The semantics of the π-calculus and the HOπ are typically of an operational
style, which illustrates how a program can be executed by a series of steps
that change the program state. It provides an equivalence relation comparing
processes using bisimulation, which is defined on the structure of the behavioural
graph of the two processes, where the arrows of the graph are the transitions in
which the process may participate. With the operational semantics, processes
are close to implementation, thus their translation to a programming language
is relatively easy. However, they cannot describe system behaviour abstractly
and comprehend the inner meaning of a program. The operational semantics
is difficult to be used for proof, refinement and system development. Moreover,
the π-calculus cannot be used to model divergence, in that it principally adopts
weak barbed congruence [27] as the behavioural equivalence for π-terms, in
which the internal τ action of a system is ignored.

We propose a theory of mobile processes that is suitable for refinement, so
that it can support stepwise development of mobile systems. Especially, starting
with an abstract specification, we develop a distributed system by using mobile
processes, in which each step of the derivation is provable in the theory. A
denotational understanding of mobility is essential for this purpose. Based on
the denotational semantics, a refinement ordering relation, which holds between
an implementation and a specification, can be defined. A crucial result in this
is that we are able to deal with the specification and the implementation in the
same mathematical framework.

There are also some researches in which the denotational settings of the π-
calculus and HOπ are studied [11, 6, 30]. These denotational approaches all
involve a quite complicated type theory, domain theory or category theory, and
no refinement relation based on these semantics is studied.

In this report, we present our initial results, which are denotational semantics
and a set of algebraic laws for mobile processes. The mathematical basis for the
work is Hoare and He’s Unifying Theories of Programming (UTP) [13], which

1

uses a simple alphabetised form of Tarksi’s relational calculus. The correctness
of the laws can be guaranteed using the UTP semantics for mobile processes.
We study a simple example in both π-calculus and our theory. The results
show the suitability of our laws for the stepwise development of a distributed
system from a centralised specification, rather than comparing processes by
using bisimulation in the π-calculus.

Process mobility is exhibited in the higher-order variable assignment or com-
munication, in which both the source and the target are variables, and have
process behaviours as their values. When a higher-order mobile-variable assign-
ment or communication takes place, the target variable is updated, more or
less as one would expect; but at the same time, the source variable becomes
undefined. In this way, processes are moved around in the system.

The presence of process-valued variables has an impact on monotonicity
with respect to refinement, and we require that process assignment should be
monotonic in the assigned value. This follows the treatment of higher-order
programming in [13].

The remainder of this report is organised as follows. The next section gives
a brief overview of unifying theories and explains the reasons why we select it
as the theoretical basis. Section 3 gives a simple example implemented in both
a centralised and a distributed way, and shows that they are observationally
equivalent using the π-calculus. Thereafter, we present the syntax, the UTP
semantics, and a set of laws for mobile processes in Section 4, Section 5 and
Section 6 respectively. In Section 7, we illustrate our development method of
distributed system through some refinement laws; thereafter, we apply the laws
in the example in Section 8. We conclude the presented work in Section 9 and
outline some future work.

2 The Unifying Theories of Programming

Hoare and He’s Unifying Theories of Programming (UTP) [13] is a mathemat-
ical theory for programming in which the alphabetised relation calculus and
the predicate calculus are adopted as the fundamental basis for formalising and
linking various theories of programming across three dimensions: different com-
putational paradigms ([13] section 0.1), different levels of abstraction ([13] sec-
tion 0.2) and distinct mathematical representations ([13] section 0.3). For each
programming paradigm, programs, designs and specifications are all interpreted
as relations between an initial observation and a single subsequent (intermediate
or final) observation of the behaviour of the execution of a program. Program
correctness and refinement can be represented by inclusion of relations. All
the laws of relational calculus are valid for reasoning about correctness in all
theories and in all languages.

Within the framework of the general theory of relations, formal theories
differentiate one from another by their alphabet, signature, and healthiness
conditions.

The alphabets ([13] section 0.4) of a theory are just a set of variables to record

2

a range of external observations of program behaviour that are considered rel-
evant. The variable of an initial observation before the program is started is
undecorated, but the variable to record the similar intermediate or final obser-
vation taken subsequently is decorated with a dash. For instance, variable x
may stand for the initial value of a global variable updated by the programs,
and x ′ denotes the final value of that variable in an intermediate state or on
termination. Except the global program variables, there are some other vari-
ables globally shared with the environment in which the program involves. The
first example of these external variables is the boolean variable ok whose value
true means that the system has started in a stable state. ok ′ takes the value
true when the system has reached a stable and therefore observable state; this
permits a description of programs that fail due to nonterminating loops or re-
cursion. In a theory of reactive processes, tr records the cumulative interactions
between a process and its environment; and the boolean variable wait distin-
guishes the intermediate observations of waiting states from final observations
of termination. During a wait , the process can refuse to take part in certain
events offered by the environment, which are specified by the variable ref .

The signatures ([13] section 0.5) of a theory are a set of operators and atomic
components which provide syntax for denoting the objects of the theory. It gives
the way to represent the elements of the theory by taking primitives directly as
elements and using operations to construct them into larger expressions and pro-
grams. The signature of a programming theory at the lowest level of abstraction
must obviously include all the notations and operations for the target program-
ming language. Design successively removes unimplementable operators; all
operators are monotonic. In the programming language, only implementable
operations are left.

The healthiness conditions ([13] section 0.6) help designers select the required
elements for a sub-theory from those of a more expressive theory in which it is
embedded. By a suitable restriction of signature, design languages satisfy many
healthiness conditions, and eventual target programming languages satisfy more.
Thus in this elegant framework, in a top-down design process, programs form a
subset of intermediate designs, and designs form a subset of specifications.

UTP has been successfully used as the theoretical foundations of the seman-
tics and refinement calculi of various models in different areas of computing.
Its power to construct a formal semantics and system development by design
refinement are expressed thoroughly in these applications. In [8, 10], He, Liu
and Li presented an observation-oriented semantics for an object-oriented lan-
guage with a rich variety of features, including subtype, visibility, inheritance,
dynamic binding, mutual recursive methods and recursions. In this model both
class declarations and commands are identified as UTP designs. UTP relational
model is also used for specifying and reasoning in activities of an object system
development process in [9] where a refinement calculus for object systems is
proposed. Li and He [15] provided a denotational semantics to a subset of Time
RAISE [7] Specification Langauge (TRSL) using Duration Calculus [37] model,
borrowing a lot of ideas from UTP. Based on this work, recently Ri and He [23]
presented a technique for verifying the correctness of TRSL specification against

3

the real-time requirements described as predicates over the observables; a set of
proof rules are developed and their soundness and completeness is proved. This
work follows again the idea and methodology of UTP. In [32] Woodcock devel-
oped a formal semantics and refinement calculus for a shared-variable parallel
programming language using the concepts and notations of UTP. In [33] Wood-
cock and Cavalcanti used UTP to formally define the semantics of a concurrent
refinement langauge Circus that integrates CSP [12, 24], Z [36], specification
statements [21] and guarded commands [5], for describing state-based reactive
systems. With the same UTP semantics model, Sherif and He naturally ex-
tended Circus with discrete time in [29] and proposed in [28] a framework for
the specification, validation and development of real time program using Circus.
In Circus and timed Circus, UTP is demonstrated to be a powerful theory to
unify different models. Similar work was done later by Qin, Dong and Chin in
[22] by constructing a UTP semantics model for another integrated langauge
— Timed Communicating Object Z (TCOZ) [17]. More recently, Jin and He
proposed a hierarchy of four semantics models for specifying and reasoning pro-
grams with limited resources [14] following the design methodology in UTP.
Each model in the hierarchy is a refinement of the one defined formerly.

As a powerful theoretical foundation for the denotational semantics and
refinement calculi of so many different models, we believe UTP can also be used
for our formalisms and development method for mobile processes. The further
reasons why we select it as the theoretical basis are:

• UTP serves as the mathematical base of Circus [34]. We intend to include
the refinement of mobile processes in the refinement calculus of Circus. It
is adequate to use UTP — the same semantics framework of Circus — to
study mobile processes, otherwise this inclusion will be very difficult or
impossible.

• The approaches to communication and higher-order programming in UTP
([13] chapter 8 and 9) are applicable to mobile processes. Communica-
tion is one of the important features of mobile processes. Moreover, as
processes themselves can be communicated through channels, we need to
formalise mobile processes in higher-order programming.

3 A Simple Example in the π-Calculus

Suppose that there is a data centre that needs to analyse data based on infor-
mation residing in different hosts on a network. For simplicity, we assume that
this analysis amounts to getting the sum of the data in each host.

This small application can be implemented in two ways. In the first imple-
mentation (Figure 1), the data center directly communicates with each host,
one by one, getting the local information and then updating the data. All the
calculations for update are carried out in the data centre. This implementation
is very simple, and so is obviously correct.

4

Data Centre
c.i?v t:=t+v

Host1

Host2 Hostn-1

Hostn

c1

c2 cn-1

cn

Figure 1: Centralised Implementation

 Hostn H
os

t i

 Host 1

Data Centre
(c.i?v t:=t+v)

Server1

dn,0

Client1 Servern Clientn

d0,1

c1 cn

Serveri

Clienti

ci

p t

p

p

Figure 2: Distributed Implementation

In the second implementation (Figure 2), similar pieces of specification are
abstracted and encapsulated in a parameterised process variable, which travels
from the data centre, and roams the network to each host, taking its local state,
and the operations used to update the local state. After its arrival at a host, it
is plugged into a local channel ci and activated, getting the local information
and updating the local state. After visiting all hosts, it comes back to the data
centre with the final result.

Both implementations can complete the simple task, but the latter one has a
richer structure that might make it more useful. For example, if the nature of the
analysis changes, then only the mobile process needs to be changed. Consider
an international bank: it may change both data (exchange rates) and function
(services offered to customers) frequently. If this is programmed as a mobile
process, then the very latest upgrade arrives automatically in local branches. It
may also be more efficient to move the process from the centre to each host, as
local communication would replace remote communication.

Both systems can be specified in the π-calculus. As the π-calculus syntax
does not have assignment, we use a suitable translation to convert assignment
into π-terms as the composition of an input and an output action over a re-
stricted (or bound) name. The π-calculus syntax that we adopt is from [20].

Definition 3.1 (π-calculus assignment)

[[(t := e).P]] =̂ new h (h〈e〉.0 | h(t).[[P]]) {t ∈ fn(P), h /∈ fn(P)}

where the part enclosed in [] is the side condition that the definition should
satisfy, and fn(P) denotes the free names of P. 2

Observationally, the effect of the assignment of a value to variable t followed
by executing P immediately is the same as substituting this value for all the
free occurrences of the variable t in P . This is shown by the following simple
theorem that states the bisimilarity between the two.

Theorem 3.1 (Assignment bisimulation)

(t := e).P ≈ {e/t}P {t ∈ fn(P)}

where {e/t}P denotes the systematic substitution of e for t in P.

5

Proof :

LHS {definition of assignment}

= new h (h〈e〉.0 | h(t).P) {strong bisimilarity}

∼ τ.(0 | {e/t}P) {weak bisimilarity}

≈ 0 | {e/t}P {structural congruence}

≡ RHS

The centralised system is the composition of a Centre process and n Hosts
over restricted channel names.

System =̂ (new c1, c2, · · · , cn)(Centre | Host1 | Host2 | · · · | Hostn)

where the Centre and Hosti are defined as:

Centre =̂ (t := 0).c1(v).(t := t + v). · · · .cn(v).(t := t + v).result〈t〉
Hosti =̂ ci〈ui〉

where ci(v) is the input of the data that needs to be retrieved from the ith host,
and ui is the data that needs to be retrieved from the ith host. We sometimes
abbreviate result〈t〉.0 as result〈t〉.

In the assignment t := t + v of Centre, the t in the left hand side is a
restricted name while the t in the right hand side is a free name. We can better
comprehend the scope of each t and v using renaming. The effect of Centre is
the same as

Centre =̂
(t0 := 0).c1(v1).(t1 := t0 + v1). · · · .cn(vn).(tn := tn−1 + v).result〈tn〉

Observationally, System is equivalent to result〈u1 + u2 + · · · + un〉.

Theorem 3.2 (Centralised system bisimulation)

System ≈ result〈u1 + u2 + · · · + un〉

Proof :

LHS {definition}

= (new c1, c2, · · · , cn)
(

((t := 0).c1(v1).(t1 := t + v1). · · · .cn(vn).(tn := tn−1 + vn).result〈tn〉)
| c1〈u1〉 | c2〈u2〉 | · · · | cn〈un〉

)

{structural congruence}

≡ (t := 0).(new c1)(c1(v1) | c1〈u1〉).(t1 := t + v1). · · · .

(new cn)(cn(vn) | cn〈un〉).(tn := tn−1 + vn).result〈tn〉 {strong bisimilarity}

∼∗ (t := 0).τ.(t1 := t + u1). · · · .

(new cn)(cn(vn) | cn〈un〉).(tn := tn−1 + vn).result〈tn〉

6

{definition of t := 0, Theorem 3.1, strong bisimilarity}

∼ τ.τ.(t1 := u1).τ.(t2 := t1 + u2). · · · .

(new cn)(cn(vn) | cn〈un〉).(tn := tn−1 + vn).result〈tn〉 {weak bisimilarity}

≈ t1 := u1.τ.t2 := t1 + u2. · · · .

(new cn)(cn(vn) | cn〈un〉).(tn := tn−1 + vn).result〈tn〉

{induction over the indices as from step∗}

≈ τ.result〈u1 + u2 + · · · + un〉

≈ RHS {weak bisimilarity}

2

In the HOπ [26] and polyadic π-calculus [20], abstractions (parameterised
processes) or multiple names can be transmitted directly along channel names.
In the distributed implementation, an abstraction (z , in, out , dn).P and the
value of t are transmitted at the same time, where (z , in, out , dn).P and its
execution ((z , in, out , dn).P)〈ci , ti−1, ti , tg〉 are defined as follows:

(z , in, out , dn).P =̂ z (v).(out := in + v).dn〈out〉.0
((z , in, out , dn).P)〈ci , ti−1, tmp, tg〉 =̂ ci(v).(tmp := ti−1 + v).tg〈tmp〉.0

Let d0,1 be the name of the channel connecting Centre and Host1, dn,0 be
the name of the channel connecting Hostn and Centre, and di,i+1(1 ≤ i ≤ n−1)
be the name of the channel connecting Hosti and Hosti+1. The specification for
the distributed system is

MSystem =̂
(new d0,1, d1,2, · · · , dn,0)(MCentre | MHost1 | MHost2 | · · · | MHostn)

The Centre now has the task of initialising its total, sending the mobile process
and total on its way, and then waiting for the total to return home1, before
outputting the result.

MCentre =̂ (t := 0).d0,1〈(z , in, out , dn).P , t〉.dn,0(final).result〈final〉.0

Each host now has an extra component: one that receives the mobile process,
executes it, and then passes it on to the next host. This component is merely
added to the previous behaviour of the host.

MHosti =̂ (new ci)(HostCi | Hosti)

HostCi =̂

di−1,i(p, ti−1).(new tg)(p〈ci , ti−1, tmp, tg〉 | tg(ti).di,i+1〈p, ti〉.0)
for i = 1 . . n − 1

dn−1,n(p, tn−1).(new tg)(p〈ci , tn−1, tmp, tg〉 | tg(tn).dn,0〈tn〉.0)
for i = n

1The mobile process is discarded in the last-visited host after its mission in order to save
network cost, but extra cost arises for specifying the last host separately.

7

In HostCi , we use a restricted name tg to make the output via di,i+1 possible af-
ter p’s execution. If we discard dn〈out〉 in the transmitted abstraction, then the
value of the updated t would not be passed on, and p〈ci , ti−1, tmp〉.di,i+1〈p, ti〉.0
would be syntactically wrong, because p〈ci , ti−1, tmp〉 is a process rather than
a prefix.

By using some rules in HOπ and polyadic π-calculus, we can get an equiva-
lence to MSystem: it is also weakly bisimilar to result〈u1 + u2 + · · · + un〉.

Theorem 3.3 (Distributed system bisimulation)

MSystem ≈ result〈u1 + u2 + · · · + un〉

Proof : Let Ai = (new tg)(p〈ci , ti−1, tmp, tg〉 | tg(ti).di,i+1〈p, ti〉.0)

MSystem {def of MCentre and MHost}

≡∗ (new d0,1, d1,2, · · · , dn,0)

t := 0.d0,1〈P , t〉.dn,0(final).result〈final〉
| (new c1)(d0,1(p, t0).A1 | c1〈u1〉)
| (new c2)(d1,2(p, t1).A2 | c2〈u2〉)
| · · ·
| (new cn−1)(dn−2,n−1(p, tn−2).An−1 | cn−1〈un−1〉)
| (new cn)

(dn−1,n(p, tn−1).(new tg)(p〈cn , tn−1, tmp, tg〉 | tg(tn).dn,0〈tn〉) | cn〈un〉)

{structural congruence, def of t := 0}

∼ (new d1,2, · · · , dn,0)

 τ.(new d0,1)

(
d0,1〈P , 0〉
| (new c1)(d0,1(p, t0).A1 | c1〈u1〉)

)

.dn,0(final).result〈final〉

| (new c2)(d1,2(p, t1).A2 | c2〈u2〉)
| · · ·
| (new cn−1)(dn−2,n−1(p, tn−2).An−1 | cn−1〈un−1〉)
| (new cn)

(dn−1,n(p, tn−1).(new tg)(p〈cn , tn−1, tmp, tg〉 | tg(tn).dn,0〈tn〉) | cn〈un〉)

{synchronisation over d0,1, def of p〈c1, t0, tmp, tg〉}

∼ (new d1,2, · · · , dn,0)

τ.τ.(new c1)

((new tg)(c1(v).tmp := 0 + v .tg〈tmp〉 | tg(t1).d1,2〈P , t1〉) | c1〈u1〉)
.dn,0(final).result〈final〉

| (new c2)(d1,2(p, t1).A2 | c2〈u2〉)
| · · ·
| (new cn−1)(dn−2,n−1(p, tn−2).An−1 | cn−1〈un−1〉)
| (new cn)

(dn−1,n(p, tn−1).(new tg)(p〈cn , tn−1, tmp, tg〉 | tg(tn).dn,0〈tn〉) | cn〈un〉)

{synchronisation over tg , def of tmp := v}

∼ (new d1,2, · · · , dn,0)

8

(
τ.τ.(new c1)(c1(v).τ.τ.d1,2〈P , v〉) | c1〈u1〉)
.dn,0(final).result〈final〉

)

| (new c2)(d1,2(p, t1).A2 | c2〈u2〉)
| · · ·
| (new cn−1)(dn−2,n−1(p, tn−2).An−1 | cn−1〈un−1〉)
| (new cn)

(dn−1,n(p, tn−1).(new tg)(p〈cn , tn−1, tmp, tg〉 | tg(tn).dn,0〈tn〉) | cn〈un〉)

{synchronisation over c1}

∼ (new d1,2, · · · , dn,0)

(
τ.τ.τ.(τ.τ.d1,2〈P , u1〉)
.dn,0(final).result〈final〉

)

| (new c2)(d1,2(p, t1).A2 | c2〈u2〉)
| · · ·
| (new cn−1)(dn−2,n−1(p, tn−2).An−1 | cn−1〈un−1〉)
| (new cn)

(dn−1,n(p, tn−1).(new tg)(p〈cn , tn−1, tmp, tg〉 | tg(tn).dn,0〈tn〉) | cn〈un〉)

{weak bisimilarity}

≈ (new d1,2, · · · , dn,0)

d1,2〈P , u1〉.dn,0(final).result〈final〉
| (new c2)(d1,2(p, t1).A2 | c2〈u2〉)
| · · ·
| (new cn−1)(dn−2,n−1(p, tn−2).An−1 | cn−1〈un−1〉)
| (new cn)

(dn−1,n(p, tn−1).(new tg)(p〈cn , tn−1, tmp, tg〉 | tg(tn).dn,0〈tn〉) | cn〈un〉)

{induction over the indices as from step∗}

≈ result〈u1 + u2 + · · · + un〉

2

Theorem 3.2 and Theorem 3.3 show that the π-calculus can be used for verifica-
tion. If we have got a specification in the π-calculus, it is possible for us to use
the structural congruence rules and strong/weak bisimulation rules to deduce
that this specification satisfies some requirement. Both System and MSystem
are observationally equivalent to result〈u1 + u2 + · · ·+ un〉, so they both satisfy
the requirement of getting the sum of the data in each host.

We are interested in a step-wise development process in the spirit of Mor-
gan’s refinement calculus for sequential programs [21]. We would like to start
from an abstract, centralised specification, and develop a concrete, distributed
implementation, proceeding in small steps that are easy to justify and that ex-
plain design decisions. It is not easy to follow this discipline in the π-calculus.
Instead, we would like to base our language of mobile processes firmly on the
notion of refinement, and develop sets of laws that encourage piece-wise de-
velopment. In later sections, after we present the denotational semantics and
refinement laws for mobile processes, we show this step-wise development in our
proposed approach.

9

4 Syntax

The syntax of our language is a subset of occam [16] and CSP [12, 24], but
enriched with primitives for process variables, mobile and clone assignment and
communication, and (parameterised) process variable activation. These mobil-
ity constructs are inspired by occamM [1].

In discussing the semantics, we make use of the following conventions for
meta-variables. p and q range over all program variables; t ranges over data
variables; e ranges over data; h ranges over process variables; E ranges over
data or process values; x , y and z range over formal name, value, and result
parameters; ne, ve, and re range over actual name, value, and result parameters;
b ranges over boolean values; X ranges over sets of events.

The basic elements in our model are processes, which are constructed from
the following rules:

P ::= SKIP | STOP | CHAOS | vid p : T | end p
| h := {[P]} | h := {[λ x : var(T1), y : val(T2), z : res(T3) • P]}
| t := e | p :=m q | p := q | <h> | h(ne, ve, re)
| Comm → P | P C b B Q | P ; Q | b ∗ P
| P ‖ Q | P 2 Q | P u Q | P \ X

vid ::= var | proc
Comm ::= ch?p | ch!q | ch!!q | ch.E

SKIP does nothing and terminates immediately; STOP represents deadlock;
CHAOS is the worst process and the bottom element of the complete lattice of
mobile process: its behaviour is arbitrary.

The variable declaration vid p : T introduces a new variable p of type T ;
correspondingly end p terminates the scope of p. When it is clear from the
context that p is a data variable or a process variable, we use var or proc for
its declaration. The type T determines the range of values that p can have.
When p is a process variable, its type determines the alphabet and interface2

of the process that may be assigned to p. For convenience, we often omit types
when they are irrelevant.

Higher-order programming treats program as data, and higher-order assign-
ment or communication assigns process constants to higher-order variables. Pro-
cess constants are enclosed in brackets, which have no semantic importance
and are ignored when the process is activated. We distinguish simple pro-
cess constants from parameterised ones. The higher-order constant assignment
h := {[P]} assigns a simple process constant P to h, and h := {[λ x : var(T1), y :
val(T2), z : res(T3) • P]} assigns h a parameterised process constant, which
has a body P and a formal name parameter x , value parameter y , and result
parameter z .

The first-order constant assignment t := e assigns a value e to the data
variable t . The clone variable assignment p := q is similar to constant assign-
ment, except that the term in its right hand side is a variable rather than a

2The interface is defined as parameters and input/output channels through which the
process can interact with its environment.

10

value. After this clone assignment, the value of p is updated according to q ’s
value, and q gets a value that is better than its original one (in Section 5.3,
we explain what a better value is and why the value should be better). The
notation p :=m q denotes mobile variable assignment. On its termination, the
value of the target variable p is updated and the source variable q is undefined,
thus the result of any attempt of using q is unpredictable.

The notation ch.E stands for a communication that takes place as soon
as both participants are ready. By executing the input prefix ch?p → P , the
variable p accepts a message from the channel, and then the program behaves
like P . The mobile output prefix ch!!q → P transfers the value of variable q
through channel ch and then executes P . As in mobile assignment, any attempt
to use q after output is unpredictable. The clone output prefix ch!q → P outputs
the value of q , but retains q ’s value.

Once initialised, a process variable h may be activated by executing it, de-
noted by <h>. A parameterised process variable can be activated by providing
parameters.

A conditional (P C b B Q) behaves as P if b is true, otherwise as Q .
The sequential composition of two processes (P ; Q) results in a process that
behaves as P , and, on termination of P , behaves as Q . An iteration (b ∗
P) repeatedly executes P until b is false. A parallel composition (P ‖ Q)
executes P and Q concurrently, such that events in the alphabet of both parties
require their simultaneous participation, whereas the remaining events occur
independently. An external choice (P 2 Q) allows the environment to choose
between P and Q , whereas the internal choice (P u Q) selects one of the two
processes nondeterministically. P \ X hides the events in the set X , so that
they happen invisibly, without the participation of the environment.

5 Semantics

This section present the denotational semantics for mobile processes. There are
two main differences in our approach of higher-order programming with con-
ventional first-order programming. In first-order programming, we only discuss
the refinement ordering between processes. In our approach, however, as mo-
bile processes are modelled as the values of higher-order variables, there are two
new refinement orderings: refinement between variables and refinement between
higher-order variables and processes. These three refinement orderings are de-
fined in Section 5.1. After giving the UTP model that we use for the semantics
of mobile processes in Section 5.2, we present the other difference which is in
the semantics of higher-order assignment and communication in Section 5.3.
Finally, the denotational semantics is given in the Section 5.4.

5.1 Refinement orderings

In first-order programming, we say a process P is refined by Q , denoted by
P v Q , if for all variables in the alphabet, the behaviour of Q is more predictable

11

and controllable than that of P .

Definition 5.1 (Process refinement)

P v Q =̂ ∀obs,obs′, v , v ′ • Q ⇒ P

where obs, v are observable and program variables (see Section 5.2.1 for de-
tails) respectively. The universal closure over the alphabet is written more con-
cisely: [Q ⇒ P]. 2

As higher-order variables hold processes as their values, the ordering between
program variables can be defined in the light of the refinement ordering between
their values. Two process variables can be compared only when they have the
same types. We say a process variable h is a refinement of g , if the activation
behaviour of h is more controllable and predictable than that of g . For first-
order data variables, two variables are comparable only when they are equal.
More specifically, we define the refinement ordering between variables as follows.

Definition 5.2 (Variable refinement) Let p and q be two program variables
of the same type

p v q =̂

p = q if p, q are data variables
[q(ne, ve, re) ⇒ p(ne, ve, re)] if p, q are parameterised process variables
[<q> ⇒ <p>] otherwise

where ne, ve, and re are the actual name parameter, value parameter and result
parameter for the activations of p and q. 2

A refinement ordering between process variable and process can be defined
similarly.

Definition 5.3 (Variable process refinement) Suppose h is a process vari-
able and Q is a process, h and Q have the same type.

h w Q =̂
{

[h(ne, ve, re) ⇒ Q(ne, ve, re)] if h and Q are parameterised
[<h> ⇒ Q] otherwise

where obs, v and ne, ve, re are same as that in Definition 5.2. 2

5.2 UTP semantics model

In this section we present the UTP semantics model to be used to formalise
mobile processes.

12

5.2.1 Alphabet

In the UTP, a process P is described in terms of an implicit description of its
entire behaviour using the alphabet. The alphabet of our model consists of the
following external observable variables and program variables:

• A: the set of events in which P can engage

• ok , ok ′: B, indicates divergence. ok = true represents that P has been
properly started in a stable state. ok ′ = true indicates subsequent stabil-
isation in an observational state, either in an intermediate state or a final
one, and ok ′ = false indicates the program is divergent.

• wait ,wait ′: B, indicates termination. wait = true means that P has
been started in an intermediate state, and wait ′ = true indicates that the
program has not terminated in which case all the other dashed variables
stand for intermediate observations rather than final ones.

• tr , tr ′: seqA. They represent the cumulative records of all interactions
that P has made so far. tr records the sequence of events which took
place before P started, and tr ′ refers to the sequence of all events at the
moment when the observation takes place.

• ref , ref ′: PA. ref represents the set of events refused by P before it has
started, and ref ′ stands for the set of events refused by P at the time of
observation.

• v , v ′: all program variables including process variables and data variables

We use obs to represent all observable variables ok ,wait , tr , ref in short. P ’s
behaviour is described by a relation between undashed and dashed variables.
By using this model, the refusal can be indicated by ref , and the divergence is
captured by the ok variable. The boolean wait variable describes the state in
which the process is waiting for interaction with the environment. Therefore,
we are able to reason about the refusal and divergence behaviours of mobile
processes.

We use αP to denote the alphabet of process P , and

αP = inαP ∪ outαP

where inαP is a set of undashed variables recording initial values, and outαP
is a set of dashed variables recording final values.

Usually, we use subscript to indicate the alphabet of a process. For instance,
PA denotes a process P of alphabet A. The alphabet of a process can be
extended with a new variable by conjunction with a predicate that indicates the
final value of this variable is a refinement of its initial value. The reason why
we adopt refinement rather than equivalence will be explained in Section 5.3.

13

Definition 5.4 (Alphabet extension) Let p, p ′ /∈ αP

P+p =̂ P ∧ (p′ w p)
α(P+p) =̂ αP ∪ {p, p′} 2

Alphabet extension is often needed to make sure sequential composition works
properly. Further discussion will be shown in a later section.

5.2.2 Healthiness conditions

Healthiness conditions distinguish feasible specifications or designs from infea-
sible ones, where infeasibility means impossible implementation in the target
programming language. There are five healthiness conditions for mobile pro-
cesses as follows.

M1 P = P ∧ (tr ≤ tr ′)
M2 P = u{P [s, s a (tr ′ − tr)/tr , tr ′] | s ∈ seq A}
M3 P = II C wait B P

where

II =̂ I C ok B (tr ≤ tr ′)
I =̂ (ok ′ = ok) ∧ (tr ′ = tr) ∧ (wait ′ = wait) ∧ (ref ′ = ref) ∧ (v ′ w v)

M4 P = P C ok B (tr ≤ tr ′)
M5 P = P ; J

where

J =̂ (ok ⇒ ok ′) ∧ (tr ′ = tr) ∧ (wait ′ = wait) ∧ (ref ′ = ref) ∧ (v ′ w v)

Let

M1 (P) = P ∧ (tr ≤ tr ′)
M2 (P) = u{P [s, s a (tr ′ − tr)/tr , tr ′] | s ∈ seq A}
M3 (P) = II C wait B P
M4 (P) = P C ok B (tr ≤ tr ′)
M5 (P) = P ; J

thus every healthiness condition Mi can be written as

P = Mi(P)

If P satisfies it, we say ‘P is Mi ’ or ‘P is Mi healthy’. In later discussion, we will
use abbreviations to represent function composition and healthiness conditions
for easier presentation. For instance, M23 (P) is used to refer to M2 �M3 (P),
‘P is M12 ’ refers to P satisfies ‘M1 and M2 ’.

The sequential composition (P ; Q) behaves as P until P terminates suc-
cessfully, at which point it passes control to Q .

Definition 5.5 (Sequential composition) Provided outαP = inα′Q = {α′},
then

[[P ; Q]] =̂ ∃α0 • [[P]][α0/α
′] ∧ [[Q]][α0/α] 2

14

In the sequential composition (P ; Q), the final state of P that is recorded
by α′ is passed on as the initial state of Q that is recorded by α, but this state is
an intermediate state of (P ; Q), and cannot be observed from the environment.
The definition uses existential quantification to hide the intermediate observa-
tion, and to remove the variables that record it from the alphabet. Thus a new
set of variables α0 is introduced to record the hidden observation.

In reactive programming, the sequential composition has three possible states.
The first state is that if the first process diverges, then the sequential composi-
tion does as well. The second state is that if the first process is in a waiting state,
then the following process cannot start. The third is that if the first process
terminates and does not diverge, then the following process starts immediately
after the first one terminates. Alternatively, the sequential composition in re-
active programming is the same as

[[P ; Q]] = [[P]][false/ok ′] ∨ [[P]][true/wait ′]
∨ ([[P]][true, false/ok ′,wait ′] � [[Q]])

where the operator � is to denote the concatenation of two sequentially made
observations. For two observation predicates A(o ′),B(o), where o, o ′ repre-
sent the initial and final value of all the observation variables respectively, the
concatenation of them is defined as

A(o′) � B(o) =̂ ∃ o0 • A(o0) ∧ B(o0)

Because the alphabet of a process can always be extended as defined in Def-
inition 5.4, we can ensure that any sequential composition is always meaningful.
In later discussion, when there is no confusion or we are not interested in the
alphabet, we often omit the alphabet extension when we sequentially composite
two processes which have different alphabets.

The conditional P C b B Q defines a choice on two alternatives P and
Q in accordance with the initial value of b, where b is a program expression,
containing only initial variables and always producing a Boolean result. If b is
true, it then acts like P , otherwise it behaves like Q instead.

Definition 5.6 (conditional) Provided αP = αQ, then

[[P C b B Q]] =̂ b ∧ [[P]] ∨ ¬ b ∧ [[Q]] 2

Please note that to make this definition meaningful, there is a constraint that the
two conditional branches have the same alphabet. This is because the alphabet
of a process should be fixed, and cannot depend on the value of b.

The sequential composition and conditional enjoy some algebraic properties.

Law 5.1 (; associative)

(P ; Q); R = P ; (Q ; R) 2

Law 5.2 (; conditional left distributive)

(P C b B Q); R = (P ; R) C b B (Q ; R) 2

15

The first healthiness condition (M1) says that a process can never undo its
execution. In other words, for any valid observation, the final value of the trace
tr ′ is always an expansion of the initial one tr .

The second healthiness condition (M2) indicates that the initial value of
trace tr has no influence on a process. In other words, tr may be replaced by
an arbitrary trace s and the events which the process itself involves keep the
same as (tr ′ − tr).

The third healthiness condition (M3) ensures that the sequential compo-
sition works as supposed. Let us consider the sequential composition of two
processes X ;P . Control can pass from X to P only when X terminates, indi-
cated by the fact wait ′X = waitP = false. If the predecessor X is in a waiting
state, indicated by the fact wait ′X = waitP = true, the process P will leave the
state unchanged.

The fourth one (M4) states that if a process has not started, then we cannot
predict its behaviour except that its final trace tr ′ is an expansion of its initial
one tr .

The fifth healthiness condition (M5) shows the fact that divergence is some-
thing that is never wanted. This is characterised by the monotonicity of ok ′: if
P is not divergent, indicated by ok = true, then we can say P ;J is not divergent
as well, indicated by ok ′ = true; but if P is divergent, indicated by ok = false,
we cannot insist on the divergence of (P ; J), indicated by ok ′ can be either
true or false.

Refinement ordering between program variables is adopted in the above
healthiness conditions. Identity I does not change any value of data and obser-
vation variables but allows process variables to be improved. It is the left unit
of sequential composition of any predicate.

Law 5.3 (Left unit for predicate) Any predicate Pred satisfies

I ; Pred = Pred

Proof :

(1) I ; Pred w Pred

I ; Pred {def of I and ;}

= ∃ v0,obs0 • v0 w v ∧ obs0 = obs ∧ Pred(obs0, v0,obs
′, v ′)

{one-point rule}

= ∃ v0 • v0 w v ∧ Pred(v0, v
′) {initial state monotonicity, v0 w v}

w (∃ v0 • v0 w v) ∧ Pred(v , v ′) {let v0 = v}

= true ∧ Pred

= Pred

(2) I ; Pred v Pred

I ; Pred {def of I and ;}

= ∃ v0 • v0 w v ∧ Pred(v0, v
′) {(v0 w v) v (v0 = v)}

v ∃ v0 • v0 = v ∧ Pred(v0, v
′) {one-point rule}

16

= Pred 2

Law 5.4 (Left zero for J)

(tr ≤ tr ′ ; J) = tr ≤ tr ′

Proof :

LHS {def of J , let x contains ref ,wait , v}

= tr ≤ tr ′ ; ok ⇒ ok ′ ∧ tr ′ = tr ∧ x ′ = x {def of ;}

= ∃ tr0, ok0, x0 • tr ≤ tr0 ∧ ok0 ⇒ ok ′ ∧ tr ′ = tr0 ∧ x ′ = x0 {predicate calculus}

= (∃ tr0 • tr ≤ tr0 ∧ tr ′ = tr0) ∧ (∃ ok0 • ok0 ⇒ ok ′) ∧ (∃ x0 • x ′ = x0)

{one-point rule, let ok0 = ok ′, x0 = x ′}

= (tr ≤ tr ′) ∧ true ∧ true

= tr ≤ tr ′
2

Healthiness conditions satisfies some algebraic properties.

Theorem 5.1 (Property of M)

(1) If P is M14, then P satisfies
P = (II ; P) and (tr ≤ tr ′; P) = tr ≤ tr ′

(2) If P satisfies P = (II ; P) and (tr ≤ tr ′; P) = tr ≤ tr ′,
then P is M4.

Proof :

(1.1)

tr ≤ tr ′; P {assumption: P is M14}

= tr ≤ tr ′; (P ∧ tr ≤ tr ′) C ok B tr ≤ tr ′ {def of ;}

= ∃ ok0, tr0, · · · • (tr ≤ tr0 ∧ ((P ∧ tr0 ≤ tr ′) C ok0 B tr0 ≤ tr ′))

{∧-distr-over-CB, predicate calculus}

= ∃ ok0, · · · • (P ∧ tr ≤ tr ′) C ok0 B (tr ≤ tr ′) {ok0 case analysis}

= ((P ∧ tr ≤ tr ′) C ok0 B (tr ≤ tr ′))[true/ok0] ∨

((P ∧ tr ≤ tr ′) C ok0 B (tr ≤ tr ′))[false/ok0] {substitution}

= (P ∧ tr ≤ tr ′) ∨ (tr ≤ tr ′) {absorption}

= tr ≤ tr ′

(1.2)

II ; P {def of II }

= (I C ok B tr ≤ tr ′); P {;-left-distr-over-CB}

= (I ; P) C ok B (tr ≤ tr ′; P) {Law 5.3, (tr ≤ tr ′; P) = tr ≤ tr ′}

= P C ok B tr ≤ tr ′ {assumption: P is M4}

= P

(2)

17

P C ok B tr ≤ tr ′ {Law 5.3, assumption: (tr ≤ tr ′; P) = tr ≤ tr ′}

= (I ; P) C ok B (tr ≤ tr ′; P) {;-left-distr-over-CB}

= (I C ok B tr ≤ tr ′); P {def of II , assumption: P = II ; P}

= P

2

Definition 5.7 (MP process) A predicate P is called an MP process or a
healthy process if it satisfies P = M12345(P). 2

In a design calculus, for any operator to be useful, the combination of two
healthy processes by this operator should be healthy as well. The fact is captured
by the closure of MP processes under this operator, therefore we have the
obligation to discuss and prove this issue when a new operator is defined.

Theorem 5.2 (MP process closure) The set of MP processes form a com-
plete lattice, which is a {∧,∨, ; }-closure.

Proof : Let α denote all alphabets except the mentioned one, we only show
; -closure: M12345(P); M12345(Q)=M12345(P ; Q)

M1 . P ; Q {P and Q are M1}

= P ∧ tr ≤ tr ′; Q ∧ tr ≤ tr ′ {def of ; }

= ∃ tr0 • (P ; Q) ∧ tr ≤ tr0 ∧ tr0 ≤ tr ′ {predicate calculus}

= (P ; Q) ∧ (tr ≤ tr ′)

= M1 (P ; Q)

18

M2 . P ; Q {def of ; }

= ∃α0, tr0 • (P(α, tr , α0, tr0) ∧ Q(α0, tr0, α
′, tr ′)) {P and Q are M2}

= ∃α0, tr0 •

(
u

s1
P(α, s1, α0, s1 a (tr0 − tr)) ∧

Q(α0, s1 a (tr0 − tr), α′, s1 a (tr0 − tr) a (tr ′ − tr0))

)

{def of ;}

= ∃ tr0 • u
s1

(P ; Q)(s1, s1 a (tr0 − tr) a (tr ′ − tr0))) {sequence calculation}

= u
s1

(P ; Q)(s1, s1 a (tr ′ − tr)))

= M2 (P ; Q)

M3 . P ; Q {P is M3}

= (II C wait B P); Q {;-left-distr-over-CB}

= (II ; Q) C wait B (P ; Q) {Q is M14 , Theorem 5.1}

= Q C wait B (P ; Q) {Q is M3}

= (II C wait B Q) C wait B (P ; Q) {def of conditional}

= II C wait B (P ; Q)

= M3 (P ; Q)

M4 . P ; Q {P is M4}

= (P C ok B tr ≤ tr ′); Q {;-left-distr-over-CB}

= (P ; Q) C ok B (tr ≤ tr ′; Q) {Q is M14 , Theorem 5.1}

= (P ; Q) C ok B tr ≤ tr ′

= M4 (P ; Q)

M5 . P ; Q {Q is M5}

= P ; (Q ; J) {; -assoc}

= (P ; Q); J

= M5 (P ; Q)

2

5.3 Higher-order assignment

Besides the refinement ordering between program variables, another difference
with first-order programming in our approach is in the semantics of higher-order
assignment and communication.

First-order assignment t := e has no interaction with the environment. It
always terminates and never diverges. On termination, it equates the final value
of t with value e, but does not change the other variables.

Definition 5.8 (First-order assignment)

[[t := e]] =̂ M34(ok ′ ∧ ¬ wait ′ ∧ tr ′ = tr ∧ t ′ = e ∧ v ′ = v)

where the function application of M34 to the predicate is to ensure that as-
signment is healthy. The satisfaction of the other healthiness conditions can be
derived from the definition (see Section 5.4). 2

19

In higher-order programming, we need change the semantics of higher-order
assignment to allow an implementation of replacing the assigned value by anyone
that refines it.

Definition 5.9 (Higher-order constant assignment) Let αh = αP, h, h ′ /∈
αP

[[h := {[P]}]] =̂ M34(ok ′ ∧ ¬ wait ′ ∧ tr ′ = tr ∧ h ′ w P ∧ v ′ w v)
α(h := {[P]}) = {obs,obs′, h, h ′, v , v ′}

where v are all program variables except h. 2

The reason is to guarantee that assignment is monotonic with respect to refine-
ment in the assigned value. This can be seen in the following theorem.

Theorem 5.3 (Assignment monotonicity) Suppose that h is a higher-order
variable.

(P v Q) ⇒ (h := {[P]} v h := {[Q]})

Proof :

(P v Q) ⇒ (h := {[P]} v h := {[Q]}) {Def. 5.1 and 5.9}

≡ (P v Q) ⇒
[

M34 (ok ′ ∧ ¬ wait ′ ∧ tr ′ = tr ∧ h ′ w Q ∧ v ′ w v)
⇒ M34 (ok ′ ∧ ¬ wait ′ ∧ tr ′ = tr ∧ h ′ w P ∧ v ′ w v)

]

{M3 and M4 , one-point, propositional calculus}

≡ (P v Q) ⇒ [(ok ′ ∧ ¬ wait ′ ∧ h ′ w Q ∧ v ′ w v) ⇒ (h ′ w P)]

{universal closure, case analysis}

≡ (P v Q) ⇒ [(h ′ w Q) ⇒ (h ′ w P)] {universal closure, h ′ /∈ αP , h ′ /∈ αQ}

≡ ∀ h ′ • (P v Q) ⇒ (h ′ w Q ⇒ h ′ w P) {propositional calculus}

≡ ∀ h ′ • (P v Q ∧ h ′ w Q) ⇒ h ′ w P) {transitivity of refinement}

≡ ∀ h ′ • (P v Q ∧ h ′ w Q ∧ h ′ w P) ⇒ (h ′ w P) {propositional calculus}

≡ ∀ h ′ • true {predicate calculus}

≡ true

2

Adoption of equation in the definition of assignment will lead to a contradiction
that (P v Q) implies (P = Q):

20

h := {[P]} v h := {[Q]} {refinement (definition 5.1)}

= [h := {[Q]} ⇒ h := {[P]}] {assumption (definition of assignment)}

= [M34 (ok ′ ∧ ¬ wait ′ ∧ tr ′ = tr ∧ h ′ = {[Q]} ∧ v ′ = v) ⇒
M34 (ok ′ ∧ ¬ wait ′ ∧ tr ′ = tr ∧ h ′ = {[P]} ∧ v ′ = v)]

{definition of M3 and M4}

= [ok ′ ∧ ¬ wait ′ ∧ tr ′ = tr ∧ h ′ = {[Q]} ∧ v ′ = v ⇒
ok ′ ∧ ¬ wait ′ ∧ tr ′ = tr ∧ h ′ = {[P]} ∧ v ′ = v]

{one-point rule, three times}

= [ok ′ ∧ ¬ wait ′ ⇒ ok ′ ∧ ¬ wait ′ ∧ {[Q]} = {[P]}] {propositional calculus}

= [ok ′ ∧ ¬ wait ′ ⇒ {[Q]} = {[P]}] {universal closure, case analysis}

= (P = Q)

For the same reason, we also adopt the inequation in the definitions of higher-
order communication and I , II and SKIP . For first-order data, two values are
comparable if and only if they are equal. Therefore higher-order assignment or
communication and SKIP are consistent with their counterpart in first-order
programming. We extend the language, but we are interested in a conservative
extension in which the new semantics is not only suitable for the extension part,
but also for the original part.

5.4 Denotational semantics of mobile processes

5.4.1 Primitive processes

We first discuss some simple processes, which serve as primitives and normally
need to be used in combination to exhibit more complex behaviours.

SKIP The process SKIP refuses to engage in any communication event, but
terminates immediately. It allows improvement of all program variables.

Definition 5.10 (SKIP) Let αSKIP = A = {obs,obs′, v , v ′}

[[SKIP]] =̂ M123 (true{ref ,ref ′} ; II)

where true{ref ,ref ′} is a predicate whose alphabet only contains ref and ref ′ that
have arbitrary values. 2

The definition indicates that for process SKIP , the initial and final values
of ref are entirely irrelevant. We adopt different notation true{ref ,ref ′} to rep-
resent it from the existential quantification over ref in the definition of SKIP
appeared in [13] chapter 9. The reason is to avoid the inconsistency in exis-
tential quantification with that in the definitions of sequential composition and
variable declaration. In the definition of sequential composition, the existen-
tial quantification hides the intermediate observation and removes the variables
that record it from the alphabet. In a later section, we will also see that in the
definition of variable declaration, the existential quantification over a variable

21

removes this variable from the alphabet. In the definition of SKIP , however,
ref should be in the alphabet.

Process SKIP is an MP process, but we only apply M123 in its definition
as M4 and M5 healthiness can be implied or proved by expanding its definition.

[[SKIP]] {def of II , alphabet extension}

= M123

(
true{ref ,ref ′} ∧

(ok ′ = ok ∧ wait ′ = wait ∧ tr ′ = tr ∧ v ′ w v);
(obs ′ = obs ∧ v ′ w v) C ok B tr ≤ tr ′

)
{def of ;}

= M123

∃obs0, v0 •
true{ref ,ref0} ∧

(ok0 = ok ∧ wait0 = wait ∧ tr0 = tr ∧ v0 w v) ∧
(obs ′ = obs0 ∧ v ′ w v0) C ok0 B tr0 ≤ tr ′

{ref , ref ′ are arbitrary, predicate calculus}

= M123

(ok ′ ∧ wait ′ = wait ∧ tr ′ = tr ∧ v ′ w v)
C ok B(

tr ≤ tr ′ ∧ (∃ ok0 • ok0 = ok) ∧
(∃wait0 • wait0 = wait) ∧ (∃ v0 • v0 w v)

)

{let ok0 = ok ,wait0 = wait , v0 = v}

= M123 ((ok ′ ∧ wait ′ = wait ∧ tr ′ = tr ∧ v ′ w v) C ok B tr ≤ tr ′)

{def of M4}

= M1234 (ok ′ ∧ wait ′ = wait ∧ tr ′ = tr ∧ v ′ w v) {def of M1}

= M234 (ok ′ ∧ wait ′ = wait ∧ tr ′ = tr ∧ v ′ w v) {def of M2 ,M3}

= u
s
M4 (II C wait B (ok ′ ∧ wait ′ = wait ∧ s = s a (tr ′ − tr) ∧ v ′ w v))

{calculation}

= M4 (II C wait B (ok ′ ∧ ¬ wait ′ ∧ tr ′ − tr = 〈〉 ∧ v ′ w v)) {def of M3}

= M34 (ok ′ ∧ ¬ wait ′ ∧ tr ′ = tr ∧ v ′ w v)

It is clear that SKIP satisfies M4 .

Theorem 5.4 (SKIP healthy) SKIP is an MP process.

Proof : We only need to prove SKIP is M5. For easier presentation, let
A = (ok ′ ∧ ¬ wait ′ ∧ tr ′ = tr ∧ v ′ w v)
B = (tr ′ = tr ∧ ref ′ = ref ∧ wait ′ = wait ∧ v ′ w v)

SKIP ; J {def of SKIP , I and M34}

= (I C wait B A) C ok B tr ≤ tr ′; J {;-left-distr-over-CB, def of I }

=

(
ok ′ ∧ B ; J
C wait B

ok ′ ∧ ¬ wait ′ ∧ tr ′ = tr ∧ v ′ w v ; J

)
C ok B (tr ≤ tr ′; J)

{def of ; and Law 5.4}

= ((ok ′ ∧ B) C wait B A) C ok B tr ≤ tr ′ {def of conditional}

= ((ok ′ = ok ∧ B) C wait B A) C ok B tr ≤ tr ′ {def of M34 and SKIP}

22

= SKIP

2

SKIP satisfies the following law.

Law 5.5 (Zero for II) II ; SKIP = SKIP ; II = SKIP

Proof :

II ; SKIP {def of II , ;-distr-left-over-CB}

= (I ; SKIP) C ok B (tr ≤ tr ′; SKIP) {Law 5.3, SKIP is M14 , Theorem 5.1}

= SKIP C ok B tr ≤ tr ′ {SKIP is M4}

= SKIP

SKIP ; II {def of SKIP , ;-distr-left-over-CB}

= (M3 (ok ′ ∧ ¬ wait ′ ∧ tr ′ = tr ∧ v ′ w v); II) C ok B (tr ≤ tr ′; II)

{def of M3 , ;-distr-left-over-CB, II is M14 , Theorem 5.1}}

= ((II ; II) C wait B (ok ′ ∧ ¬ wait ′ ∧ tr ′ = tr ∧ v ′ w v ; II))

C ok B tr ≤ tr ′ {def of ; and II }

= (II C wait B (ok ′ ∧ ¬ wait ′ ∧ tr ′ = tr ∧ v ′ w v ; I)) C ok B tr ≤ tr ′

{def of ;}

= (II C wait B (ok ′ ∧ ¬ wait ′ ∧ tr ′ = tr ∧ v ′ w v)) C ok B tr ≤ tr ′

{def of SKIP}

= SKIP

2

In standard theory of CSP, SKIP is the unit of sequential composition, but this
feature cannot be proved from the semantics of SKIP and sequential composi-
tion. Therefore we specify it by two healthiness conditions M6 and M7 .

M6 (P) = SKIP ; P
M7 (P) = P ; SKIP

Theorem 5.5 (Property of M6) MP process P satisfies M6 iff

¬ wait ⇒ (P = true{ref ,ref ′}; P)

Proof :

P = SKIP ; P {def of SKIP , ; closure, P is M123}

⇔ M123 (P) = M123 (true{ref ,ref ′}; II ; P) {P is M14 , Theorem 5.1}

⇔ M123 (P) = M123 (true{ref ,ref ′}; P) {def of M3}

⇔ M12 (II C wait B P) =

M12 (II C wait B (true{ref ,ref ′}; P)) {def of M12}

⇔ wait ∨ (P = true{ref ,ref ′}; P) {propositional law}

23

⇔ ¬ wait ⇒ (P = true{ref ,ref ′}; P)

2

There is a similar theorem for M7 -healthy process.

Theorem 5.6 (Property of M7) MP process P satisfies M7 iff

¬ wait ⇒ (P = P ; true{ref ,ref ′})

Proof : Similar to the proof of Theorem 5.5. 2

Theorem 5.5 says that an MP process does not depend on the initial value of
ref when wait is false. Of course, it must behave as required by M3 when
wait is true. Theorem 5.6 indicates that the value of ref ′ is irrelevant after the
termination of the process.

STOP The deadlock process STOP is unable to communicate with its envi-
ronment and always stays in a waiting state.

Definition 5.11 (STOP)

[[STOP]] =̂ M4

(
ok ′ ∧ wait ′ ∧ tr ′ = tr ∧
wait ⇒ (ref ′ = ref ∧ v ′ w v)

)

2

If STOP is started in a divergent state (ok = true), then by M4 , trace extension
(tr ≤ tr ′) is all that we can gurantee about the resulting behaviour. Otherwise,
if STOP is started in a stable state (ok = false), then STOP is stable as well
(ok ′ = true), it does not terminate (wait ′ = true), and it does not change tr . If
STOP is started in a state in which its sequential predecssor has not terminated
(wait = true), then nothing changes including ref , but except the allowance of
v ’s improvement.

When STOP is started in a state in which its predecessor has terminated
(wait = false), we cannot affirm any restriction on v and ref . This is because
the values of v are not observable in a deadlock, and ref is arbitrary as STOP
cannot perform any communication event.

Theorem 5.7 (STOP healthy) STOP is an MP process.

Proof : We need to prove STOP is M1235. For easier presentation, let
A = (ok ′ ∧ wait ′ ∧ tr ′ = tr ∧ wait ⇒ (ref ′ = ref ∧ v ′ w v))
B = (tr ′ = tr ∧ wait ′ = wait ∧ ref ′ = ref ∧ v ′ w v)

M1 . Directly from the definition of STOP .

M2 . Directly from the definition and (s ≤ s a (tr ′ − tr)) ≡ (tr ′ ≤ tr).

M3 . II C wait B STOP {def of II and STOP}

24

= (I C ok B tr ≤ tr ′) C wait B (A C ok B tr ≤ tr ′) {def of conditional}

= (I C wait B A) C ok B tr ≤ tr ′ {expand I and A}

=

(

(ok ′ ∧ wait ′ ∧ tr ′ = tr ∧ ref ′ = ref ∧ v ′ w v)
C wait B (ok ′ ∧ wait ′ ∧ tr ′ = tr)

)

C ok B tr ≤ tr ′

{propositional law}

= (ok ′ ∧ wait ′ ∧ tr ′ = tr ∧ wait ⇒ (ref ′ = ref ∧ v ′ w v)) C ok B tr ≤ tr ′

= STOP

M5 . STOP ; J {definition of STOP}

= (A C ok B tr ≤ tr ′); J {;-distr-left-over-CB}

= (A; J) C ok B (tr ≤ tr ′; J) {def of ; and J , Law 5.4}

=

(
∃obs0, v0 •

ok0 ∧ wait0 ∧ tr0 = tr ∧ wait ⇒ (ref0 = ref ∧ v0 w v) ∧
ok0 ⇒ ok ′ ∧ tr ′ = tr0 ∧ wait ′ = wait0 ∧ ref ′ = ref0 ∧ v ′ w v0

)

C ok B tr ≤ tr ′ {predicate calculus}

=

(
∃ ref0, v0 • ok ′ ∧ wait ′ ∧ tr ′ = tr ∧

ref ′ = ref0 ∧ v ′ w v0 ∧ wait ⇒ (ref0 = ref ∧ v0 w v)

)

C ok B tr ≤ tr ′ {propositional laws, predicate calculus}

=

ok ′ ∧ wait ′ ∧ tr ′ = tr ∧(
¬ wait ∧ (∃ ref0 • ref ′ = ref0) ∧ (∃ v0 • v ′ w v0)
∨ ref ′ = ref ∧ v ′ w v)

)

C ok B tr ≤ tr ′ {let ref0 = ref ′, v0 = v ′}

=

(
ok ′ ∧ wait ′ ∧ tr ′ = tr ∧ (¬ wait ∨ ref ′ = ref ∧ v ′ w v)
C ok B tr ≤ tr ′

)

{propositional laws, def of STOP}

= STOP

2

Following M3 , as STOP is never terminated (wait ′ = true), its sequential
successor is irrelevant and leaves the state unchanged. This feature is captured
by a left zero law of sequential composition.

Law 5.6 (STOP left zero) STOP ; P = STOP

Proof :

STOP ; P {def of ; and STOP , P is M34 , ;-closure}

= M4 (ok ′ ∧ wait ′ ∧ tr ′ = tr ∧ wait ⇒ (ref ′ = ref ∧ v ′ w v); M3 (P))

{def of M3}

= M4 (ok ′ ∧ wait ′ ∧ tr ′ = tr ∧ wait ⇒ (ref ′ = ref ∧ v ′ w v); I) {def of ;}

= M4 (ok ′ ∧ wait ′ ∧ tr ′ = tr ∧ wait ⇒ (ref ′ = ref ∧ v ′ w v)) {def of STOP}

25

= STOP

2

CHAOS CHAOS is the worst MP process. Except that it satisfies healthi-
ness conditions, we cannot say anything else about its behaviour.

Definition 5.12 (CHAOS)

[[CHAOS]] =̂ M123(true) 2

We can expand the definition to get an alternative one.

CHAOS {def of CHAOS and M3}

= II C wait B M12 (true) {M1}

= II C wait B M2 (true ∧ tr ≤ tr ′) {M2}

= II C wait B u
s
(s ≤ s a (tr ′ − tr))

= II C wait B tr ≤ tr ′

If CHAOS is started in a state in which its predecessor does not terminate
(wait = true), then nothing changes. For example, STOP ; CHAOS = STOP .
Otherwise, it can only guarantee the trace is extended, but it cannot undo the
interactions that the predecessor has already been involved. If its predecessor
MP process P terminates but does not change tr , for example, SKIP and
assignment, then the effect of P ; CHAOS is the same as CHAOS .

Law 5.7 (CHAOS right zero)

(1) M3 (¬ wait ′ ∧ tr ′ = tr); CHAOS = CHAOS
(2) Let Pred be a predicate that does not contain tr, tr ′ and wait ′, then

M3 (Pred ∧ ¬ wait ′ ∧ tr ′ = tr); CHAOS = CHAOS

Proof :

(1) LHS {def of M3 , ;-distr-left-over-CB}

= (II ; CHAOS) C wait B (¬ wait ′ ∧ tr ′ = tr ; CHAOS)

{def of II , ;-distr-left-over-CB, def of CHAOS}

=

(
(I ; CHAOS) C ok B (tr ≤ tr ′; CHAOS)

C wait B

(¬ wait ′ ∧ tr ′ = tr ; II C wait B tr ≤ tr ′)

)

{Law 5.3, Theorem 5.1, def of ;}

= (CHAOS C ok B tr ≤ tr ′) C wait B

(∃wait0, tr0, · · · • ¬ wait0 ∧ tr0 = tr ∧ II C wait0 B tr0 ≤ tr ′)

{CHAOS is M4 , wait0 case analysis, one-point rule}

= CHAOS C wait B tr ≤ tr ′ {def of CHAOS}

= (II C wait B tr ≤ tr ′) C wait B tr ≤ tr ′ {def of conditional}

= II C wait B tr ≤ tr ′ {def of CHAOS}

= CHAOS

26

(2) Let Pred = Pred(obs, v , ok ′, ref ′, v ′)

LHS {def of M3 , ;-distr-left-over-CB}

= (II ; CHAOS) C wait B (Pred ∧ ¬ wait ′ ∧ tr ′ = tr ; CHAOS)

{same as that in (1), def of CHAOS}

= CHAOS C wait B (Pred ∧ ¬ wait ′ ∧ tr ′ = tr ; II C wait B tr ≤ tr ′)

{def of CHAOS and conditional, def of ;, one-point rule}

= II C wait B (∃ ok0, ref0, v0 • Pred [ok0, ref0, v0/ok
′, ref ′, ok ′] ∧ tr ≤ tr ′)

{substitution}

= II C wait B ((∃ ok ′, ref ′, v ′ • Pred) ∧ tr ≤ tr ′) {predicate calculus}

= II C wait B tr ≤ tr ′ {def of CHAOS}

= CHAOS

2

Theorem 5.8 (CHAOS healthy) CHAOS is an MP process.

Proof : Let A = (tr ′ = tr ∧ ref ′ = ref ∧ wait ′ = wait ∧ v ′ w v)

M4 . CHAOS C ok B tr ≤ tr ′ {def of CHAOS}

= (II C wait B tr ≤ tr ′) C ok B tr ≤ tr ′ {expand II when ok = true}

= (I C wait B tr ≤ tr ′) C ok B tr ≤ tr ′

= I C (ok ∧ wait) B tr ≤ tr ′

= (I C ok B tr ≤ tr ′) C wait B tr ≤ tr ′

= II C wait B tr ≤ tr ′

= CHAOS

M5 . CHAOS ; J {def of CHAOS}

= ((I C ok B tr ≤ tr ′) C wait B tr ≤ tr ′); J {;-distr-left-over-CB}

= ((I ; J) C ok B (tr ≤ tr ′; J)) C wait B (tr ≤ tr ′; J)

{expand I when ok = true}

= ((ok ′ ∧ A; J) C ok B (tr ≤ tr ′; J)) C wait B (tr ≤ tr ′; J)

{def of ; and J , Law 5.4 and Theorem 5.1}

= ((ok ′ ∧ A) C ok B tr ≤ tr ′) C wait B tr ≤ tr ′ = II C wait B tr ≤ tr ′

= CHAOS

2

Variable Declaration To introduce a new variable p, we use the form of
declaration vid p:T to permit the variable p of type T to be used in the
portion of the program that follows it. Correspondingly, undeclaration end p
terminates the region of permitted use of p. The portion of program P in which
the variable p may be used is called its scope. In this case, p is called a local
variable or bound variable of P .

27

The variables presented in the alphabet are global variables or free variables,
and their values can be recorded at the initial state, the intermediate state, and
on termination. Local variables represent the internal state, which is inaccessible
from outside.

The variable declaration vid p behaves like SKIP except that after the
declaration, the variable p becomes an invisible local variable, and is removed
from the alphabet.

Definition 5.13 (Variable declaration/undeclaration) Let p, p ′ ∈ A,

[[vid p]] =̂ ∃ p • [[SKIPA]]
[[end p]] =̂ ∃ p′ • [[SKIPA]]

α(vid p) =̂ A \ {p}
α(end p) =̂ A \ {p ′}

where A \ {p} is a subset of A that contains all elements of A except p. 2

In the above definition, existential quantifier removes the related variable from
alphabet A. This has already been shown in the definition of sequential compo-
sition, where the intermediate value of the variables are hidden by an existential
quantifier over the intermediate variables. More generally, we have

∃ p • QA = QA\{p}

Alternately, variable declaration and undeclaration can be defined as

[[vid p]] =̂ [[SKIPA\{p}]]
[[end p]] =̂ [[SKIPA\{p′}]]

As variable declaration and undeclaration are not homogenous, we need be care
when use it in the conditional. They are not allowed to be used in the conditional
separately except that the same variable declaration or undeclaration appears
in both choice branches, or they appear as a pair in one branch. For instance,
we do not allow (vid x ; P) C b B Q if vid x does not occur in Q and end x
does not occur in P .

For more convenient presentation, we allow variables to be declared together

vid p, q , .., r rather than vid p; vid q ; · · · ; vid r
end p, q , .., r rather than end p; end q ; · · · ; end r

and we enclose a variable by a block. We abbreviate (proc h; Q ; end h) by
(proc h • Q) to represent that the scope of h is valid in Q .

Theorem 5.9 (Variable declaration healthy) Variable declaration vid p and
undeclaration end p are MP processes.

Proof : Direct from Definition 5.13 and Theorem 5.4. 2

28

Assignment After the declaration of a variable, it can be initialised by being
the target of an assignment or a communication. The assignment terminates
immediately, with the value of its target variable updated.

Higher-order constant assignment h := {[P]} is defined as Definition 5.9. It
is also suitable for first-order constant assignment. The alphabet of (h := {[P]})
does not include αP because P is a constant in the assignment, thus the αP is
not relevant unless h is activated.

Mobile variable assignment makes a value, which is a data or a process, move
from the source variable to the target one. On termination of the assignment
p :=m q , the source variable q is undefined, and has an arbitrary process value.
However, it is still in the scope, and can be referred again if reinitialised.

Definition 5.14 (Mobile variable assignment) Let αp = αq, p, p ′ /∈ αq

[[p :=m q]] =̂ M34

(
ok ′ ∧ ¬ wait ′ ∧ (tr ′ = tr)
∧ (p′ w q) ∧ (v ′ w v)

)

α(p :=m q) =̂ {obs,obs′, p, p′, q , q ′, v , v ′}

where v is the set of program variables except p and q. 2

In the above definition, q ′ is in the alphabet but not mentioned in the predicate
so that we can view its value is arbitrary. Alternatively, we can specify this fact
by q ′ w CHAOS which is always true.

Similar to the constant assignment, the clone variable assignment terminates
immediately and updates the target variable in the light of the value of the source
variable. Different from mobile assignment, the source variable is still defined
on the termination of clone assignment.

Definition 5.15 (Clone variable assignment) Let αp = αq, p, p ′ /∈ αq

[[p := q]] =̂ M34

(
ok ′ ∧ ¬ wait ′ ∧ (tr ′ = tr)
∧ (p′ w q) ∧ (q ′ w q) ∧ (v ′ w v)

)

α(p := q) = {obs,obs′, p, p′, q , q ′, v , v ′}

where v is the set of program variables except p and q. 2

Theorem 5.10 (Assignment healthy) Assignment are MP processes.

Proof : Similar to the proof of Theorem 5.4 2

We allow assignment to be combined with declaration. Usually we write
proc h := {[Q]} instead of proc h; h := {[Q]}.

Variable activation Once initialised, a process variable h may be activated
by executing its process constant value; therefore, a process can be replaced by
the activation of a variable which has been assigned by this process constant
before.

Law 5.8 (Copy-rule-1) Let h, h ′ /∈ αQ, then

(h := {[Q]}; <h>) = (h := {[Q]}; Q)

29

Proof :

RHS {meaning of <h> and Def. 5.9}

= h := {[Q]}; u{R | R w Q} {Def. 5.22}

= h := {[Q]}; R1 ∨ · · · ∨ Rn ∨ Q

{Ri w Q , Def. 5.1, propositional calculus}

= LHS

where process Ri refines Q and n can be infinite. 2

Even though we adopt inequality in higher-order assingment, this rule is an
equality rather than a refinement from the proof.

If a parameterised process variable h has the value of

λ x : var(T1), y : val(T2), z : res(T2) • P

then the effect of the activation h(ne, ve, re) is calculated by

h(ne, ve, re) =̂

vid x := ne, y := ve, z ;
P ;
ne := x , re := z ;
end x , y , z

It initially assigns the values of actual parameters ne and ve to the formal name
and value parameters of P , and executes P . On the termination of P , the values
of the name and result parameters are passed back to the actual parameters ne
and re.

Communication Same as higher-order assignment, higher-order communi-
cation is monotonic in the communicated value. If one communicated process
Q is better than another one P , then the communication system with Q should
be better than that with P .

The communication ch.E is stable while waiting for synchronisation of its
two communicating parties (ch! or ch!! and ch?). As soon as both of them
are ready, the communication takes place to perform any communication event
ch.M , with its communicated value M better than E , and then terminates,
allowing the program variables to improve.

Definition 5.16 (Higher order communication)

[[ch.E]] =̂

u
M

 M34

wait ′ ∧ ch /∈ ref ′ ∧ tr ′ = tr ∧ ok ′ ∧ v ′ w v
∨
¬ wait ′ ∧ tr ′ = tr a 〈ch.M 〉 ∧ ok ′ ∧ v ′ w v

∣∣∣∣∣∣
M w E

where u
M

represents an non-deterministic choice over the process M , which will
be defined in a later section, and ch /∈ ref ′ represents that all the communication
events over ch are not in the refusal set. 2

30

This definition is also suitable for first-order communication ch.e. When the
communicated value is first-order data e, the internal choice will result in e
itself, as M can only equate e for first-order data.

Theorem 5.11 (Communication monotonicity) Communication is mono-
tonic in the communicated value.

(P v Q) ⇒ (ch.P v ch.Q)

Proof : Similar to the proof of Theorem 5.3. 2

By the input prefix ch?p → P , variable p accepts a message from the channel
and then the program behaves like P .

Definition 5.17 (Input prefix)

ch?p → P =̂ 2
E∈Mes

• (ch.E ; p := E ; P)

where Mes is the set of all messages (data or processes) that can be transferred
on the channel ch. External choice 2 is defined in a later subsection. 2

The clone output prefix ch!q → P represents a program which is willing to
transfer the value of process variable q through channel ch and then behaves as
P . Mobile output prefix ch!!q → P has the same meaning of ch!q → P except
that output variable q is undefined after the transfer.

Definition 5.18 (Clone output prefix)

ch!q → P =̂ ch.q ; P 2

Definition 5.19 (Mobile output prefix)

ch!!q → P =̂

u
M

M34

(
wait ′ ∧ ch /∈ ref ′ ∧ tr ′ = tr ∧ ok ′ ∧ v ′ w v ∧ q ′ w q
∨ (¬ wait ′ ∧ tr ′ = tr a 〈ch.M 〉 ∧ ok ′ ∧ v ′ w v)

)

| M w q

; P

where v are all program variables except q. 2

Theorem 5.12 (Communication healthy) Communication, input prefix and
output prefix are MP processes.

Proof : Similar to the proof of Theorem 5.4. 2

31

5.4.2 Parallel composition

The parallel composition P ‖ Q executes P and Q concurrently such that the
events in the alphabet of both parties require their simultaneous participation,
whereas the remaining events of the system occur independently. Event syn-
chronisation is the only way in which one parallel process can affect its partner.
The system terminates after both P and Q have terminated successfully, and it
becomes divergent after either one of its components does so. An event can be
refused by a parallel composition if either parallel party can refuse it.

We only take the observation variables obs to be the shared write variables
between two parallel processes. Same as the parallel constraint in occam [2],
shared write program variables are not considered in our language — a variable
that is written in one component of the parallel may not appear in any other
component of the parallel. For data variables, their values can be updated
as the input of a communication or the target of an assignment, or as the
output of a mobile communication or the source of an mobile assignment. For
process variables, all of them are write variables. This is because the assignment
to a variable p allows the improvement of all process variables v , and other
primitive processes allow the improvement of all process variables. Therefore
the read variables of a process are only those first-order variables that are not
the source of an mobile assignment/communication or not the target of any
assignment/communication. There is another constraint for process variables.
When a process variable is in activation, it cannot be activated in parallel, or
assigned to/from another variable, or communicated as input or output.

Let Var(P) denote all program variables employed by process P , and RdVar(P)
denote a subset of Var(P) whose values are never modified by P . The parallel
composition is defined as:

Definition 5.20 (Parallel composition) Suppose that
Var(P) ∩ Var(Q) = RdVar(P) ∩ RdVar(Q), then

A(P ‖ Q) =̂ AP ∪ AQ

[[P ‖ Q]] =̂ [[(P(obs, 1.obs′)]] ∧ [[Q(obs, 2.obs′)]]; M (1.obs, 2.obs,obs′)

M =̂

ok ′ = (1.ok ∧ 2.ok) ∧
wait ′ = (1.wait ∨ 2.wait) ∧
ref ′ = (1.ref ∪ 2.ref) ∧
(tr ′ − tr) = (1.tr − tr) ‖ (2.tr − tr)

 ; [[SKIP]]

2

The trace merge function s ‖ t is defined the same as that in [24], in which
{a, b} /∈ E (s) ∩ E (t), {c, d} ∈ E (s) ∩ E (t), a 6= b, c 6= d , where E (s) is the set

32

of events in s.

s ‖ t =̂ t ‖ s
〈〉 ‖ 〈〉 =̂ {〈〉}

〈〉 ‖ 〈c〉 =̂ { }
〈〉 ‖ 〈a〉 =̂ {〈a〉}

〈c〉 a x ‖ 〈c〉 a y =̂ {〈c〉 a u | u ∈ x ‖ y}
〈a〉 a x ‖ 〈c〉 a y =̂ {〈a〉 a u | u ∈ x ‖ 〈c〉 a y}
〈c〉 a x ‖ 〈d〉 a y =̂ { }
〈a〉 a x ‖ 〈b〉 a y =̂ {〈a〉 a u | u ∈ x ‖ 〈b〉 a y}

∪ {〈b〉 a u | u ∈ 〈a〉 a x ‖ y}

In the definition of parallel composition, Var(P) ∩ Var(Q) = RdVar(P) ∩
RdVar(Q) excludes the possibility of shared write program variables between
two parallel components. M is a predicate that merges the final values of observ-
able variables 1.obs and 2.obs produced by the two processes respectively; the
sequential composition with SKIP deals with the situation when either parallel
process is divergent or waiting.

Let us consider (A;SKIP), where A only merges the final values of observable
variables produced by the two parallel processes.

If either parallel party is divergent, indicated by ok ′
A = false, then accord-

ing to the definitions of sequential composition and SKIP (M4 healthy), all
that we can guarantee about the behaviour of SKIP is trace extension and we
cannot predict the final value of any other observation variables. Therefore the
parallelism may not keep the good behaviours of the other process which is not
divergent. Moreover, as SKIP is M5 healthy and it is the unit of sequential
composition, sequentially composing SKIP makes the parallelism M5 healthy
as well.

If either parallel party is waiting, indicated by wait ′A = true, then SKIP
behaves as required by M3 and keep the behaviours unchanged, such that the
parallel composition does not terminate as well. If both parallel processes ter-
minate, then wait ′A = false. According to the definition of SKIP , this indicates
that the A;SKIP terminates and the final value of ref is irrelevant after termi-
nation, making the parallel composition M7 healthy.

Theorem 5.13 (‖-closure) The set of healthy processes is closed under the
parallel composition ‖. 2

5.4.3 Iteration

If b is a condition, the notation b ∗P repeats the process P as long as b is true
before each iteration. More formally, it can be defined as the recursion.

Definition 5.21 (iteration)

[[b ∗ P]] =̂ µX • (([[P]]; X) C b B [[SKIP]])
α(b ∗ P) =̂ αP

33

where µX • F (X) stands for the weakest fixed point [31] of the recursive
equation X = F (X). 2

5.4.4 Internal choice

The internal choice P u Q stands for a program which is executed by per-
forming either P or Q , but the choice between them is made arbitrarily and
nondeterministically.

Definition 5.22 (Internal choice) Provided αP = αQ, then

[[P u Q]] =̂ [[P]] ∨ [[Q]]
α(P u Q) =̂ αP 2

Alphabet restriction is required that the alphabets of two processes should be
the same, otherwise the internal choice has no meaning. The reason is the same
as the alphabet restriction of conditional choice.

5.4.5 External choice

The external choice P 2 Q behaves as either one of the two processes, where
the choice is made by the environment when it performs one of the first inter-
actions or the first terminations without event offered by P and Q . If the first
interaction or termination is the one in which Q has performed, then the rest of
the behaviours of P 2 Q is described by Q . Similarly, P can be selected by oc-
currence of an interaction possible for P but not for Q . Finally, if the first event
is possible for both P and Q , then the choice between them is nondeterministic.

Definition 5.23 (External choice) Provided AP = AQ, then

[[P 2 Q]] =̂ M5(([[P]] ∧ [[Q]]) C [[STOP]] B ([[P]] ∨ [[Q]])) 2

The definition also says that before P and Q communicate with the environment
and the choice has not been made, which is indicated by STOP = true, the
observation is agreed by both P and Q , and only internal interaction can take
place, and an event can be refused by P 2 Q just if it can be refused by both
of them.

The purpose of applying healthiness condition M5 is to deal with divergent
behaviour. When ¬ STOP is selected, according to the definition of STOP and
conditional, 3

¬ STOP =

ok ∧ (¬ ok ′ ∨ ¬ wait ′ ∨ tr ′ 6= tr ∨ ¬ (wait ⇒ ref ′ = ref ∧ v ′ w v))
∨
¬ ok ∧ ¬ tr ≤ tr ′

∨

¬ tr ≤ tr ′ ∧

(
¬ ok ′ ∨ ¬ wait ′ ∨ tr ′ 6= tr
∨ ¬ (wait ⇒ ref ′ = ref ∧ v ′ w v)

)

3
¬ (P C b B Q) = (b ∧ ¬ P) ∨ (¬ b ∧ ¬ Q) ∨ (¬ P ∧ ¬ Q)

34

By applying M5 , we cannot insist that P 2 Q be divergent even when ok ′ is
false.

The reason of the alphabet restriction is the same as that for conditional
and internal choice.

Theorem 5.14 (2-healthy) The set of healthy processes is closed under the
external choice 2. 2

5.4.6 Hiding

Let X be a set of events that are regarded as internal events of a process P .
We use P \ X to denote the process in which the events of X occur silently
without participation or even the knowledge of the environment of P . P \ X
reaches a stable state only when P is stable and cannot perform any event of
X . It reaches divergent if P does and it terminates when P has terminated.

Definition 5.24 (Hiding)

A(P \ X) =̂ AP − X

[[P \ X]] =̂ ∃ tra, refa •

[[P]][tra/tr ′, refa/ref ′] ∧
tr ′ = tra ↓ (AP − X) ∧
refa = ref ′ ∪ X

 ; SKIP

2

Similar to that in the definition of parallel composition, the sequential com-
position with SKIP makes the definition of hiding healthy.

When we want to hide some communication events, instead of writing the
communication events in X , we simply use a channel set CH to denote hiding
all the communication on the channels in CH .

Theorem 5.15 (Hiding closure) The set of healthy processes is closed under
the hiding \ X . 2

6 Algebraic Properties and Laws

Besides some algebraic laws for SKIP , STOP and CHAOS in the previous sec-
tion, we will present more algebraic properties and laws for other MP processes
in this section. The proofs of these laws are based on the UTP semantics of
mobile processes, some of which are largely straightforward and are omitted.

6.1 Variable declaration and undeclaration

As we have seen in the previous chapter, higher-order variables play an impor-
tant role in our work of mobile processes, because process mobility is exhibited
in mobile variable assignment and communication. In this subsection, we will
present and prove a series of laws of variable declaration and undeclaration.

35

In spite of the changed definition of identity and some other operators, these
laws are very similar to their counterparts in conventional non-mobile first-order
programming.

Law 6.1 (Sequential declaration commutative) The sequential composi-
tion of two variable declarations or undeclarations are commutative.

(1) (vid p; vid q) = (vid q ; vid p) = (vid p, q)

(2) (end p; end q) = (end q ; end p) = (end p, q)

(3) (vid p; end q) = (end q ; vid p) {p and q are distinct}

2

Law 6.2 (Variable elimination/intorduction) If a declared program vari-
able is never used or initialised, its declaration has no effect.

(vid p ; Q+p ; end p) = Q {p, p′ /∈ αQ}

Alphabet extension is needed in order to balance alphabets.

Proof :

LHS {Definition 5.13}

= ∃ p • SKIPA; Q ; ∃ p′ • SKIPA {predicate calculus}

= ∃ p • (SKIPA; Q); ∃ p′ • SKIPA {M6}

= ∃ p • Q ; ∃ p′ • SKIPA {p /∈ αQ , predicate calculus}

= Q ; ∃ p′ • SKIPA {predicate calculus, p′ /∈ αQ}

= ∃ p′ • (Q ; SKIPA) {M7}

= ∃ p′ • Q {p′ /∈ αQ}

= RHS

2

Law 6.3 (vid p; end p) = SKIP 2

Similarly, if an initialised program variable is never used, its initialisation has
no effect.

Law 6.4 (proc h; h := {[Q]}; end h) = SKIP 2

But if the program variable is initialised by a mobile assignment or a mobile
communication, its initialisation changes the value of the source variable to
arbitrary, therefore the whole program is refined by SKIP .

Law 6.5 (vid p; p :=m q ; end p) v SKIP 2

36

By applying the above three laws, we can eliminate a non-useful variable
in the derication process, or we can include a process in the scope of a new
variable, assuming this variable is not free in the process.

The following law states that, upon declaration, a variable may take any
value within its type, the choice being arbitrarily non-deterministic, and this
variable remains unchanged until it is assigned or input to.

Law 6.6 (Initial value arbitrary) (proc h) = proc h := {[CHAOS]}

Proof :

RHS {syntax}

= proc h; h := {[CHAOS]} {Definition 5.13 and 5.9}

= (M34 (ok ′ ∧ ¬ wait ′ ∧ tr ′ = tr ∧ v ′ w v))A\{h};

(M34 (ok ′ ∧ ¬ wait ′ ∧ tr ′ = tr ∧ h ′ w CHAOS ∧ v ′ w v))A

{h ′ in the alphabet but not mentioned in the first predicate}

= (M34 (ok ′ ∧ ¬ wait ′ ∧ tr ′ = tr ∧ v ′ w v ∧ trueh′))A\h ;

(M34 (ok ′ ∧ ¬ wait ′ ∧ tr ′ = tr ∧ trueh′ ∧ v ′ w v))A {;-closure}

=

(
M34

(
ok ′ ∧ ¬ wait ′ ∧ tr ′ = tr ∧ v ′ w v ∧ trueh′ ;
ok ′ ∧ ¬ wait ′ ∧ tr ′ = tr ∧ v ′ w v ∧ trueh′

))

A\{h}

{def of ;}

= (M34 (ok ′ ∧ ¬ wait ′ ∧ tr ′ = tr ∧ v ′ w v ∧ trueh′))A\{h} {def of SKIP}

= SKIPA\h

= LHS

2

As variable declaration proc h assigns an arbitrary value to this variable, any
assignment to this variable can make it more deterministic.

Law 6.7 (Initial value refinement) (proc h) v (proc h := {[Q]}) 2

The next law states that the sequential composition of end p with vid p
has no effect whenever it is followed by an update of p that does not depend on
the previous value of p.

Law 6.8 (Vacuous declaration) If the type of q and p are same, and p does
not occur in Q and q, then

(1) (end p; proc p := {[Q]}) = (p := {[Q]})
(2) (end p; vid p := q) = (p := q) 2

As a special case of the above law, the sequential composition of variable un-
declaration with the same variable declaration changes the value of this variable
to arbitrary.

Lemma 6.1 (end p; proc p) = (p := {[CHAOS]}) 2

37

Obviously from the above lemma, the sequential composition of end p with
proc p is refined by SKIP .

Law 6.9 (end p; vid p) v SKIP 2

When the same variable is declared in two sequential programs, the two
declarations may be replaced by a single one.

Law 6.10 (proc p; P ; end p; proc p; Q ; end p) v (proc p; P ; Q ; end p)

Proof : direct from Law 6.9 and M6. 2

The above law may reduce non-determinism. Suppose Q is q :=m p. On the
left hand side, the final value of q is arbitrary. On the right hand side, however,
p may be assigned a certain value in P , thus the final value of q would be a
refinement of p. The right hand side is at least as deterministic as the left one.

Law 6.11 (Variable scope conditional distributivity) Variable scope is dis-
tributed over conditional, if no interference occurs with the condition.

(vid p; P C b B Q ; end p)

= (vid p; P ; end p) C b B (vid p; Q ; end p) {p not occur in b}

2

Law 6.12 (Variable scope extension/shrinkage) The scope of a variable
may be extended by moving variable declaration in front of a process that con-
tains no free occurrences of it, or moving variable undeclaration after this pro-
cess.

(1) (P ; vid p) = (vid p; P+p)

(2) (end p; P) = (P+p ; end p) {p, p′ /∈ αP}

Proof : We only show the proof of (1). (2) can be proved in the same way.

LHS {Definition 5.13}

= P ; ∃ p • SKIPA {p /∈ αP}

= ∃ p • (P ; SKIPA) {M67}

= ∃ p • (SKIPA; P) {p /∈ αP}

= (∃ p • SKIPA); P {Definition 5.13}

= RHS

2

If we look at the above laws from the other way around, we can see the scope
of the variable p is shrunk.

A variable q can be replaced by a new one p, by introducing the new variable
p, which is not declared in the block of q , and assigning q to p.

38

Law 6.13 (Local variable renaming) If Q contains occurrences of q but no
occurrence of p, then

(Q ; end q) = (vid p; p :=m q ; Q [p/q]; end p, q)

Proof :

RHS {Definition 5.14}

= vid p; p := q ; Q ; end p, q {Law 6.12}

= vid p; p := q ; end p; Q ; end q {Law 6.4}

= SKIP ; Q ; end q {M6}

= LHS

2

If a declared process variable does not occur in one of the partners of its
successive parallel composition, its declaration does not affect this process.

Law 6.14 (Variable scope parallel distributivity) Suppose Q contains no
occurrence of p, and P contains no occurrence of q, then

vid p, q ; (P ‖ Q); end p, q = (vid p; P ; end p) ‖ (vid q ; Q ; end q)

2

In the procedure to derive a distributed system from a centralised one, we can
apply this law to narrow the scope of a variable to its relevant process, therefore
the variable declaration can be bounded together with this process when the
centralised specification is split.

6.2 Assignment

The value of a process variable is viewed as a process constant, and is not subject
to substitutions for the variables it contains.

Law 6.15 (Process constant)

(P(x)+h ; h := {[Q(x)]}) = (h := {[Q(x)]} ; P(x)+h)

{h, h ′ /∈ αP , h, h ′ /∈ αQ}

where P(x) and Q(x) are processes in which x occurs as a variable. 2

The assignment of a constant to a process variable at the end of its scope is
vacuous. In the other words, if the value of a variable is updated but never
used, this update is irrelevant.

39

Law 6.16 (Vacuous constant assignment)

(h := {[Q]} ; end h) = (end h) {h, h ′ /∈ αQ}

2

The mobile assignment (h :=m g ; end h) would not have been vacuous, since
the effect on g (making its value undefined) would persist beyond the end of h’s
scope. The corresponding law for mobile variable assignment is stronger in that
it requires both variable scopes to end.

Law 6.17 (Vacuous mobile variable assignment)

(p :=m q ; end p ; end q) = (end p ; end q) 2

The effect of the assignment of a variable to itself is the same as SKIP .

Law 6.18 (Vacuous identity assignment)

(p := p) = (p :=m p) = SKIP 2

When the mobile assignment terminates, on the right hand side, p’s value be-
comes arbitrary; however, on the left hand side p gets a value that refines the
original value of right-hand-side p. Therefore, the whole conjunctive effect is
that p refines its original value, which is the same as SKIP .

Any non-identity mobile assignment can be converted to clone assignment.

Law 6.19 (Mobile assignment to clone assignment)

(p :=m q) = (p := q ; end q ; vid q) {p and q are distinct}

2

In spite of the introduction of mobile assignment, any kind of assignment
can be reduced to assignment normal form – total non-mobile assignment – in
which all the variables of the program appear on the left hand side in some
standard order, and their related values are shown on the right hand side,

h, g , ...r := {[P]}, {[Q]}, ...{[R]}

by transforming mobile assignment to non-mobile assignment and adding iden-
tity clone assignment.

Law 6.20 (Assignment normal form)

(h :=m g) = (h, g , ..., r := g , {[CHAOS]}, ..., r)

{g and h are distinct process variables}

(p := q) = (p, q , ..., r := q , q , ..., r) {p and q are distinct variables}

2

40

Successive assignments to the same variable can be reduced to one.

Law 6.21 (Assignment mergence) If g and h are process variables, and Q
and R are process constants, then

(1) (h := {[Q]}; h := F (h)) = (h := F (Q))

(2) (h := g ; h := F (h)) = (h := F (g))

(3) (h := {[Q]}; h := {[R]}) = (h := {[R]}) {R not refer to h}

2

Law 6.22 (Assignment sequence)

(q := p; p := f (q)) = (q := p; p := f (p)) 2

CHAOS is a right zero of sequential composition of assignment.

Law 6.23 (Assignment right zero) If P is an assignment defined by Defi-
nition 5.9, 5.14 or 5.15, then

P ; CHAOS = CHAOS

Proof : Directly from the definition of assignment and Law 5.7. 2

6.3 Process variable activation

Any intent to activate an uninitialised process variable leads to chaos.

Law 6.24 (Uninitialised activation)

(proc h; <h>) = CHAOS

Proof :

LHS {Law 6.6}

= proc h := {[CHAOS]}; <h> {Definition 5.13 and 5.9}

= SKIPA\h ; h := {[CHAOS]}; u
R
{R | R w CHAOS}

{set theory, Def. 5.22}

= SKIPA\h ; (h := {[CHAOS]}; CHAOS) {Law 6.23}

= SKIPA\h ; CHAOS {M6}

= RHS

2

The mobility of processes is expressed in the following law.

41

Law 6.25 (Undefined activation) For distinct process variables g and h.

(g :=m h ; <h>) = CHAOS {Law 6.25.A}

(ch!!h → <h>) = ch.h ; CHAOS {Law 6.25.B}

where ch is a channel name. 2

Law 6.25 captures the fact that a mobile process has moved after assignment or
communication, since its value has been passed to a new location (g , or the other
end of the channel ch), and none of its behaviours is available at its old location
(the higher-order variable h). In Law 6.25.A, as there is no communication with
the environment, the update of g can not be observed, therefore the whole effect
is the same as CHAOS ; however, in Law 6.25.B, the execution of h still leads to
CHAOS , but this does not undo the communication that has already happened.

The proofs of the above two laws can be easily derived from Law 6.19, the
definition of output, Law 6.24 and Law 6.23.

6.4 Prefix

The mobile output can be replaced by clone output.

Law 6.26 (Mobile output to clone output)

(ch!!q → P) = (ch!q → end q ; vid q ; P)

Proof : Directly from the definitions. 2

6.5 Iteration

If a boolean condition b holds, then the iteration b∗P will execute P and iterate.
Otherwise, it terminates immediately. In first-order programming, there is a law

(t := e; b ∗ P) = t := e; (P ; b ∗ P) C b[e/t] B SKIP

in which the initial value of b can be evaluated by substituting the occurrences
of t in b with its value e. However, a similar one in our theory may not hold

(h := {[E]}; b ∗ P) =? h := {[E]}; (P ; b ∗ P) C b[E/h] B SKIP

This is because we cannot evaluate the initial value of b by substituting h with
E , as the value of h is non-deterministic.

The following two laws of conventional imperative language still hold.

Law 6.27 true ∗ SKIP = CHAOS 2

Law 6.28 false ∗ P = SKIP 2

42

6.6 Other processes

The algebraic laws for some other processes are largely same as their counterpart
in non-mobile conventional imperative programming. We briefly list these laws
in this section, without detailed explanation.

Property 6.1 (Parallel composition)

(1) P ‖ Q = Q ‖ P
(2) P ‖ (Q ‖ R) = (P ‖ Q) ‖ R
(3) SKIP ‖ P = P
(4) CHAOS ‖ P = CHAOS
(5) (P C b B Q) ‖ R = (P ‖ R) C b B (Q ‖ R) 2

Property 6.2 (External choice)

(1) P 2 P = P
(2) P 2 Q = Q 2 P
(3) (P 2 Q) 2 R = P 2 (Q 2 R)
(4) P 2 CHAOS = CHAOS
(5) P 2 STOP = P
(6) P 2 SKIP v SKIP
(7) P 2 (Q u R) = (P 2 Q) u (P 2 R)
(8) P u (Q 2 R) = (P u Q) 2 (P u R)
(9) P ; (Q 2 R) = (P ; R) 2 (P ; R)
(10) (P 2 Q); R = (P ; R) 2 (Q ; R)
(11) P C b B (Q 2 R) = (P C b B Q) 2 (P C b B R)
(12) P 2 (Q C b B R) = (P 2 Q) C b B (P 2 R) 2

Property 6.3 (Internal choice)

(1) P u P = P
(2) P u Q = Q u P
(3) (P u Q) u R = P u (Q u R)
(4) CHAOS u P = CHAOS
(5) P ; (Q u R) = (P ; Q) u (P ; R)
(6) (P u Q); R = (P ; R) u (Q ; R)
(7) P C b B (Q u R) = (P C b B Q) u (P C b B R)
(8) P u (Q C b B R) = (P u Q) C b B (P u R) 2

Property 6.4 (Hiding)

(1) P \ {} = P

(2) P \ X \ Y = P \ (X ∪ Y)

(3) (a → P) \ X =

{
a → (P \ X), if a /∈ X ;
P \ X , if a ∈ X

(4) (P ; Q) \ X = (P \ X); (Q \ X)

43

(5) (P ‖ Q) \ X = (P \ X) ‖ Q , {X /∈ AQ}

(6) ch.E \ CH = SKIP , {ch ∈ CH }

(7) P \ CH = P {P not communicate through any channel in CH }

2

7 Development Method for Mobile Processes

Our development procedure involves two main steps. In the first step we group
similar pieces of specification as the value of a parameterised process variable
(see Section 7.1). In the second step, by converting assignment into communica-
tion, we make the variable mobile: consequently the activations of the variable
can be completed in different hosts over a network (see Section 7.2). We present
the derivation procedure through a set of laws for MP processes.

7.1 Abstracting process variable

The first step of the derivation is to replace a process by assigning this process
constant to a new declared process variable and following by its activation.

Law 7.1 (Copy-rule-2)

Q = (proc h := {[Q]} • <h>) {h, h ′ /∈ αQ}

Proof.

LHS {variable introduction}

= proc h; Q ; end h {constant assignment vacuous}

= proc h; Q ; h := {[Q]}; end h {process-constant}

= proc h; h := {[Q]}; Q ; end h {copy-rule-1}

= proc h; h := {[Q]}; <h>; end h {syntax}

= RHS

2

The law for parameterised processes differs in that we activate them by
providing actual parameters.

Law 7.2 (Parameterised copy-rule)

Q(i , j , k) =

proc h := {[λ x : var(T1), y : val(T2), z : res(T3) • Q(x , y , z)]} •
h(i , j , k)

{h, h ′ /∈ αQ}

where Q(i , j , k) is a parameterised process with actual name, value and result
parameters i , j and k of type T1, T2 and T3 respectively. 2

44

We introduce two notations to represent a series of sequential compositions.
An indexed sequential composition is the sequential composition of a series of
processes in order.

Definition 7.1 (Indexed sequential composition)

(o
9 i : 1 . . n • Pi) =̂

{
SKIP n = 0
(o

9 i : 1 . . n − 1 • Pi) ; Pn n ≥ 1
2

Sequential compositions may be iterated over a sequence s.

Definition 7.2 (Iterated sequential composition) ∀ s ∈ seqT

(o
9 i : s • P(i)) =̂

{
SKIP s = 〈〉
P(head(s)); (o

9 i : tail(s) • P(i)) s 6= 〈〉

where i is one of the elements in the sequence of parameters, and P is a param-
eterised process, head(s) is the first element of s, tail(s) is a subsequence of s
after removing its first element. 2

For example, we denote the program (t := t + 2; t := t + 7; t := t + 5) as

o
9 i : 〈2, 7, 5〉 • {[λ j : val(N) • t := t + j]}(i)

For a series of similar pieces of program, we may be able to assign the
parameterised process to a newly-introduced process variable, and activate it in
series with proper arguments.

Law 7.3 (Iterated parameterised copy-rule) Suppose Q is a parameterised
process with a value parameter of type I , then, for any sequence s,

(o
9 i : s • {[λ j : val(I) • Q(j)]}(i))

=

(
proc h := {[λ j : val(I) • Q(j)]} •

(o
9 i : s • h(i))

)
{h, h ′ /∈ αQ}

2

For instance, by using this law, we have the following derivation

(t := t + 2; t := t + 7; t := t + 5) =(
proc h := {[λ j : val(N) • t := t + j]} •

(h(2); h(7); h(5))

)

As a special case of the above law, when s = 〈1, 2, . . . ,n〉,

(o
9 i : 1 . . n • P(i)) =

(
proc h := {[λ j : val(N) • P(j)]} •

(o
9 i : 1 . . n • h(i))

)

In the same way, we have similar laws for an iterated parameterised process
which has name or result parameters.

45

7.2 Moving process variable

Even though we group similar pieces of specification as the value of a newly
introduced parameterised process variable and activate it at necessary occur-
rences (Law 7.3), the whole specification is still centralised. In order to achieve
a distributed system, we may consider putting many activations of this variable
in different distributed components. To make sure that the variables activated
in different components have the same process values or similar structures, we
initialise the variable at one component but make it mobile, transmitted from
one distributed component to another one. It is necessary to introduce com-
munication in this step. Actually, the assignment and the communication are
semantically equivalent.

Law 7.4 (Assignment-communication equivalence)

(p := q) = ((ch?p → SKIP) ‖ (ch!q → SKIP)) \ {ch}
(p :=m q) = ((ch?p → SKIP) ‖ (ch!!q → SKIP)) \ {ch}

2

We borrow the concepts of pipes and chaining in CSP [12, 24]. Pipes are
special processes which have only two channels, namely an input channel left
and an output channel right . For example, a pipe that recursively accepts a
number from left , and output its double to right can be represented by:

µX • left?p → right !(p + p) → X

Chaining links two pipes together as a new pipe.

Definition 7.3 (Chaining)

P>>Q =̂ (P [mid/right] ‖ Q [mid/left]) \ {mid} 2

It is clear that chaining operator is associative.

Law 7.5 (Chaining associative)

P>>(Q>>R) = (P>>Q)>>R 2

We may define the indexed chaining which connects a series of processes in order
as a long pipe.

Definition 7.4 (Indexed-chaining)

(>> i : 1 . . n • Pi) =̂

{
P1 n = 1
(>> i : 1 . . n − 1 • Pi)>>Pn n > 1

2

We introduce a new notation: double chaining links two pipes as a ring. All the
communications between pipes are hidden from the environment.

46

Definition 7.5 (Double-chaining)

P �� Q =̂
(P [mid1,mid2/right , left] ‖ Q [mid1,mid2/left , right]) \ {mid1,mid2}

2

The double chaining operator is commutative.

Law 7.6 (Double-chaining commutative)

P �� Q = Q �� P 2

A ring of processes can be viewed as a long chain with the two chain ends
connected. The order of processes in the ring is important, but the connecting
point of the chain can be arbitrary. In other words, the chain can be started
from any process and ended at one of its backwards adjacent process. This
feature is captured by the following law.

Law 7.7 (Exchange)

P1 �� (>> i : 2 . . n • Pi)
= Pk �� ((>> i : k + 1 . . n • Pi)>>(>> i : 1 . . k − 1 • Pi)) 1 < k < n
= Pn �� (>> i : 1 . . n − 1 • Pi)

Proof. We show the proof of P �� (Q>>R) = Q �� (R>>P)

P �� (Q>>R) {def of ��}

= (P [m1,m2/r , l] ‖ (Q>>R)[m1,m2/l , r]) \ {m1,m2} {def of >>}

= (P [m1,m2/r , l] ‖ (Q [m/r] ‖ R[m/l])[m1,m2/l , r]) \ {m1,m2,m}{def of pipe}

= (P [m1,m2/r , l] ‖ Q [m1,m/l , r] ‖ R[m,m2/l , r]) \ {m1,m2,m}

{‖-commutative}

= (Q [m1,m/l , r] ‖ (R[m,m2/l , r] ‖ P [m1,m2/r , l])) \ {m1,m2,m} {def of >>}

= (Q [m1,m/l , r] ‖ (R>>P)[m,m1/l , r]) \ {m1,m} {def of ��}

= Q �� (R>>P)

2

The update of a variable p by an expression of p can be implemented by
double chaining two pipes, where the first pipe mobile outputs p, while the
second pipe receives the value of p, assigns it to r and then outputs the value
of the updated variable immediately to the first pipe.

Law 7.8 (Delegation with double-chaining)

(p := f (p)) =

(
(right !!p → left?p → SKIP)
�� (vid r ; left?r → right !f (r) → end r)

)

where f (p) is an expression of p.

47

Proof.

RHS {Definition 7.5}

= ((mid1!!p → mid2?p → SKIP) ‖ (vid r ; mid1?r → mid2!f (r) → end r))

\ {mid1,mid2} {Law 6.14}

= vid r ; ((mid1!!p → mid2?p → SKIP) ‖ (mid1?r → mid2!f (r) → SKIP))

\ {mid1,mid2}; end r {Law 7.4, twice}

= vid r ; r := p; p := f (r); end r {Law 6.22}

= vid r ; r := p; p := f (p); end r {Law 6.12}

= vid r ; r := p; end r ; p := f (p) {Law 6.4}

= SKIP ; p := f (p) {M6}

= LHS

2

As the update is executed in the second pipe, the value of p in the first pipe
is irrelevant after its output and before its coming back. Therefore, we adopt
mobile output for p. In the second pipe, f (r) is not a variable but a value based
on variable r , so that we use normal output for f (r).

Similarly, the serial update of a variable can also be implemented by a ring
of pipes, in which different updates are executed in different pipes.

Law 7.9 (Serial delegation with chaining)

(w := g(f (w))) =

right !!w → left?w → SKIP

��

vid p; left?p → right !f (p) → end p
>>
vid q ; left?q → right !g(q) → end q

Proof. Similar to the proof of Law 7.8. 2

In a more general rule, a series of updating p through different processes
Fi(p, p′) can be replaced by a loop pipelining, in which the series of update task
are allocated in different pipes.

Law 7.10 (Loop pipelining)

(o
9 i : 1 . . n • Fi(p, p′); w := p) =

(right !!p → left?p → w := p)
��
>> i : 1 . . n • (vid r ; left?r → Fi(r , r ′); right !!r → end r)

Proof. Induction over n. 2

In the right hand side of the above law, the value of p travels from the first
pipe to the series of pipes. Its final value, which is stored in w , is retrieved after
p’s travelling back from the series of pipes.

48

When updating is performed by a series of activations of the same process
variable, we can move this process variable around the loop pipelining and
distribute the activations in different pipes.

Lemma 7.1 (Loop pipelining) Suppose that h is a parameterised process vari-
able with a value parameter i and a name parameter t, then

(o
9 i : 1 . . n • h(i , t); w := t) =

(right !!h!!t → left?h?t → w := t)
��
>> i : 1 . . n •

(proc g ; vid r ; left?g?r → g(i , r); right !!g !!r → end g , r)

2

In practice, t is the local state of mobile process variable h. When the mobile
process variable moves, it takes not only its process value but also its local
state; however, in our current work, we have not formalised the local state of
a mobile process, therefore we simply send the local state together with the
process variable in multiple data transfer [24], which also says that the two
variables h and t are output at the same time.

8 Decentralising the Data Centre

Using the laws in Section 7, we are able to show the derivation of the distributed
system from the centralised one in Section 3. As the behaviour of the hosts to
send out the information is not our main concern, we simply ignore this part in
our specification.

In the centralised system, initially, the variable t is initialised to 0. The
data centre then repeats the task of communicating with each host, obtaining
the information and updating t until all the hosts have been processed. Finally
the data centre outputs the data through channel result . This specification can
be written as

var t := 0 •
(o

9 i : 1 . . n • c.i?v → t := t + v); result !t → SKIP

where c.i is the channel connecting the data centre and the ith host. We
notice that similar pieces of specification involving input and update occurs
iteratively, therefore we can assign a parameterised process to a process variable,
and then activate it repeatedly with proper arguments. In the parameterised
process, the initial value of t needs to be known at the beginning of every
communication with the host, and certainly we need to store the result of t
after its update, therefore we select t as a name parameter. By applying the

49

iterated parameterised copy rule (Law 7.2), we reach the following development:

= {iterated-parameterised-copy-rule}
var t := 0 •(

proc p := {[λ j : val(1 . . n); u : var(N) • c.j ?v → u := u + v]} •
(o
9 i : 1 . . n • p(i , t))

)
;

result !t → SKIP

The channel index j is only of relevance at the beginning of the variable activa-
tion, therefore it is a value parameter.

As the output result !t does not contain variable p, it can be moved inside
the scope of p. By an application of Law 6.12, we calculate the following:

= {variable-p-scope-extension}
var t := 0 •(

proc p := {[λ j : val(1 . . n); u : var(N) • c.j ?v → u := u + v]} •
o
9 i : 1 . . n • p(i , t); result !t → SKIP

)

The task of updating t by activating p can be completed using a series of
pipes. The whole specification can be replaced by double chaining this series of
pipes with another pipe, in which the initial value of t is sent out and the final
value of t is retrieved. As the intermediate values of t and process variable p
are of no concern, we use mobile output for t and p. When the activations have
been completed in every host, the process variable is of no use to us, therefore
we discard it in the last-visited host n and only the variable w that stores the
data is output to the first pipe. By applying the loop-pipelining law (Lemma
7.1), we get the following specification.

= {loop-pipelining}
var t := 0 •

proc p := {[λ j : val(1 . . n); u : var(N) • c.j ?v → u := u + v]} •

right !!p!!t → left?t → result !t → SKIP
��

>> i : 1 . . (n − 1) •(
proc q ; var w ; left?q?w → q(i ,w);
right !!q !!w → end q ,w

)

>>

(
proc q ; var w ; left?q?w → q(n,w);
right !!w → end q ,w

)

This specification is still centralised, as the scopes of p and t are valid for
all the pipes. We notice, however, these two variables do not occur in the pipes
involved in updating, therefore we can take these pipes out of the scope of p
and t . Applying the variable scope shrinkage (Law 6.12), we reach a distributed

50

system.

= {variable-t-and-p-scope-shrinkage}

var t := 0 •
proc p := {[λ j : val(1 . . n); u : var(N) • c.j ?v → u := u + v]} •

right !!p!!t → left?t → result !t → SKIP

��

(

>> i : 1 . . (n − 1) •
proc q ; var w ; left?q?w → q(i ,w); right !!q !!w → endq ,w

)

>>(proc q ; var w ; left?q?w → q(n,w); right !!w → end q ,w)

In the distributed system, the data centre and the hosts are arranged as a ring.
The first component of the double chaining is the data centre, in which the
variables t and p are mobile sent out, along channel right , after initialisation.
The hosts are specified as a series of pipes, in which the process variable and
the data are received from channel left , and then output to channel right after
activation of the process variable.

9 Conclusions and Future Work

We have presented the UTP denotational semantics of mobile processes and a
set of laws for the development of mobile distributed systems. The correctness
of these laws can be guaranteed by the semantics, and we have proved most of
the presented. Through a simple example that can be implemented in both a
centralised and a distributed fashion, we have shown these laws are suitable for
a step-wise development, starting with a centralised specification and ending
up with a distributed implementation, while we cannot achieve this using the
π-calculus.

Our current work on the semantics of mobile processes mainly focuses on
their mobility, and our development method applies to an initial specification
without any mobile process; however, we simply ignore the process type and rich
data structure within a mobile process. In occamM [1], a process type determines
an interface, a mobile process can implement multiple process types, and the
value of a process variable is an instance of a mobile process that implements
the type of this variable. Therefore, the activation of a process variable is
determined by its type, and the process from which it is initialised. We formalise
these issues, and then study the refinement of a mobile process itself.

In occamM [1], channels have mobility. Channel variables reference only one
of the ends of a channel bundle and those ends are mobile, and can be passed
through channels. Moving one of the channel-bundle ends around a network
enables processes to exchange communication capabilities, making the commu-
nication highly flexible. We intend to formalise this channel-ends mobility in
the UTP and study its refinement calculus.

In the example in this paper, the derivation from the centralised system to
the distributed one centres around the introduction of a higher-order variable.

51

Actually, moving processes can decrease network cost by replacing remote com-
munication with local communication. Furthermore, after a mobile assignment
or a mobile communication, the source variable is undefined and its allocated
memory space is released to the environment. Clearly, consuming less network
cost and occupying less memory space can be a performance enhancement, and
in this sense, we have not demonstrated a performance improvement in our
mobile system. We intend to investigate techniques for reasoning about this.

Our main objective is to include the semantics of mobile processes and its
associated refinement calculus in Circus [34], a unified language for describing
state-based reactive systems. The semantics [35] of Circus is based on UTP and a
development method for Circus based on refinement [25, 3, 4] has been proposed.
This inclusion will enhance the Circus model and allow Circus specification to
reason about mobility.

References

[1] F. R. M. Barnes and P. H. Welch. Prioritied dynamic communicating and
mobile processes. IEE Proceedings Software, 150(2):121–136, April 2003.

[2] Geoef Barrett. occam3 reference manual. Technical report, INMOS Lim-
ited, Mar 1992.

[3] A. L. C. Cavalcanti, A. C. A. Sampaio, and J. C. P. Woodcock. Refine-
ment of actions in Circus. In REFINE’2002, Electronic notes in Theoretical
Computer Science, 2002.

[4] A. L. C. Cavalcanti, A. C. A. Sampaio, and J. C. P. Woodcock. A refinement
strategy for Circus. Formal Aspects of Computing, 2003(15):146–181, 2003.

[5] E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, Engewood
Cliffs, 1976.

[6] M. P. Fiore, E. Moggi, and D. Sangiorgi. A fully-abstract model for the
π-calculus. In Proceedings of the Eleventh Annual IEEE Symposium On
Logic In Computer Science (LICS’96), pages 43–54, New York, USA, July
1996. IEEE Computer Society Press.

[7] The RAISE Language Group. The RAISE Specification Language. BCS
Practitioner Series. Prentice Hall, 1992.

[8] He Jifeng, Liu Zhiming, and Li Xiaoshan. A relational model for object-
oriented programming. Technical Report 231, UNU/IIST, P.O.Box 3058,
Macau, May 2001.

[9] He Jifeng, Liu Zhiming, and Li Xiaoshan. Towards a refinement calculus for
object systems. In Proceedings of the Conference ICCI2002, pages 69–77,
Calgary, Canada, 2002. IEEE Computer Society Press.

52

[10] He Jifeng, Liu Zhiming, and Li Xiaoshan. Modelling object-oriented pro-
gramming with reference type and dynamic binding. Technical Report 280,
UNU/IIST, P.O.Box 3058, Macau, May 2003.

[11] M. Hennessy. A fully abstract denotational model for higher-order pro-
cesses. In 8th Annual IEEE Symposium on Logic in Computer Science.
IEEE Computer Society Press, 1993.

[12] C. A. R. Hoare. Communicating Sequential Process. Prentice Hall, 1985.

[13] C. A. R. Hoare and He Jifeng. Unifying Theories of Programming. Prentice
Hall, 1998.

[14] Jin Naiyong and He Jifeng. Resource semantic models for programming
languages. Technical Report 277, UNU/IIST, P.O.Box 3058, Macau, April
2003. unpublished.

[15] Li Li and He Jifeng. A denotational semantics of timed RSL using duration
calculus. In Proceedings of the 6th International Conference on Real-Time
Computing Systems and Applications (RTCSA’99), pages 492–503, Hong
Kong, 13-15 Decemeber 1999. IEEE Computer Society Press.

[16] INMOS Limited. occam2.1 reference manual. Technical report, INMOS
Limited, May 1995.

[17] B. Mahony and J. S. Dong. Timed communicating object-Z. IEEE Trans-
actions on Software Engineering, 26(2):150–177, February 2000.

[18] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes,
parts I and II. Technical Report ECS-LFCS-89-85 and -86, University of
Edinburgh, 1989.

[19] Robin Milner. Communication and Concurrency. Computer Science. Pren-
tice Hall, 1989.

[20] Robin Milner. Communicating and Mobile Systems: the π-calculus. Cam-
bridge University Press, 1999.

[21] Carrol Morgan. Programming from Specifications. Prentice Hall, second
edition, 1998.

[22] Shengchao Qin, Jin Song Dong, and Wei-Ngan Chin. A semantic foundation
for TCOZ in unifying theories of programming. In FM03, To appear, 2003.

[23] Hyon Sul Ri and He Jifeng. A complete verification system for timed RSL.
Technical Report 275, UNU/IIST, P.O.Box 3058, Macau, March 2003.

[24] A. W. Roscoe. The Theory and Practice of Concurrency. Prentice Hall,
1998.

53

[25] A. C. A. Sampaio, J. C. P. Woodcock, and A. L. C. Cavalcanti. Refinement
in Circus. In L. Eriksson and P. A. Lindsay, editors, FME 2002: Formal
Methods — Getting IT Right, volume 2391 of Lecture Notes in Computer
Science, pages 451–470. Springer-Verlag, 2002.

[26] D. Sangiorgi. Expressing Mobility in Process Algebras: First-order and
Higher-order Paradigms. PhD thesis, Department of Computer Science,
University of Edinburgh, 1992.

[27] Davide Sangiorgi and David Walker. The π-calculus: A Theory of Mobile
Processes. Cambridge University Press, 2001.

[28] Adnan Sherif and He Jifeng. A framework for the specification, verification
and development of real time systems using Circus. Technical Report 270,
UNU/IIST, P.O.Box 3058, Macau, November 2002.

[29] Adnan Sherif and He Jifeng. Toward a time model for Circus. In C. George
and H. Miao, editors, ICFEM 2002, volume 2495 of Lecture Notes in Com-
puter Science, pages 613–624. Springer-Verlag, 2002.

[30] Ian Stark. A fully abstract domain model for the π-calculus. In Proceedings
of the 11th Annual IEEE Symposium on Logic in Computer Science, pages
36–42. IEEE Computer Society Press, 1996.

[31] A. Tarski. A lattice-theoretical fixpoint theorem and its applications. Pa-
cific Journal of Mathematics, 5:285–309, 1955.

[32] J. C. P. Woodcock. Unifying theories of parallel programming. In Logic and
Algebra for Engineering Software. IOS Press, 2002. Also Keynote speech in
ICFEM 2002: 4th International Conference on Formal Engineering Meth-
ods, Shanghai, IEEE Computer Society Press.

[33] J. C. P. Woodcock and A. L. C. Cavalcanti. Circus: a concurrent refine-
ment language. Technical report, Oxford University Computing Labora-
tory, Wolfson Building, Parks Road, Oxford OX1 3QD, UK, July 2001.

[34] J. C. P. Woodcock and A. L. C. Cavalcanti. A concurrent language for
refinement. In A. Butterfield and C. Paul, editors, IWFM’01: 5th Irish
Workshop in Formal Methods, Dublin, Ireland, July 2001.

[35] J. C. P. Woodcock and A. L. C. Cavalcanti. The semantics of Circus. In
J. P. Bowen, M. C. Henson, and K. Robinson, editors, ZB2002: Formal
Specification and Development in Z and B, volume 2272 of Lecture Notes
in Computer Science, pages 184–203. Springer-Verlag, 2002.

[36] Jim Woodcock and Jim Davies. Using Z: Specification, Refinement and
Proof. Prentice Hall, 1996.

[37] Zhou Chaochen, C. A. R. Hoare, and A. P. Ravn. A calculus of durations.
Information Processing Letters, 40(5):269–276, 1991.

54

