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ABSTRACT. Interval Temporal Logic (ITL) is a finite-time linear temporal logic with applications
in hardware verification, temporal logic programming and specification of multimedia docu-
ments. Due to the logic’s non-elementary complexity, efficient ITL-based verification tools have
been difficult to develop, even for propositional subsets. MONA is an efficient implementation
of an automata-based decision procedure for the logic WS1S. Despite the non-elementary com-
plexity of WS1S, MONA has been successfully applied in problems such as hardware synthesis,
protocol verification and theorem proving. Here we consider a rich propositional subset of ITL,
PITL, whose expressive power is equivalent to that of WS1S, and in turn to that of regular lan-
guages. PITL not only includes operators such as chop (;), star (∗) and projection (proj), but
also past operators such as previous (©- ), chop in the past (

∼
; ) and since (S). We provide an

interpretation of PITL formulas in WS1S, which led us to a direct translation from PITL for-
mulas to MONA specifications. We present the tool PITL2MONA as an implementation of such
translation. With PITL2MONA acting as a front-end, MONA is used as a decision procedure
for PITL. To our knowledge, this is one of the few implementations of a decision procedure
for PITL, the first one based on automata, and the only one which handles both projection
and past operators. We have tested our implementation on a number of examples; we show in
this paper the application of PITL and its MONA-based decision procedure in solutions to the
dining-philosophers and a multimedia synchronisation problem, together with some experimen-
tal results on these and some other examples.
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1. Introduction

Interval Temporal Logic (ITL) [MOS 83] is a linear temporal logic over finite
time. ITL (and some of its propositional subsets) have been applied in different prob-
lems, from specification and verification of hardware devices [HAL 83], [MOS 83],
[MOS 85] and temporal logic programming [MOS 86], [DUA 96] to the specification
of multimedia documents [BOW 03a] and human computer interaction [BOW 98a],
[BOW 99]. Also, interest in ITL comes from its natural notation and expressiveness.
Operators such as chop, projection and star support sequential composition, multiple
time granularities and repetitive behaviour in system specifications. Also, high-level,
imperative-like operators such as loops, conditionals and assignments can easily be
defined, and so ITL naturally lends itself to execution.

ITL’s features make this logic an attractive alternative to the problems faced by
conventional point-based temporal logics. It is accepted that the specification of prop-
erties in such point-based temporal logics could be difficult for non-temporal logic
experts. Thus, successful verification of a misformulated property may give unjus-
tified confidence in a system design. In general, for this and other reasons, it has
been recognised that specification languages need the full power of regular expres-
sions [PNU 85], [VAR 01]. And it is known that chop and star bring this expressive
power to ITL. Furthermore, there is evidence of increasing industrial interest in ITL.
For example, specification languages used in model checking tools such as Verisity’s
Temporal e language [HOL 01] and IBM’s Sugar [BEE 01], have already introduced
ITL concepts. Here we consider a rich propositional subset of ITL over finite intervals,
PITL, which has the same expressive power as Quantified Propositional Temporal
Logic (QPTL) for finite time, regular expressions and Weak Monadic Second-Order
Theory of One Successor (WS1S) [MOS 00b]. PITL not only includes operators such
as chop (;), star (∗) and projection (proj), but also past operators such as previous (©- ),
chop in the past (

∼
; ) and since (S). Past operators do not add expressive power w.r.t. a

set of future operators, but they make the logic easier to use.

In recent years there has been substantial research on decision procedures for
ITL (and sublogics) [BOW 98b, BOW 03b, MOS 00b, MOS 00a], but practical ap-
plications have been limited by the worst-case, non-elementary complexity of ITL
[MOS 83]. However, efficient tools for non-elementary logics are now available which
have shown that a number of interesting problems and applications do not necessarily
fall in this worst-case behavior, and therefore can be handled satisfactorily.

One such tool is MONA [KLA 01, KLA 02], which implements an efficient deci-
sion procedure for WS1S [BÜC 60, ELG 61, THO 90]. While it was shown that the
decision problem for WS1S is non-elementary [MEY 75], we are interested in this
logic because it is as expressive as regular languages (and so PITL can be reduced
to it) and also because an efficient implementation for its decision procedure is avail-
able (MONA). This evidence speaks in favour of the applicability of non-elementary
logics.
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This paper explores the connection between PITL and WS1S/MONA. We provide
an interpretation of PITL formulas in WS1S, which led us to a direct translation from
PITL formulas to MONA specifications. We present the tool PITL2MONA as an
implementation of such translation. With PITL2MONA acting as a front-end, MONA
is used as a decision procedure for PITL. To our knowledge, this is one of the few
implementations of a decision procedure for PITL, the first one based on automata,
and the only one which handles both projection and past operators.

Related Work.

Proof systems and decision procedures for ITL have been the focus of most of
the research done so far. However, the tableau-based tool LITE [KON 95] is the only
other implementation of a decision procedure for a propositional subset of ITL. It is
also worth saying that while research has also been performed in other related interval
logics [PAE 88, HAL 91, VEN 91, DUT 95, CHA 91], to our knowledge Quantified
Discrete-time Duration Calculus (QDDC) is the only one of them with an imple-
mented decision procedure (DCVALID [PAN 00b]).

Kono’s LITE is an implementation of a tableau-based decision procedure for a
propositional subset of ITL. LITE supports chop, star, projection, quantification over
atomic propositions and a number of high-level, imperative-like iteration operators
such as while. It does not support, however, past operators. We believe that efficiency
is the main advantage of our implementation w.r.t. LITE. Compared with an automata-
based decision procedure such as MONA, tableau-based implementations are likely to
suffer from the overhead associated with expansion rules and normal form generation.
Moreover, MONA includes a number of optimisations which allow even worst-case,
non-elementary formulas to be decided with reasonable time and memory require-
ments [KLA 02]. Also, automata are more compositional than tableau [MOS 00a].
For example, and unlike automata, given two PITL formulas ϕ and ψ decided by
tableau T (ϕ) and T (ψ), it is difficult to reuse them to obtain T (ϕ ; ψ).

Pandya’s tool DCVALID [PAN 00b, PAN 00a] implements a decision procedure
for QDDC, a quantified discrete-time subset of Duration Calculus [CHA 91]. DC-
VALID is also implemented very much as a front-end which translates QDDC formu-
las to MONA specifications. QDDC is closely related to PITL; DCVALID supports
chop and star-like operators. It also implements quantification over atomic propo-
sitions, and a duration operator which counts the number of times a given proposi-
tion is true in the interval (this operator is a distinctive feature of QDDC). However,
DCVALID does not support any form of projection, and only a limited form of the
past operator previous (this operator can only be applied over atomic propositions).

Neither projection nor quantification add expressive power to a propositional sub-
set of ITL containing both chop and star which, as mentioned before, is already as
expressive as regular languages. However, and depending on the application domain,
these operators can make the logic easier to use. As WS1S also has the expressive
power of regular languages, it turns out that both projection and quantification can
be interpreted in WS1S. Nevertheless we have only included projection in our subset,
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for a number of reasons. First, since our main objective is to show that a transla-
tion from a rich subset of PITL to WS1S is feasible, the implementation of a full set
of PITL operators would fall out of the paper’s scope. Secondly, while quantifica-
tion over PITL atomic propositions can be directly interpreted as WS1S second-order
quantification (Section 2 will show that PITL atomic propositions can be interpreted
as WS1S second-order variables), the interpretation of projection in WS1S is not so
straightforward and thus it better shows the power of WS1S to encode PITL. Also,
and to the best of our knowledge, a definition of projection using quantification has
not been presented in the literature (and it seems rather difficult to obtain!). Finally,
projection has already found important applications in different contexts. For exam-
ple, star and other iteration operators of the imperative while and for loop variety can
be defined in terms of projection [BOW 03b]. Also, it can be used to realise temporal
abstraction in the real-time setting [MEL 93], and hence, for example, to describe the
slowing down of multimedia presentations [BOW 03a] (Section 7 will illustrate such
application). And in other disciplines, projection has been found to be useful for de-
scribing goals for cognitive behaviour in the domain of multi-modal human computer
interaction [BOW 98a, BOW 99].

Paper outline.

Sections 2 and 3 give the necessary overview on the logics PITL, WS1S and the
MONA tool. Section 4 shows an interpretation of PITL formulas (without past op-
erators) in WS1S. Section 5 shows the translation algorithm (sketched) from PITL
formulas to MONA specifications. In section 6 we include past operators in the lan-
guage, and show how semantics and translation can be easily adapted. In section 7
both, a version of the well-known dining philosophers problem and a multimedia syn-
chronisation problem serve as examples of specification and verification of systems
using PITL. Some implementations details of the tool PITL2MONA, together with
experimental results are shown in section 8. Here the performance of PITL2MONA
is compared with that of LITE (Kono’s tableau-based implementation). Conclusions
are discussed in section 9. Appendix A defines satisfiability for the whole set of PITL
operators (future and past operators); theorems and their proofs can be found in ap-
pendix B.

2. Propositional Interval Temporal Logic

PITL is defined over finite state sequences. Each sequence is called an interval and
I denotes the set of all possible intervals; σ ∈ I has the form:

〈σ0, σ1, . . . , σ|σ|〉

where |σ| denotes the length of an interval and σi denotes the i-th state in an interval.
By convention, the length of an interval is the number of states minus one and all
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intervals must have at least one state. We use [σ]i ((σ)i) to denote the i-th prefix
(suffix) of an interval. Formally,

[σ]i = 〈σ0, . . . , σi〉 (σ)i = 〈σi, . . . , σ|σ|〉

Intervals are interpreted w.r.t. a finite set of atomic propositions A =
{v1, . . . , vm}. Each state σi ∈ P(A) is a set containing all atomic propositions that
are considered true at that state. In this section we will just present the syntax and
semantics of PITL1, a fragment of PITL which does not handle past operators (syn-
tax and semantics of past operators are given in Section 6). A PITL1 formula F is
constructed as follows (v ∈ A):

F ::= v | False | ¬F | F ∨ F | empty | ©F | F ; F | F ∗ | F until F | F proj F

We introduce a satisfaction relation, |=, to interpret PITL1 formulas over intervals:
σ |= F denotes that σ satisfies (or is a model for) the formula F . The reader familiar
with ITL will notice that our definitions for star and projection are slightly different
from those originally provided by Moszkowski (see e.g. [MOS 86], [MOS 00a]). It
turns out that both semantics are equivalent: they describe exactly the same models.
However, the translation to WS1S is very much simplified if we rule out empty itera-
tions. We prove the equivalence only for star (see Theorem 10 in appendix B), but the
proof for projection can be easily derived in the same way. We define the semantics of
PITL1 by induction over the structure of formulas, as follows (v ∈ A, P,Q are PITL1

formulas):

σ |= v iff v ∈ σ0

σ 2 False

σ |= ¬P iff σ 2 P

σ |= P ∨Q iff σ |= P ∨ σ |= Q

σ |= empty iff |σ| = 0

σ |= ©P iff |σ| > 0 ∧ (σ)1 |= P

σ |= P ; Q iff ∃k ∈ N. k ≤ |σ| ∧ [σ]k |= P ∧ (σ)k |= Q

σ |= P ∗ iff |σ| = 0 ∨ ∃k0, k1, . . . , km ∈ N.
k0 = 0 < k1 < . . . < km = |σ| ∧
∀i ∈ N. 0 ≤ i < m⇒ ([σ]ki+1)ki |= P
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σ |= P until Q iff ∃k ∈ N. k ≤ |σ| ∧
(σ)k |= Q ∧ ∀j ∈ N. j < k ⇒ (σ)j |= P

σ |= P proj Q iff |σ| = 0 ∨ ∃k0, k1, . . . , km ∈ N.
k0 = 0 < k1 < . . . < km = |σ| ∧
∀i ∈ N. 0 ≤ i < m⇒ ([σ]ki+1)ki |= P ∧
〈σk0 , σk1 , . . . , σkm

〉 |= Q

Figs. 1 to 5 will help the reader understand the behaviour of PITL1 operators.
©P holds over σ if P holds over the suffix (σ)1 (Fig. 1). P ; Q holds over σ if a
0 ≤ k ≤ |σ| can be found s.t. P holds over the prefix [σ]k and Q holds over the
suffix (σ)k (Fig. 2). P ∗ holds over σ if either σ is an empty interval or a sequence
0 = k0 < k1 < . . . < km ≤ |σ| can be found s.t. it partitions σ into a sequence
of subintervals ([σ]ki+1)ki , 0 ≤ i < m and P holds over each subinterval (Fig. 3).
P until Q holds over σ if 0 ≤ k ≤ |σ| can be found s.t. Q holds over the suffix (σ)k

and P holds in every suffix (σ)j , j < k (Fig. 4). P proj Q holds over σ if either σ
is an empty interval or a sequence 0 = k0 < k1 < . . . < km ≤ |σ| can be found
s.t. it partitions σ into a sequence of subintervals ([σ]ki+1)ki , 0 ≤ i < m, P holds
over each subinterval and Q holds on the interval formed by “glueing” together these
subintervals’ end points, i.e. over σ′ = 〈σk0 , σk1 , . . . , σkm

〉 (Fig. 5).

© P
︷ ︸︸ ︷

P
︷ ︸︸ ︷

σ0 σ1 σ|σ|
s s . . . s

Figure 1. The next operator

P ; Q
︷ ︸︸ ︷

P
︷ ︸︸ ︷

σ0 σi σ|σ|
s . . . s . . . s

︸ ︷︷ ︸

Q

Figure 2. The chop operator

Other commonly-used operators can be derived from the basic set, as shown below
(P,Q are PITL1 formulas, n ∈ N):
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P∗
︷ ︸︸ ︷

P
︷ ︸︸ ︷

P
︷ ︸︸ ︷

. . .

P
︷ ︸︸ ︷

σ0=k0 σk1 σk2 σkm−1
σ|σ|=km

s . . . s . . . s . . . s . . . s

Figure 3. The star operator

P until Q
︷ ︸︸ ︷

P
︷ ︸︸ ︷

... P
︷ ︸︸ ︷

... P
︷ ︸︸ ︷

σ0 σk σi−1 σi σ|σ|
s . . . s . . . s s . . . s

︸ ︷︷ ︸

Q

Figure 4. The until operator

P proj Q
︷ ︸︸ ︷

σ0=k0 σk1 σk2 σkm−1
σ|σ|=km

s s s s s. . . . . . . . .

︸ ︷︷ ︸

P

︸ ︷︷ ︸

P

︸ ︷︷ ︸

P

σk0 σk1 σk2 σkm−1
σ|σ|=km

s s s . . . s s

︸ ︷︷ ︸

Q
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Figure 5. The projection operator
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P ∧Q ≡ ¬(¬P ∨ ¬Q) (conjunction)
P ⇒ Q ≡ ¬P ∨Q (implication)
P ⇔ Q ≡ (P ⇒ Q) ∧ (Q⇒ P ) (equivalence)
3 P ≡ True ; P (eventually)
2 P ≡ ¬3 ¬P (always)
halt(P ) ≡ 2(P ⇔ empty) (halt)
len(n) ≡ ©©· · ·©

︸ ︷︷ ︸

n

empty (length)

3. Weak Monadic Second-order Theory of One Successor (WS1S) and MONA

This section will give the necessary background on WS1S and MONA, mainly
taken from [KLA 01]. WS1S [BÜC 60, ELG 61, THO 90] is a decidable logic with
an interpretation tied to arithmetic. WS1S formulas are constructed over first-order
and second-order variables. Let φ denote a WS1S formula, p, q two first-order vari-
ables and X a second-order variable. The syntax of WS1S formulas is given by the
following set of operators:

φ ::= p = q + 1 | p ∈ X | ¬φ | φ ∨ φ | ∃p. φ | ∃X. φ

WS1S is interpreted over N; first-order variables range over natural numbers,
second-order variables range over finite sets of natural numbers and operators =,+, ∈,
¬, ∨ and ∃ have the classic interpretation. Other operators can be derived from these,
which are shown below1 (φ, ψ denote WS1S formulas, 0, n ∈ N, p, q, r, z0, . . . , zn
denote first-order variables, and X,Y,Z denote second-order variables):

φ ∧ ψ ≡ ¬(¬φ ∨ ¬ψ)
φ⇒ ψ ≡ ¬φ ∨ ψ
φ⇔ ψ ≡ (φ⇒ ψ) ∧ (ψ ⇒ φ)
∀p. φ ≡ ¬∃p. ¬φ
∀X. φ ≡ ¬∃X. ¬φ
p = 0 ≡ ¬∃q. p = q + 1
p = n ≡ ∃z0, . . . , zn. z0 = 0 ∧ zn = p ∧

∧

0≤i<n zi+1 = zi + 1

p = q ≡ ∃r. r = p+ 1 ∧ r = q + 1
p+ n ∈ X ≡ ∃z0, . . . , zn. z0 = p ∧ zn ∈ X ∧

∧

0≤i<n zi+1 = zi + 1

p ≤ q ≡ ∀X. q ∈ X ∧ (∀z. z + 1 ∈ X ⇒ z ∈ X) ⇒ p ∈ X
p < q ≡ p ≤ q ∧ ¬(p = q)
X ⊆ Y ≡ ∀p. p ∈ X ⇒ p ∈ Y
Z = X\Y ≡ ∀p. p ∈ Z ⇒ p ∈ X ∧ ¬(p ∈ Y )
X = Y + 1 ≡ ∀p. p ∈ Y ⇔ p+ 1 ∈ X

1. For convenience, the following sections will refer to this extended set simply as WS1S.
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MONA [KLA 01] implements a decision procedure for WS1S based on a trans-
lation from WS1S formulas to DFA (Deterministic Finite Automaton) [BÜC 60,
ELG 61]. The syntax of MONA’s input specification language is that of WS1S aug-
mented with syntactic sugar, that is, no expressive power is added. A MONA specifi-
cation consists of a declaration section and a formula section. Boolean, first-order and
second-order variables can be declared. Predicates can also be declared, which instan-
tiate a given formula with actual parameters. Formulas are built using the usual logic
connectives, such as ∼ (negation), & (conjunction), | (disjunction) and => (implica-
tion). Expressions on first order variables include relational operators (e.g. t1>=t2),
addition of constant values (t+n) and quantification (ex1 t:ϕ, all1 t:ϕ). Ex-
pressions on second-order variables include min T, max T (minimum and maximum
element in a set), t in T (membership), T1 sub T2 (set inclusion), quantification
(ex2 T:ϕ, all2 T:ϕ) and other typical set operations like intersection, difference
and union. MONA translates a WS1S formula to a minimum DFA that represents the
set of satisfying interpretations. Models (counterexamples) of the formula are then ex-
pressed by paths from the initial state to an accepting (rejecting) state; MONA returns
only the shortest model (counterexample). For example, MONA returns X={0,1,2}
and Y={1,2,3} as a model for the following formula (X={} and Y={} are respectively
returned as a counterexample):

var2 X,Y;

X={0,1,3} & all1 k:k in X => k+1 in Y;

A conceptual translation from WS1S formulas to DFA [BÜC 60, ELG 61] can be
explained in terms of the following simplified WS1S syntax, which do not include
first-order variables. It can be shown that this language is as expressive as the original
set of operators (φ denotes a WS1S formula, X,Y,Z denote second-order variables).

φ ::= ¬φ | φ ∧ φ | ∃X. φ | X ⊆ Y | X = Y \Z | X = Y + 1

A string interpretation can be given to finite sets of natural numbers; to the finite
setX corresponds any string s = s0s1 . . . sn ∈ {0, 1}∗ (where si, 0 ≤ i ≤ n is called
a letter) such that

∀i. 0 ≤ i ≤ n ∧ i ∈ X ⇔ si = 1

For example, the set X = {0, 1, 3} can be interpreted as the string 1101 (and also
as any string s ∈ 11010∗). The semantics are then extended such that a formula with
k variables is interpreted over strings w ∈ ({0, 1}k)∗. For example, X = {0, 1, 2}
and Y = {1, 2, 3} are interpreted as the string:

X
Y

(
1
0

) (
1
1

) (
1
1

) (
0
1

)

0 1 2 3
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It is assumed that every variable in the formula is assigned a unique index
1, 2, . . . , k. Let Xi denote the variable with index i, 0 ≤ i ≤ k. The projection of a
string w onto Xi is called the Xi-track of w, and w[M/Xi] denotes the shortest string
that interprets all variables Xj where j 6= i as w does, but interprets Xi as the set
M . A string determines an interpretation w(Xi) of Xi defined as the finite set {j| the
j-th. bit in the Xi-track is 1}. Satisfiability is then defined as follows:

w |= ¬φ iff w 2 φ
w |= φ ∧ ψ iff w |= φ and w |= ψ
w |= ∃Xi. φ iff exists a finite M ⊆ N s.t. w[M/Xi] |= φ
w |= Xi ⊆ Xj iff w(Xi) ⊆ w(Xj)
w |= Xi = Xj\Xk iff w(Xi) = w(Xj)\w(Xk)
w |= Xi = Xj + 1 iff w(Xi) = {j + 1 | j ∈ w(Xj)}

The language L(φ) is then defined as the set of satisfying strings L(φ) = {w |w |=
φ}. A minimum DFA Aφ s.t. L(Aφ) = L(φ) is constructed inductively on the struc-
ture of φ: basic, “hand-crafted" automata correspond to atomic formulas, and au-
tomata operations are applied to translate composite formulas. Automata defining
languages L(P ⊆ Q), L(P = Q\R) and L(P = Q + 1), where P , Q and R are
unconstrained second-order variables, are shown in Fig. 6. In these automata, the ini-
tial state is also the only accepting state (denoted by a double circle). Also, and just
for notational convenience, some transitions are labelled with multiple letters and the
symbol x in a letter stands for a component which can be either 0 or 1.

0
0

1
0

P
Q

P
Q
R

0
0
0

1
1
0

0
x
1x

1
x
x

1
0
0

0
1
0

1
x
1

x
x
x

0
0

1
0

P
Q

0
1

1
x

0
x

x
xa) b) c)

,,

,,,

1
1

Figure 6. Automata for a) L(P ⊆ Q), b) L(P = Q\R) and c) L(P = Q+ 1)

Negation (¬φ) corresponds to language complementation (L(φ)) and thus to au-
tomata complementation ({Aφ). This is a linear-time operation which just flips ac-
cepting and rejecting states.

L(¬φ) = L(φ) = L(A¬φ) = L({Aφ)

Conjunction (φ ∧ ψ) corresponds to language intersection (L(Aφ)∩L(Aψ)) and
thus to automata product (Aφ × Aψ); where only the reachable product states are
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calculated, i.e. pairs of the form (sφ, sψ) where sφ is a state of Aφ and sψ is a state of
Aψ . This operation may cause a quadratic increase in the automaton size.

L(φ ∧ ψ) = L(Aφ) ∩ L(Aψ) = L(Aφ∧ψ) = L(Aφ ×Aψ)

Second-order existential quantification (∃Xi. φ) corresponds to an application of
a right-quotient operation to L(φ) followed by a projection operation for Xi over the
resulting automaton. These language-operations are defined as follows, where L/L′

denotes the right-quotient of a language L with a language L′ and Ei(L) denotes the
projection of L for Xi.

L/L′ = {w | ∃u ∈ L′. wu ∈ L}
Ei(L) = {w | ∃w′ ∈ L. w is identical to w′ except for the Xi-track}
Li = {w ∈ ({0, 1}k)∗ | the Xj-track w is of the form 0∗ for j 6= i}
L(∃Xi. φ) = Ei(L(φ)/Li)

Intuitively, A∃Xi. φ acts as Aφ except that it is allowed to “guess” the bits of the
Xi-track. This is obtained by a projection operation on Aφ which results in a non-
deterministic automaton which has to be determinised and minimised. However, be-
fore projection is applied a right-quotient operation transforms Aφ so as to accept just
minimal-length strings, i.e. to remove the (0k)∗-suffix (remember, e.g. that models for
X = {0, 1, 3} are in 11010∗, with the minimal-length model being 1101). Quantifica-
tion may cause an exponential increase in the automaton size, due to determinisation.

Meyer [MEY 75] showed that the time and space for translating WS1S formulas to
automata, in the worst case, is bounded from below by a stack of exponentials whose
height is proportional to the depth of quantifier alternation (∀X. ∃Y. φ). In turn, the
translation of alternating quantifiers relates to automata determinisation and comple-
mentation, which can produce an exponential blow-up (∀X. ∃Y. φ ≡ ¬∃X. ¬∃Y. φ).
For example, given ||Aφ||, the size of the automaton corresponding to the WS1S for-
mula φ, the following holds;

if ||Aφ|| = n then ||A¬∃Y. φ|| ≤ 2n and ||A¬∃X. ¬∃Y. φ|| ≤ 22
n

MONA implements the conceptual translation discussed above. A number of syn-
tactic transformations are first applied to a formula in MONA’s input specification
language to reduce it to a simplified language (equivalent to the WS1S simplified
language presented before), where some practical issues such as the interpretation of
first-order variables as second-order variables, and the interpretation of boolean vari-
ables are considered. For example, the formula φ ≡ p = 0 (where p denotes a first-
order variable), could be handled as φ′ ≡ P = {0} (where P denotes a second-order
variable), but then the formulas ¬φ and ¬φ′ will lead to different representations (a
property expressing that P is a singleton should be conjoined to ¬φ′). MONA encodes
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first-order values not as singletons but as non-empty sets (the first-order value corre-
sponds to the smallest element in this set), which is more efficient than the singleton-
set approach. Details about these and other issues in the actual translation process can
be found in [KLA 01].

Despite the non-elementary complexity of the decision problem, MONA has been
applied in many non-trivial situations such as controller synthesis [SAN 98], protocol
verification [SMI 00] and theorem proving [OWR 00], [BAS 00] (more links can be
found in [KLA 01]). MONA’s successful applications can be explained by optimisa-
tions performed during the translation process as well as by the fact that the decision
procedure is non-elementary in the worst-case, which may not arise so frequently in
practice. Optimisations include the use of BDDs to efficiently implement automata
(particularly, to provide an efficient implementation of the automaton alphabet and
transition function), formula reductions and other techniques to simplify and reuse
computations [KLA 02].

4. Interpreting PITL in WS1S

PITL intervals are defined as sets of propositions. From a different point of view
(very much influenced by the string-based interpretation of WS1S), we can see propo-
sitions as sets of interval states: a state is included in the set if and only if the proposi-
tion is true in that state. Formally, for a given interval σ and a proposition v ∈ A, we
define Set(v, σ) = {i | v ∈ σi}. The following example illustrates this interpretation
(Si, S ⊆ A interprets state σi as a set of propositions).

EXAMPLE 1. — For A = {a, b}, σ = 〈{a}0, {a, b}1, {a, b}2, {b}3, {b}4〉

a

b

(
1
0

) (
1
1

) (
1
1

) (
0
1

) (
0
1

)

σ0 σ1 σ2 σ3 σ4

Set(a, σ) = { 0, 1, 2 }
Set(b, σ) = { 1, 2, 3, 4 }

2

While this interpretation over sets is sufficient to encode intervals, we will add
information representing the current subinterval under consideration. This is very
convenient for translating PITL to WS1S formulas, because the semantics of a given
PITL formula F over σ is recursively defined in terms of the semantics of subformulas
in F over subintervals of σ (where the subintervals are selected by the temporal oper-
ators in F ). Subintervals of σ = 〈σ0, . . . , σ|σ|〉 will be represented by pairs (i, n) of
state indices, 0 ≤ i ≤ n ≤ |σ|. This approach has been used before in other temporal
logics, see e.g. [MAN 95]. Formally, we can interpret intervals in WS1S as follows.
Let V = {V1, . . . , Vm} denote a set of WS1S second-order variables, and FN the set
of all finite sets of natural numbers.
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DEFINITION 2. — A C-structure is a tuple 〈i, n,P〉 where i, n ∈ N, i ≤ n and
P = {(V1, S1), . . . , (Vm, Sm)} s.t. Sj ∈ FN, 1 ≤ j ≤ m.

A C-structure 〈i, n,P〉 is intended to model the subinterval [(σ)i]n, 0 ≤ i ≤ n ≤
|σ| where P is a set of pairs denoting the atomic propositions in A = {v1, . . . , vm}
encoded as second-order variables in V = {V1, . . . , Vm}; and the states where they
are contained encoded as finite sets of natural numbers. Let C be the set of all C-
structures. We define a mapping Θ : I → C between intervals and C-structures as
follows.

DEFINITION 3. — Θ(σ) = 〈0, |σ|,P〉 where
P = {(Vi, Set(vi, σ)) | vi ∈ A, Vi ∈ V, 1 ≤ i ≤ m}.

EXAMPLE 4. — For A = {a, b}, V = {A,B}, and
σ = 〈{a}0, {a, b}1, {a, b}2, {b}3, {b}4〉, the corresponding mapping is given by
Θ(σ) = 〈0, 4, {(A, {0, 1, 2}), (B, {1, 2, 3, 4)}〉 2

We first define PITL0, a fragment of PITL1 which does not consider projection.
Formulas in PITL0 can be interpreted over C-structures as follows. Notice that this
interpretation, while somehow free in its notation, is basically using operators which
can be expressed in WS1S (see Section 3).

〈i, n,P〉 |=C v iff (V, S) ∈ P ∧ i ∈ S

〈i, n,P〉 2C False

〈i, n,P〉 |=C ¬P iff 〈i, n,P〉 2C P

〈i, n,P〉 |=C ©P iff i < n ∧ 〈i+ 1, n,P〉 |=C P

〈i, n,P〉 |=C P ∨Q iff 〈i, n,P〉 |=C P ∨ 〈i, n,P〉 |=C Q

〈i, n,P〉 |=C empty iff i = n

〈i, n,P〉 |=C P ; Q iff ∃k. i ≤ k ≤ n ∧ 〈i, k,P〉 |=C P ∧
〈k, n,P〉 |=C Q

〈i, n,P〉 |=C P
∗ iff ∃k0, k1, . . . , km. i = k0 < k1 < . . . < km = n

∧ ∀j. 0 ≤ j < m⇒ 〈kj , kj+1,P〉 |=C P

〈i, n,P〉 |=C P until Q iff ∃k. i ≤ k ≤ n ∧ 〈k, n,P〉 |=C Q ∧
∀j. i ≤ j < k ⇒ 〈j, n,P〉 |=C P

Satisfaction of PITL0 formulas over C-structures can be shown to be necessary and
sufficient w.r.t. satisfaction over intervals, for both describe exactly the same models
(see Theorem 12 in appendix B). Formally,
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For any σ ∈ I and for any PITL0 formula F , Θ(σ) |=C F iff σ |= F

The projection operator, however, needs a more expressive structure to be inter-
preted to WS1S. Basically, Θ(σ) is not enough to interpret a formula like P proj Q
because Q has to be (recursively) interpreted in a possibly non-continuous subinter-
val of σ, i.e. the interval which results from “glueing” together only those states of σ
which bound the iterations that satisfy P . So a pair of indices (i, n) no longer suffices
to encode this new interval; not all state indices between i and n are always included
in it. We call this a sparse interval. To model this kind of interval, we will extend a
C-structure with a set M which represents only those states of σ that must be taken
into account to interpret the current subformula.

DEFINITION 5. — A C′-structure is a tuple 〈i, n,M,P〉 where M ∈ FN, i, n ∈ M ,
i ≤ n, and P = {(V1, S1), . . . , (Vm, Sm)} s.t. Sj ∈ FN, 1 ≤ j ≤ m.

A C′-structure 〈i, n,M,P〉 is then intended to model the sparse subinterval
σ′ = 〈σt0 , . . . , σts〉, where i = t0 < t1 < . . . < ts = n, {t0, t1, . . . , ts} =
M ∩{i, . . . , n}. For example, Fig. 7 shows that subinterval ([σ]7)2 is a model for for-
mula P proj Q, provided both ([σ]7)2 |= P ∗ and 〈σ2, σ4, σ6, σ7〉 |= Q hold, where
{σ2, σ4, σ6, σ7} is the set of states which bound every iteration of P in ([σ]7)2. Notice
that σ′ = 〈σ2, σ4, σ6, σ7〉, the sparse subinterval where Q is required to hold, is built
from those states which bound the subintervals where iterations of P hold. Assuming
that P encodes the propositions in σ, formulas P proj Q and Q are interpreted over
the following C′-structures:

〈2, 7, {2, 3, 4, 5, 6, 7},P〉 |=C′ P proj Q
〈2, 7, {2, 4, 6, 7},P〉 |=C′ Q

P proj Q

︷ ︸︸ ︷

σ0 σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8

s s s s s s s s s

︸ ︷︷ ︸

P

︸ ︷︷ ︸

P

︸ ︷︷ ︸

P
︸ ︷︷ ︸

P∗

s s s s

σ2 σ4 σ6 σ7

︸ ︷︷ ︸

Q

Figure 7. The projection operator and sparse subintervals

Let C′ be the set of all C′-structures. We define a mapping Θ′ : I → C′ from
intervals to C′-structures as follows:

DEFINITION 6. — Θ′(σ) = 〈0, |σ|,M,P〉 where ∀i. i ∈ M ⇔ 0 ≤ i ≤ |σ|, and
P = {(Vj , Set(vj , σ)) | vj ∈ A, Vj ∈ V, 1 ≤ j ≤ m}.
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We now define the satisfaction relation |=C′ for formulas in PITL1 as follows:

〈i, n,M,P〉 |=C′ v iff (V, S) ∈ P ∧ i ∈ S

〈i, n,M,P〉 2C′ False

〈i, n,M,P〉 |=C′ ¬P iff 〈i, n,M,P〉 2C′ P

〈i, n,M,P〉 |=C′
©P iff ∃j ∈M. cons(M, i, j) ∧

〈j, n,M,P〉 |=C′ P

〈i, n,M,P〉 |=C′ P ∨Q iff 〈i, n,M,P〉 |=C′ P ∨ 〈i, n,M,P〉 |=C′ Q

〈i, n,M,P〉 |=C′ empty iff i = n

〈i, n,M,P〉 |=C′ P ; Q iff ∃k ∈M. i ≤ k ≤ n ∧
〈i, k,M,P〉 |=C′ P ∧ 〈k, n,M,P〉 |=C′ Q

〈i, n,M,P〉 |=C′ P until Q iff ∃k ∈M. i ≤ k ≤ n ∧
〈k, n,M,P〉 |=C′ Q ∧
∀j ∈M. i ≤ j < k ⇒ 〈j, n,M,P〉 |=C′ P

〈i, n,M,P〉 |=C′ P proj Q iff i = n ∨ ∃M ′ ⊆M.
M ′ = {k0, k1, . . . , km} ∧
i = k0 < k1 < . . . < km = n ∧
∀j. 0 ≤ j < m⇒ 〈kj , kj+1,M,P〉 |=C′ P
∧ 〈i, n,M ′,P〉 |=C′ Q

where predicate cons(S, a, b), S ∈ FN, a, b ∈ N is defined as follows:

cons(S, a, b) ≡ a, b ∈ S ∧ a < b ∧ ¬∃c ∈ C. a < c < b

Satisfaction of PITL1 formulas over C′-structures can be shown to be necessary and
sufficient w.r.t. satisfaction over intervals, for both describe exactly the same models
(see theorem 14 in appendix B). Formally,

For any σ ∈ I and for any PITL1 formula F , Θ′(σ) |=C′ F iff σ |= F

It is worth saying that C′-structures interpret any formula over a set M , however
this is only compulsory for projected subformulas. For example, in P proj Q only
subformula Q is required to be interpreted over sparse sets, and so P should be in-
terpreted under a simpler semantics (as it translates itself to a less complex WS1S
formula). The translation algorithm will then apply the proper (and simplest) interpre-
tation to PITL1 subformulas in every recursive step, therefore returning the simplest
WS1S formula possible (according to this strategy).
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5. Translating PITL to MONA

A translation algorithm is obtained by just applying, for every different PITL con-
struct, the semantic mapping we have derived in the previous section. First we will
present the resulting MONA specifications obtained from the simplest semantics (C-
structures) and then we will show the necessary changes to handle projection. Let F
be a PITL0 formula with atomic propositions v1, . . . , vm. Then, the translation will
produce a MONA specification (WS1S formula) PF with V1, . . . , Vm as correspond-
ing free second-order variables, plus a first-order variable n to encode the length of the
resulting interval (i.e. intervals which will be represent either models or counterexam-
ples of F ). The program PF can be thought of as the result of the following steps
(which is just an outline of our actual implementation). We use output(S) to denote
the assertion of a MONA statement S in the resulting program file.

1. output(var1 n; var2 V1, . . . , Vm;);
2. output(pred cons(var2 S, var1 a,b)= a in S & b in S & a<b &

∼ ex1 c:c in S & a<c & c<b;);
3. output(toWS1S(0, n, F ))

Table 1 defines the function toWS1S(i, n, F ) which translates a PITL0 formula F
to its corresponding MONA formula.

Table 1. Translating PITL0 to MONA

F toWS1S(i, n, F )

vj i <= n & i in Vj
False false

¬P ∼ toWS1S(i, n, P )
©P i < n & toWS1S(i+ 1, n, P )
P ∨Q toWS1S(i, n, P ) | toWS1S(i, n,Q)
empty i = n
P ; Q ex1 k:k >= i & k <= n &

toWS1S(i, k, P ) & toWS1S(k, n,Q)
P ∗ ex2 K:max K = n & min K = i &

all1 k1,k2:cons(K,k1,k2) => toWS1S(k1, k2, P )
P until Q ex1 k:(k >= i & k <= n & toWS1S(k, n,Q) &

all1 j:(j >= i & j < k => toWS1S(j, n, P )))

Arguments i and n are meant to hold the MONA expressions denoting the current
interval state and the current interval length, respectively. In other words, they corre-
spond to indices i and n in 〈i, n,P〉. The resemblance with the semantic definitions
can be easily observed, as illustrated by the following example.

EXAMPLE 7. — A derivation of the WS1S/MONA formula corresponding to the
PITL1 formula ©A ; ©B is shown below:
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→ toWS1S(0, n,©A ; ©B)
→ ex1 k:k>=0 & k<=n & toWS1S(0, k,©A) & toWS1S(k, n,©B)
→ ex1 k:k>=0 & k<=n & 0<k & toWS1S(1, k, A) &

k<n & toWS1S(k + 1, n, B)
→ ex1 k:k>=0 & k<=n & 0<k & 1 in A & k<n & k+1 in B

Then, the MONA specification corresponding to ©A ; ©B is as follows:

var1 n;

var2 A,B;

pred cons(var2 S, var1 a,b) = a in S & b in S & a<b &

∼ ex1 c:c in S & a<c & c<b;

ex1 k:k>=0 & k<=n & 0<k & 1 in A & k<n & k+1 in B;

2

In order to handle projection, and consequently to represent a C ′-structure, we add
a new argument to toWS1S() to model the set of natural numbers M in 〈i, n,M,P〉.
The argument M will not be declared as a free second-order variable in the program,
but rather it will appear existentially quantified when a formula under the scope of
projection is translated. Consequently, the translation function itself is modified ac-
cording to the definitions given on C ′-structures. Table 2 shows the translation of chop
and projection, the translation of other operators in PITL1 are obtained similarly.

Table 2. Translating PITL1 to MONA: chop and projection

F toWS1S(i, n,M,F )

P ; Q ex1 k:k in M & k >= i & k <= n &

toWS1S(i, k,M, P ) & toWS1S(k, n,M,Q)
P proj Q ex2 K:K sub M & min K = i & max K = n &

(all1 k1,k2:cons(K,k1,k2) => toWS1S(k1, k2,M, P )) &

toWS1S(i, n, K, Q)

6. PITL with past operators

This section shows how past operators such as chop in the past, since and previ-
ous can be encoded in WS1S. These operators are convenient for expressing proper-
ties about past computations, making PITL a language where a wider class of state-
ments can be naturally described and verified. These operators were first proposed by
Duan to extend ITL [DUA 96]. An axiomatisation and examples of the application of
these operators in multimedia are also given in [BOW 03a]. In particular, [BOW 03a]
presents chop in the past as a primitive operator from which other past operators (e.g.
since and previous) can be derived (although the logic they use, MEXITL, handles
predicates and therefore is more expressive than PITL).
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The interpretation of past operators in PITL requires not only the subinterval
under consideration (as is sufficient for future operators), but also the sequence of
states which have been passed through. Therefore, the inclusion of past operators
in the language forces the semantics of all operators to be re-defined in terms of a
pair (σ, j), i.e. the original interval and the current state. State j, then, divides σ
into a current subinterval (σ)j and a past history [σ]j , both now accessible in the
operator definitions. Next we present the interpretation of past operators in ITL (this
is illustrated in Fig. 8). The interpretation of future operators on (σ, j) (shown in
appendix A) can be easily obtained from the ones given in section 2.

(σ, j) |= P
∼
; Q iff ∃k ∈ N. 0 ≤ k ≤ j ∧ (σ, k) |= P ∧

((σ)k, j − k) |= Q

(σ, j) |= P S Q iff ∃k ∈ N. 0 ≤ k ≤ j ∧ (σ, k) |= Q ∧
∀r ∈ N. k < r ≤ j ⇒ (σ, r) |= P

(σ, j) |= ©- P iff j > 0 ∧ (σ, j − 1) |= P

(a) (b) (c)
P

∼

; Q
︷ ︸︸ ︷

σ0 σk σj σ|σ|
s. . . s. . . | . . . s

s. . . | . . . s

︸ ︷︷ ︸

P

s. . . | . . . s

︸ ︷︷ ︸

Q

P S Q
︷ ︸︸ ︷

σ0 σk σj σ|σ|
s. . . s. . . | . . . s

s. . . | . . . s

︸ ︷︷ ︸

Q

s |. . .| s

P P· · ·

©- P
︷ ︸︸ ︷

σ0 σj−1 σj σ|σ|
s. . . s | . . . s

s. . . | . . . s

︸ ︷︷ ︸

P

Figure 8. Past operators: chop in the past (a), since (b) and previous (c)

P
∼
; Q (Fig. 8a) is satisfied by an interval such that 1) P holds over the larger

interval resulting from moving the start of the interval (denoted by |) into the past,
and 2) Q holds over the original interval according to a past history that is truncated
at the start of the interval over which P holds. P S Q (Fig. 8b) is satisfied by an
interval such that either 1)Q holds over the current interval or 2)Q holds over a larger
interval resulting from moving the start of the interval into the past and P holds over
every suffix of this larger interval which starts up to the current state. Finally, ©- P
(Fig. 8c) is satisfied by an interval such that P holds over a larger interval resulting
from moving the start of the interval one state into the past.
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Consequently with (σ, j), the interpretation of past operators in WS1S requires
C′-structures to include a new parameter.

DEFINITION 8. — A C′′-structure is a tuple 〈i, j, n,M,P〉 where M ∈ FN, i, j, n ∈
M , i ≤ j ≤ n, and P = {(V1, S1), . . . , (Vm, Sm)} s.t. Sk ∈ FN, 1 ≤ k ≤ m.

A C′′-structure 〈i, j, n,M,P〉 is then intended to model the sparse subinterval
(σt0 , . . . , σts , j), where i = t0 < t1 < . . . < ts = n, {t0, t1, . . . , ts} = M ∩
{i, . . . , n}. Let C′′ be the set of all C′′-structures. The mapping between intervals and
C′′-structures, Θ′′ : I → C′′ is defined as follows:

DEFINITION 9. — Θ′′(σ) = 〈0, 0, |σ|,M,P〉 where ∀i. i ∈ M ⇔ 0 ≤ i ≤ |σ|, and
P = {(Vj , Set(vj , σ)) | vj ∈ A, Vj ∈ V, 1 ≤ j ≤ m}.

The satisfaction relation |=C′′ for past operators is shown below. Since future
operators do not depend on past states, the corresponding satisfaction relation is just
a straightforward generalisation of |=C′ (presented in section 4). Thus, as an example
amongst the future operators, we just show the relation for chop (see appendix A
for definitions of all future operators over intervals with past history). The set M ,
inherited from C′-structures to handle the translation of formulas under the scope of
projection, is also necessary here because the past history can also be sparse as a
consequence of past operators under projection.

〈i, j, n,M,P〉 |=C′′ P ; Q iff ∃k ∈M. j ≤ k ≤ n ∧
〈i, j, k,M,P〉 |=C′′ P ∧
〈i, k, n,M,P〉 |=C′′ Q

〈i, j, n,M,P〉 |=C′′ P
∼
; Q iff ∃k ∈M. i ≤ k ≤ j ∧

〈i, k, n,M,P〉 |=C′′ P ∧
〈k, j, n,M,P〉 |=C′′ Q

〈i, j, n,M,P〉 |=C′′ P S Q iff ∃k ∈M. i ≤ k ≤ j ∧
〈i, k, n,M,P〉 |=C′′ Q ∧
∀r ∈M. k < r ≤ j ⇒ 〈i, r, n,M,P〉 |=C′′ P

〈i, j, n,M,P〉 |=C′′
©- P iff cons(M,k, j) ∧ 〈i, k, n,M,P〉 |=C′′ P

It can be shown that this interpretation is correct in the following sense (see Theo-
rem 16 in appendix B):

For any σ ∈ I and for any PITL formula F , Θ′′(σ) |=C′′ F iff (σ, 0) |= F

Notice that the translation function toWS1S() now includes a new parameter j,
initially set to 0 (i.e. the current state is the first state of the interval, i = j = 0).
Effectively, then, the translation function encodes the three indices i, j, n used in C ′′-
structures. Again, and as previously mentioned in Section 5 for the translation of
PITL1, neither j norM will be declared as free variables in the resulting MONA spec-
ification; they will appear instead as quantified variables. Table 3 shows the translation
of past operators.
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Table 3. Translating PITL to MONA: past operators

F toWS1S(i, j, n,M,F )

P
∼
; Q ex1 k:k in M & k >= i & k <= j &

toWS1S(i, k, n,M,P ) & toWS1S(k, j, n,M,Q)
P S Q ex1 k:k in M & i <= k <= j &

toWS1S(i, k, n,M,Q) &

all1 r:r in M & k < r <= j => toWS1S(i, r, n,M,P )
©- P cons(M,k,j) & toWS1S(i, k, n,M,P )

We have sketched an algorithm which translates a given PITL formula F into an
equivalent MONA specification PF (we have implemented this algorithm in our tool
PITL2MONA, described in Section 8). We will now define this equivalence in formal
terms. Let WF be the WS1S formula represented by the MONA specification PF .
We can relate the models of WF (as valuations for the free variables in WF ) and the
models of F (as PITL intervals) as follows. Let (n, S1, . . . , Sm) |=WS1S WF denote
a model for WF , where n ∈ N and S1, . . . , Sm, Si ∈ FN, 1 ≤ i ≤ m, denote a
valuation for the free variables n, V1, . . . , Vm in WF . Then the following holds:

(n, S1, . . . , Sm) |=WS1S WF iff

∃σ ∈ I. |σ| = n ∧ σ |= F ∧ ∀σ′. (σ′ |= F ⇒ n ≤ |σ′|) ∧
Θ′′(σ) = 〈0, 0, n,M,P〉,
where ∀i. i ∈M ⇔ 0 ≤ i ≤ n and P = {(V1, S1), . . . , (Vm, Sm)}

In other words, when MONA analyses WF it produces an instantiation for its free
variables which represents the shortest model for F . Counterexamples for WF and F
can be related in a similar way:

(n, S1, . . . , Sm) 2WS1S WF iff

∃σ ∈ I. |σ| = n ∧ σ 2 F ∧ ∀σ′. (σ′
2 F ⇒ n ≤ |σ′|) ∧

Θ′′(σ) = 〈0, 0, n,M,P〉,
where ∀i. i ∈M ⇔ 0 ≤ i ≤ n and P = {(V1, S1), . . . , (Vm, Sm)}

We will not offer a proof of these claims in this paper. However, it is not hard
to show that their correctness directly relies on the correctness of the semantic trans-
lation from PITL to WS1S formulas (Theorem 16, appendix B), and the fact that
MONA returns the shortest model (counterexample) for the analysed WS1S formula
(as explained in Section 3).

7. Examples

This section illustrates the use of PITL and its decision procedure in some canoni-
cal examples, i.e. they represent commonly-found problems in verification of practical



PITL2MONA 127

applications. Also, this will give the reader an idea of the strengths and limitations of
the logic and the implementation of its decision procedure in MONA.

7.1. 2-Dining Philosophers

Here we show a PITL formalisation for this well-known multiple-resource allo-
cation problem. Every philosopher alternates between a thinking phase and a phase
in which he becomes hungry and wishes to eat. We consider only two philosophers,
Aristotle and Plato which are sharing a single set of cutlery, i.e. one fork and one
knife. Nevertheless, there is no intrinsic reason why the specification could not be
enlarged to more philosophers. Formulas describe the behaviour of philosophers as
the set of possible allocations of fork and knife, and the moments when they are
not thinking, i.e. when philosophers are either trying to pick up the cutlery (they
are holding only one piece of cutlery and are waiting for the other to start eating)
or eating (when philosophers are holding both the fork and the knife). Propositions
not_thinka and not_thinkp denote that Aristotle, respectively Plato, are either trying
to eat (trying to pick up both the fork and the knife), or already eating. Proposition af
(ak) denotes that Aristotle is currently holding the fork (knife). Similarly, pf and pk
denote the same property for Plato. We use operators ∧, ⇒, 3 and 2 as defined in
section 2.

1) From time to time, philosophers stop thinking:

F1 ≡ 23not_thinka ∧ 23not_thinkp

Because of PITL’s finite models, this formula implies that both philosophers will not
be thinking at the end of every model.

2) When philosophers are not thinking, they will try to pick up the cutlery:

F2 ≡ 2(not_thinka ∨ not_thinkp ⇒ (af | pf ) ∧ (ak | pk))

Because of formula F1, this formula implies that no piece of cutlery will remain on
the table at the end of every model.

3) Philosophers will not attempt to pick up the cutlery if they are thinking:

F3 ≡ 2(¬not_thinka ⇒ ¬(af | ak)) ∧ 2(¬not_thinkp ⇒ ¬(pf | pk))
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4) Philosophers cannot hold the cutlery at the same time:

F4 ≡ 2¬(af ∧ pf ) ∧ 2¬(ak ∧ pk)

5) Philosophers do not release the fork (knife) if they do not have also the knife (fork):

F5 ≡ 2(¬empty ∧ af ∧ ¬ak ⇒ ©af ) ∧ 2(¬empty ∧ ak ∧ ¬af ⇒ ©ak) ∧
2(¬empty ∧ pf ∧ ¬pk ⇒ ©pf ) ∧ 2(¬empty ∧ pk ∧ ¬pf ⇒ ©pk)

Notice the use of ¬empty in the implications to prevent the description of infinite
models, which results in unsatisfiable PITL formulas.

6) If a philosopher is neither thinking nor he has both the fork and the knife, then he
remains in the “not thinking” state:

F6 ≡ 2(¬empty ∧ not_thinka ∧ ¬(af ∧ ak) ⇒ ©not_thinka) ∧
2(¬empty ∧ not_thinkp ∧ ¬(pf ∧ pk) ⇒ ©not_thinkp)

7) Philosophers release both the fork and the knife at the same time:

F7 ≡ 2(af ∧ ak ∧ ©¬(af ∧ ak) ⇒ ©¬(af | ak)) ∧
2(pf ∧ pk ∧ ©¬(pf ∧ pk) ⇒ ©¬(pf | pk))

Let Sys denote the conjunction of the previous formulas (F1 to F7). We can use
the decision procedure to verify a number of properties. For example, the property “At
least one philosopher eventually eats” can be expressed as:

AtLeastOneEats ≡ 2(¬empty ∧ (not_thinka | not_thinkp) ⇒
3(af ∧ ak | pf ∧ pk))

Similarly, the property “Both philosophers will eventually eat” can be described by

EveryoneEats ≡ 2(¬empty ∧ not_thinka ⇒ 3(af ∧ ak)) ∧
2(¬empty ∧ not_thinkp ⇒ 3(pf ∧ pk))

These properties can be verified in a number of general contexts:

– Satisfiability of Sys ∧AtLeastOneEats ensures that there is at least an “accept-
able” run in the system, i.e. a system execution where at least one philosopher eats.
Notice that if we check this formula for validity instead of satisfiability, then any in-
terval which invalidates the formulas defining Sys will be presented by MONA as a
counterexample. Therefore, typically, we just check satisfiability as a way to ensure
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that our specification is at least consistent, i.e. that there exists at least an interval with
some minimum correctness requirements (in our case the formula AtLeastOneEats)
which satisfies the specification.

– Validity of Sys ⇒ AtLeastOneEats ensures that all runs of the system make
progress according to AtLeastOneEats, i.e. at least one philosopher eats in all possible
system executions. Notice here, as well, that the satisfiability checking previously
discussed becomes handy; it ensures that the implication is not “vacuously” valid due
to an inconsistent antecedent (Sys).

– Validity of Sys ⇒ EveryoneEats ensures that all runs of the system make
progress according to EveryoneEats. If this is the case, we can consider the system to
be free from starvation.

An inspection of these formulas reveals that philosophers are not precluded from
holding a resource that the other philosopher needs. For example, it is possible for
Aristotle to hold the fork (af) while Plato holds the knife (ak). Because they will
not release the fork or the knife until they manage to get both, every philosopher re-
mains blocked, requesting the fork (or the knife) the other philosopher is holding.
Consequently properties AtLeastOneEats and EveryoneEats are not validated (i.e.
there is a run of the system where these properties do not hold), and thus formulas
Sys ⇒ AtLeastOneEats and Sys ⇒ EveryoneEats are not valid. The PITL deci-
sion procedure returns these undesired situations as MONA counterexamples. For ex-
ample, MONA returns af={} ak={1} pf={1} pk={} as an interval where formula
Sys ⇒ AtLeastOneEats is not satisfiable. This is actually produced for the WS1S
formula resulting from our translation algorithm. As explained before, our semantics
assigns second-order variables to PITL propositions. Therefore the counterexample
represents the interval σ = 〈{}0, {ak , pk}1〉. In other words, the lack of response is
a consequence of Aristotle holding the knife (ak = {1}) and Plato holding the fork
(pf = {1}) at the same time, and of the fact that they cannot release them until they
get both. We can prevent this situation from happening if the allocation of the fork
and the knife is ordered, e.g. if the fork must always be picked up before the knife:

Sys1 ≡ Sys ∧ 2(ak ⇒ af ) ∧ 2(pk ⇒ pf )

In other words, MONA will find that formula Sys1 ⇒ AtLeastOneEats is valid.
Notice, also, that because at the end of every model no piece of cutlery remains on
the table (formula F2), formula Sys1 also implies that one philosopher will always be
eating at the end of the model. This is a consequence of adapting a problem initially
devised for infinite computations to the finite framework of PITL. Sys1 is, however,
not enough to prevent starvation as philosophers are never required to stop eating
(thus preventing the other philosopher from doing so). Starvation can be prevented if
philosophers are not allowed to eat forever (again, ¬empty copes with PITL’s finite
models):

Sys2 ≡ Sys1 ∧¬3(¬empty∧2(af ∧ak))∧¬3(¬empty∧2(pf ∧pk))

Again, MONA will confirm that formula Sys2 ⇒ EveryoneEats is valid. We
consider below a different solution to the dining-philosophers problem which illus-
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trates the use of the logic in more prescriptive specifications. In this solution, be-
haviours are described as successful cycles, i.e. philosophers eventually get both the
fork and the knife.

eatreqa ≡ ¬af ∧ ¬ak ∧ reqa eatreqp ≡ ¬pk ∧ ¬pf ∧ reqp

forka ≡ af ∧ ¬ak ∧ ¬reqa knifea ≡ ak ∧ ¬af ∧ ¬reqa

forkp ≡ pf ∧ ¬pk ∧ ¬reqp knifep ≡ pk ∧ ¬pf ∧ ¬reqp

eata ≡ af ∧ ak ∧ ¬reqa eatp ≡ pk ∧ pf ∧ ¬reqp

thinka ≡ ¬af ∧ ¬ak ∧ ¬reqa thinkp ≡ ¬pf ∧ ¬pk ∧ ¬reqp

Aristotle ≡ (2thinka ; ©2eatreqa ; ©(forka | knifea) ; ©2eata ; ©2thinka)∗

Plato ≡ (2thinkp ; ©2eatreqp ; ©(forkp | knifep) ; ©2eatp ; ©2thinkp)∗

Here we are modelling every philosopher with three phases. Let us take as an ex-
ample the behaviour for Aristotle. First he is thinking and not hungry (i.e. he is not
requesting to eat) for an indeterminate period of time (2¬reqa). Eventually, he will
become hungry and will request to eat (eatreqa) until he manages to pick up either
the fork or the knife (forka | knifea). Philosophers can pick up the cutlery in any
order. Then he will eat for a period of time (©2eata) until he starts thinking again,
and the cycle is resumed. We can see that at the end (and start) of every cycle both
philosophers are thinking and both pieces of cutlery are on the table. Let

Sys3 ≡ Aristotle ∧ Plato ∧ (2¬(af ∧ pf )) ∧ (2¬(ak ∧ pk))

StarvationFree ≡ 2(¬empty ∧ reqa ⇒ 3eata) ∧ 2(¬empty ∧ reqp ⇒ 3eatp)

The decision procedure can be used to prove that formula Sys3 ⇒ StarvationFree

is valid, and so whenever each philosopher requests a resource he eventually obtains
it. This is not surprising since the behaviour of philosophers was encoded as suc-
cessive iterations of the star operator (formulas Aristotle and Plato), which includes
formulas eata and eatp in the specification. Therefore, consistency of the conjunction
Aristotle ∧ Plato ensures that both philosophers eventually eat in every cycle.

We believe that the dining philosophers example suffices to illustrate the capabili-
ties of PITL as a property-specification language, and the applicability of its decision
procedure in the validation of specifications. For example, the decision procedure
may check satisfiability of a property expressing a requirement for a safety-critical
system. If satisfiability is not ensured then further verification stages will be based
on ill-formed requirements, which may dangerously give unjustified confidence in the
system.
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7.2. The Beethoven problem

This problem has been used in Multimedia to show the capabilities of modelling
languages (see e.g. [BOW 03a]). The Beethoven problem we are considering here
(since we are working on a propositional logic, this is necessarily a simplified version
of the predicate-based description given in [BOW 03a]) consists of the description
of two synchronous multimedia streams; an audio stream which comprises the four
movements of Beethoven’s Fifth Symphony, and a video stream which displays the
title of every movement while the corresponding movement is playing. These require-
ments can be stated as follows:

1) Play the four movements of the symphony in sequence with a gap of 5 seconds
between each movement.

2) During each movement display an appropriate title for 2 seconds. Each title is
a still image. Repeat the 2-second display of each title every 4 seconds during the
corresponding movement.

3) The presentation will then result from composing these two streams in paral-
lel. We want to determine whether slowing down each stream before composition
is equivalent to slowing down the composite stream. Here we represent the slowing
down of a multimedia presentation by placing delays between consecutive states in
the original model. Fig. 9 illustrates the concept, and its natural PITL interpretation
using the projection operator: here P denotes the PITL formula which represents the
presentation, and the delay was set to 2 sec.

presentation

slowed presentation len(2) proj P

len(2)

P

delay

Figure 9. Slowing down a media item

We will represent each movement mi as a pair of bounding propositions and a
fixed delay (10 sec.) in between, i.e. propositions starti and endi will denote the
beginning and end of movement mi. The title for movement mi will also be repre-
sented as a proposition, ti, which will be true every time the corresponding image is
displayed. Projection will be used to represent the slowing down of a stream (we have
chosen a delay of 2 sec.) The following PITL formulas describe a possible solution to
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the Beethoven problem:

1) The four movements:

m1 ≡ (start1 ∧ empty) ; len(10) ; (end1 ∧ empty)
m2 ≡ (start2 ∧ empty) ; len(10) ; (end2 ∧ empty)
m3 ≡ (start3 ∧ empty) ; len(10) ; (end3 ∧ empty)
m4 ≡ (start4 ∧ empty) ; len(10) ; (end4 ∧ empty)

2) Movement-bounding actions only occur once:

F1 ≡ (¬start1 until start1) ; ©2¬start1 ∧
(¬start2 until start2) ; ©2¬start2 ∧
(¬start3 until start3) ; ©2¬start3 ∧
(¬start4 until start4) ; ©2¬start4 ∧
(¬end1 until end1) ; ©2¬end1 ∧
(¬end2 until end2) ; ©2¬end2 ∧
(¬end3 until end3) ; ©2¬end3 ∧
(¬end4 until end4) ; ©2¬end4

3) The audio stream:

A ≡ m1 ; len(5) ; m2 ; len(5) ; m3 ; len(5) ; m4 ; True

Notice that F1 ensures that actions start i and end i are framed inA, i.e. they will only
occur when the corresponding movement is placed in the specification of the stream.

4) Displaying a title for 2 sec., once every 2 sec.:

dt1 ≡ (((t1 ∧ len(1))∗ ∧ len(2)) ; len(2))∗

dt2 ≡ (((t2 ∧ len(1))∗ ∧ len(2)) ; len(2))∗

dt3 ≡ (((t3 ∧ len(1))∗ ∧ len(2)) ; len(2))∗

dt4 ≡ (((t4 ∧ len(1))∗ ∧ len(2)) ; len(2))∗

5) Titles can only be displayed during the corresponding movement:

F2 ≡ (¬t1 until start1) ∧ 3(end1; ©2¬t1) ∧
(¬t2 until start2) ∧ 3(end2; ©2¬t2) ∧
(¬t3 until start3) ∧ 3(end3; ©2¬t3) ∧
(¬t4 until start4) ∧ 3(end4; ©2¬t4)
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Formula F2 ensures that ti is framed in A, i.e. the display of a title during the corre-
sponding movement.

6) Synchronising a title with the corresponding movement:

synct1 ≡ halt(start1) ; ((dt1 ; ©¬((2¬t1) ∧ (True ; len(2)))) ∧ halt(end1))
synct2 ≡ halt(start2) ; ((dt2 ; ©¬((2¬t2) ∧ (True ; len(2)))) ∧ halt(end2))
synct3 ≡ halt(start3) ; ((dt3 ; ©¬((2¬t3) ∧ (True ; len(2)))) ∧ halt(end3))
synct4 ≡ halt(start4) ; ((dt4 ; ©¬((2¬t4) ∧ (True ; len(2)))) ∧ halt(end4))

Here, formula ¬((2¬ti) ∧ (True ; len(2))) ensures that the title is displayed during
the whole movement, i.e. it forces a maximal number of iterations for the star operator
applied in dti.

7) The video stream:

V ≡ synct1 ; True ; synct2 ; True ; synct3 ; True ; synct4 ; True

It is interesting to see how the conjunction A ∧ V effectively models the com-
position of the audio and video streams; this is done by virtue of actions start i and
end i, which appear both in A (defining the movement mi) and in V (synchronising
the period when titles are displayed in F2 and synct i). The decision procedure can be
used to prove that slowing down the individual streams (A and V ) before composition
results in a system which is equivalent to slowing down the composed stream (A∧V ).
This property can be expressed as follows, where we can see how the projection oper-
ator becomes handy in such specifications.

P ≡ (len(2) proj A) ∧ (len(2) proj V ) ⇔ len(2) proj (A ∧ V )

MONA, then, checks the validity of formula F1 ∧ F2 ⇒ P . As an example appli-
cation of past operators, we can verify that no title is shown before the corresponding
movement begins:

P ≡ 2(t1 ⇒ -3start1) ∧ 2(t2 ⇒ -3start2) ∧
2(t3 ⇒ -3start3) ∧ 2(t4 ⇒ -3start4)

where the -3 past operator is defined as -3F ≡ F
∼
; True, and the formula to

check is F1 ∧ F2 ∧ A ∧ V ⇒ P . We have used our implementation of the decision
procedure in MONA to check that all formulas to verify are indeed valid.
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8. PITL2MONA and experimental results

This section briefly presents some implementation details about PITL2MONA,
and provides a comparison between PITL2MONA/MONA and LITE (Kono’s tableau-
based implementation). PITL2MONA is built as a front-end which takes a PITL
formula and returns the corresponding MONA specification. Input and output are
handled just as ASCII files. Basically, the tool is built as a parser of PITL syntax
which translates the formula structure into a formula written in the MONA input lan-
guage (WS1S plus syntactic sugar). The parser is automatically generated using a
LEX/YACC toolkit. Translation code is written in C and embedded in the YACC
grammar specification files; this code implements the algorithm sketched by the func-
tion toWS1S() (as described in Sections 5 and 6).

Table 4 shows the performance of both tools for a number of parameterised prob-
lems. Only execution time is shown; no memory consumption is output by LITE, so
we cannot compare that with the amount of memory required by MONA. Also, al-
though LITE does show the size of the tableau (in terms of number of nodes, subterms
and transitions), structural differences prevent us from comparing these figures with
the size of the corresponding MONA automaton/BDD. Table 5 shows a characterisa-
tion of the complexity of the PITL specifications in terms of

1) Length of the formula (in KB) and maximum amount of memory consumed
by MONA to analyse the formula (in MB). This memory requirement corresponds to
the biggest automaton generated by MONA during the analysis of the WS1S source
formula.

2) Number of free variables. Free variables in the PITL formula result in a similar
number of free variables in the corresponding WS1S formula, which in turn deter-
mines the size of the automaton alphabet and its transition function. A BDD-based
implementation of a transition function usually leads to exponential compression, but
depending on the WS1S formula this compression may not be achieved, and so in the
worst case the representation will still be exponential in the number of variables. Also,
the order in which variables are declared in the MONA specification can adversely in-
fluence the size of the BDD, and the problem of deciding an optimal ordering is known
to be NP-complete [KLA 01, BRY 86].

3) Maximum nesting depth of quantifiers. The nesting of quantifiers of the same
kind (i.e. either existential or universal quantifiers) does not necessarily relate to a
non-elementary complexity, as the resulting automaton can be obtained by applying
a combined automata-projection operation (Section 3). Nevertheless the translation
of quantifiers requires automata determinisation, which can result in an exponential
number of states.

4) Maximum nesting depth of alternating quantifiers. As mentioned in Section 3,
the time and space for translating WS1S formulas to automata is, in the worst case,
bounded from below by a stack of exponentials whose height is proportional to the
depth of quantifier alternation. This measure will give us, therefore, a good idea about
how hard to solve specifications are.
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The n-Dining philosophers problem is parameterised in the number of philoso-
phers; we have tested a formalisation which is similar to the second specification
appearing in section 7. The n-movement Beethoven problem is parameterised by the
number of movements; we have tested the formalisation given in section 7 (without
the past operators, which are not supported by LITE). The n-floor Lift controller prob-
lem is parameterised by the number of floors the lift serves; the formalisation we have
tested has been adapted from one proposed by Pandya for his tool DCVALID. Exper-
iments were conducted with a Sun Solaris 5.9 running on a Sun v480 station, with
2x900MHZ US3 processors, and 4GB RAM. SICStus Prolog v. 3.10.1. was used to
run LITE.

Table 4. PITL2MONA/MONA vs. LITE: approx. execution time (in secs.)

Example n PITL2MONA/MONA LITE
n-Dining philosophers 5 2 163

7 52 -
10 - -

n-movement Beethoven 4 4 7339
8 120 -
10 - -

n-floor Lift controller 5 3 -
10 110 -

Table 5. PITL2MONA/MONA, the complexity of specifications: length, max. memory
requirements, number of free variables, max. nesting depth of general quantifiers (∃)
and max. nesting depth of alternating quantifiers (∃∀).

Example n len. (KB) mem. (MB) # free vars. ∃ ∃∀
n-Dining philosophers 5 6 2 11 6 4

7 11 309 15 6 4
10 15 - 21 6 4

n-movement Beethoven 4 69 3 13 27 3
8 209 177 25 43 3
10 298 - 31 51 3

n-floor Lift controller 5 16 1 28 4 3
10 36 87 53 4 3

Table 4 suggests that MONA runs considerably faster than LITE, which is tableau-
based. Of all specifications tested, only those corresponding to 10-Dining philoso-
phers and 10-movement Beethoven problems could not be handled by MONA. Both
the number of variables and the kind of operators involved in the source formula, e.g.
chop, star, projection and negation, resulted in WS1S formulas with heavy use of
quantifiers and quantifier alternation, i.e. WS1S formulas which are prone to exhibit
the worst-case, non-elementary complexity of the decision procedure. This complex-
ity reveals itself in the form of a state-explosion problem, with BDDs which are too
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large for MONA to represent (even though MONA can handle BDDs with more than
16 million nodes [KLA 01]). The impact of variable ordering and nesting-depth of
quantifiers is confirmed by Table 5. For example, the 7-Dining philosophers problem
has roughly the same number of variables as the 4-movement Beethoven problem, and
is much shorter. However the former is much harder to solve both in time and space;
notice that the MONA specification for the 7-Dining philosophers problem has more
variables (15 against 13), possibly a worse variable ordering 2 and a deeper nesting of
alternating quantifiers (4 against 3). Moreover, and since the maximum nesting depths
of alternating quantifiers do not vary w.r.t. the parameter size, the table suggests that
the number of variables and the particular variable orderings represent the main cause
for the performance degradation of these examples.

But the performance of LITE was even worse; for example, MONA was almost
2000 times faster than LITE to verify the 4-movement Beethoven problem. Moreover,
most of the problems could not be verified by LITE at all. We therefore claim that
even when both an automata-based and a tableau-based decision procedure for PITL
will equally suffer of a worst-case, non-elementary complexity, a) the number of op-
timisations implemented in MONA and b) the expansion rules, generation of normal
forms and subterms required by the tableau method make the automata-based decision
procedure far more efficient.

Discussion.

A brief analysis on the translation from PITL to WS1S formulas (Sections 4 and
6) easily reveals those PITL formulas which may exhibit the logic’s non-elementary
complexity. In fact, these formulas must include a combination of operators which
eventually result in WS1S formulas with alternating quantifiers. The following are
some examples of such combinations; a) alternated nesting of chop (chop in the past)
and negation, b) nesting of star (until, since, projection) and c) alternated nesting of
next (previous) and negation under the scope of projection.

9. Conclusions

We have explored the connection between PITL and WS1S, and presented a deci-
sion procedure for PITL based on a translation to WS1S and the MONA tool. PITL
includes chop, star, projection, until and past operators such as chop in the past, since
and previous, so it is expressive enough to encode an interesting range of formulas.
For example, temporal logic operators like 3 and 2 can be derived from the current
set, and so formulas which are commonly used in verification can be expressed. We
have developed a WS1S-based semantics for PITL, and proved that for any PITL for-
mula an equivalent WS1S formula can be expressed.

We have implemented the tool PITL2MONA which translates PITL formulas to
MONA specifications; this translation can be easily proved to be linear in the num-

2. We have not investigated other orderings
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ber of symbols in the source formula. In this way a decision procedure for WS1S
(MONA) can be applied to PITL. Furthermore, the decision procedure benefits from
the optimisations included in MONA. To our knowledge, this is the first implementa-
tion of a decision procedure for PITL with projection and past operators that is based
on automata. We have shown how PITL can be used, for example, in the specification
of the dining-philosophers and a multimedia synchronisation problem. We have used
PITL2MONA/MONA to verify a number of correctness properties over these speci-
fications. A number of experimental results are shown which suggest the feasibility
and convenience of automata-based decision procedures for PITL. Moreover, we have
compared our approach with a tableau-based implementation of an equally expressive
propositional subset; results show that MONA runs considerably faster, and that it
can deal with more complex specifications. Interesting directions for further research
include the identification of good variable orderings in the generation of MONA spec-
ifications, and a model-checking theory for PITL.
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A. PITL: the full set of operators

This section shows how PITL operators (future and past) are interpreted over in-
tervals with past history, (σ, j), and their corresponding translation to C ′′-structures.
The satisfaction relation |= over (σ, j) is defined as follows:

(σ, j) |= v iff v ∈ σj

(σ, j) 2 False

(σ, j) |= ¬P iff (σ, j) 2 P

(σ, j) |= P ∨Q iff (σ, j) |= P ∨ (σ, j) |= Q
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(σ, j) |= empty iff j = |σ|

(σ, j) |= ©P iff j < |σ| ∧ (σ, j + 1) |= P

(σ, j) |= P ; Q iff ∃k ∈ N. j ≤ k ≤ |σ| ∧ ([σ]k, j) |= P ∧ (σ, k) |= Q

(σ, j) |= P ∗ iff j = 0 ∨ ∃k0, k1, . . . , km ∈ N.
j = k0 < k1 < . . . < km = |σ| ∧
∀i ∈ N. 0 ≤ i < m⇒ ([σ]ki+1 , ki) |= P

(σ, j) |= P until Q iff ∃k ∈ N. j ≤ k ≤ |σ| ∧
(σ, k) |= Q ∧ ∀r ∈ N. r < k ⇒ (σ, r) |= P

(σ, j) |= P proj Q iff j = 0 ∨ ∃k0, k1, . . . , km ∈ N.
j = k0 < k1 < . . . < km = |σ| ∧
∀i ∈ N. 0 ≤ i < m⇒ ([σ]ki+1 , ki) |= P ∧
(σ0, . . . , σk0 , σk1 , . . . , σkm

, k0) |= Q

(σ, j) |= P
∼
; Q iff ∃k ∈ N. 0 ≤ k ≤ j ∧ (σ, k) |= P ∧

((σ)k, j − k) |= Q

(σ, j) |= P S Q iff ∃k ∈ N. 0 ≤ k ≤ j ∧ (σ, k) |= Q ∧
∀r ∈ N. k < r ≤ j ⇒ (σ, r) |= P

(σ, j) |= ©- P iff j > 0 ∧ (σ, j − 1) |= P

The interpretation of PITL operators over C ′′-structures is as follows:

〈i, j, n,M,P〉 |=C′′ v iff (V, S) ∈ P ∧ j ∈ S

〈i, j, n,M,P〉 2C′′ False

〈i, j, n,M,P〉 |=C′′ ¬P iff 〈i, j, n,M,P〉 2C′′ P

〈i, j, n,M,P〉 |=C′′
©P iff ∃k. cons(M, j, k) ∧

〈i, k, n,M,P〉 |=C′′ P

〈i, j, n,M,P〉 |=C′′ P ∨Q iff 〈i, j, n,M,P〉 |=C′′ P ∨
〈i, j, n,M,P〉 |=C′′ Q

〈i, j, n,M,P〉 |=C′′ empty iff j = n
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〈i, j, n,M,P〉 |=C′′ P ; Q iff ∃k ∈M. j ≤ k ≤ n ∧
〈i, j, k,M,P〉 |=C′′ P∧
〈i, k, n,M,P〉 |=C′′ Q

〈i, j, n,M,P〉 |=C′′ P ∗ iff j = n ∨ ∃k0, k1, . . . , km ∈M.
j = k0 < k1 < . . . < km = n ∧
∀r. 0 ≤ r < m⇒

〈i, kr, kr+1,M,P〉 |=C′′ P

〈i, j, n,M,P〉 |=C′′ P until Q iff ∃k ∈M. j ≤ k ≤ n ∧
〈i, k, n,M,P〉 |=C′′ Q ∧
∀r ∈M. j ≤ r < k ⇒

〈i, r, n,M,P〉 |=C′′ P

〈i, j, n,M,P〉 |=C′′ P proj Q iff j = n ∨ ∃M ′ ⊆M.
M ′ = {i, . . . , k0, k1, . . . , km} ∧
∀t. i ≤ t ≤ k0 ⇒ (t ∈M ⇔ t ∈M ′) ∧
j = k0 < k1 < . . . < km = n ∧
∀r. 0 ≤ r < m⇒

〈i, kr, kr+1,M,P〉 |=C′′ P ∧
〈i, j, n,M ′,P〉 |=C′′ Q

〈i, j, n,M,P〉 |=C′′ P
∼
; Q iff ∃k ∈M. i ≤ k ≤ j ∧

〈i, k, n,M,P〉 |=C′′ P ∧
〈k, j, n,M,P〉 |=C′′ Q

〈i, j, n,M,P〉 |=C′′ P S Q iff ∃k ∈M. i ≤ k ≤ j ∧
〈i, k, n,M,P〉 |=C′′ Q ∧
∀r ∈M. k < r ≤ j ⇒

〈i, r, n,M,P〉 |=C′′ P

〈i, j, n,M,P〉 |=C′′
©- P iff cons(M,k, j) ∧ 〈i, k, n,M,P〉 |=C′′ P

B. Theorems and proofs

THEOREM 10. — For any interval σ and any PITL formula P the following holds:

(Moszkowski’s definition for σ |= P ∗)
∃k0, k1, . . . , km ∈ N. k0 = 0 ≤ k1 ≤ . . . ≤ km = |σ|
∧ ∀i ∈ N. 0 ≤ i < m⇒ ([σ]ki+1)ki |= P

iff
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(our definition for σ |= P ∗)
|σ| = 0 ∨
∃k0, k1, . . . , km ∈ N. k0 = 0 < k1 < . . . < km = |σ|
∧ ∀i ∈ N. 0 ≤ i < m⇒ ([σ]ki+1)ki |= P

PROOF. — (by induction on |σ|)

Case |σ| = 0:
In both definitions, P ∗ is trivially satisfiable by empty intervals.

Case |σ| = n+ 1, n ∈ N:
We will only prove the “sufficient” condition of the equivalence. The “necessary”
condition trivially holds since a <-sequence is also a ≤-sequence. If σ is a non-empty
interval and indeed there exists such a ≤-sequence, then there must be an iteration of
P holding over a non-empty suffix of the model. In other words, then, there must exist
j, 1 ≤ j ≤ m such that kj−1 < kj = . . . = km = |σ| and (σ)kj−1 |= P . Otherwise
there is no way to link the first and last state of σ with a joint sequence of models for
P . Furthermore,

∃k0, k1, . . . , kj ∈ N. k0 = 0 ≤ k1 ≤ . . . ≤ kj−1 < kj = |σ|
∧ ∀i ∈ N. 0 ≤ i < j ⇒ ([σ]ki+1)ki |= P

As kj−1 ≤ n we can use the induction hypothesis on the the ≤-prefix of the previous
sequence (i.e. the points k0, . . . , kj−1), to obtain the required expression:

∃k0, k1, . . . , kj ∈ N. k0 = 0 < k1 < . . . < kj−1 < kj = |σ|
∧ ∀i ∈ N. 0 ≤ i < j ⇒ ([σ]ki+1)ki |= P

■

LEMMA 11. — Let σ ∈ I and Θ(σ) = 〈0, |σ|,P〉. Then, for any PITL0 formula F
the following holds:

〈i, n,P〉 |=C F iff ([σ]n)i |= F

PROOF. — The proof is by induction on |F |.

Case |F | = 1:

〈i, n,P〉 |=C v iff [def. of |=C]
(V, S) ∈ P ∧ i ∈ S iff [def. of P]
v ∈ σi iff [def. of |=]
([σ]n)i |= v
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〈i, n,P〉 |=C empty iff [def. of |=C]
i = n iff [def. of []i, ()i]
|([σ]n)i| = 0 iff [def. of |=]
([σ]n)i |= empty

By definition, 〈i, n,P〉 2C False and ([σ]n)i 2 False

Case |F | > 1:

〈i, n,P〉 |=C ¬P iff [def. of |=C]
〈i, n,P 2C P iff [hyp. on |P | < |F |]
([σ]n)i 2 P iff [def. of |=]
([σ]n)i |= ¬P

〈i, n,P〉 |=C
©P iff [def. of |=C]

i < n ∧ 〈i+ 1, n,P〉 |=C P iff [hyp. on |P | < |F |]
([σ]n)i+1 |= P iff [def. of |=]
([σ]n)i |= ©P

〈i, n,P〉 |=C P ∨Q iff [def. of |=C]
〈i, n,P〉 |=C P ∨ 〈i, n,P〉 |=C Q iff [hyp. on |P | < |F |, |Q| < |F |]
([σ]n)i |= P ∨ ([σ]n)i |= Q iff [def. of |=]
([σ]n)i |= P ∨Q

〈i, n,P〉 |=C P ; Q iff [def. of |=C]
∃k. 〈i, k,P〉 |=C P ∧ 〈k, n,P〉 |=C Q iff [hyp. on |P | < |F |, |Q| < |F |]
∃k. ([σ]k)i |= P ∧ ([σ]n)k |= Q iff [def. of |=]
([σ]n)i |= P ; Q

〈i, n,P〉 |=C P
∗ iff [def. of |=C]

i = n ∨
∃k0, k1, . . . , km. i = k0 < k1 < . . . < km = n
∧ ∀j. 0 ≤ j < m⇒ 〈kj , kj+1,P〉 |=C P iff [hyp. on |P | < |F |]
i = n ∨
∃k0, k1, . . . , km. i = k0 < k1 < . . . < km = n
∧ ∀j. 0 ≤ j < m⇒ ([σ]kj+1)kj |= P iff [def. of |=]
([σ]n)i |= P ∗
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〈i, n,P〉 |=C P until Q iff [def. of |=C]
∃k. i ≤ k ≤ n ∧ 〈k, n,P〉 |=C Q ∧
∀j. i ≤ j < n⇒ 〈j, n,P〉 |=C P iff [hyp. on |P | < |F |, |Q| < |F |]
∃k. i ≤ k ≤ n ∧ ([σ]n)k |= Q ∧
∀j. i ≤ j < n⇒ ([σ]n)j |= P iff [def. of |=]
([σ]n)i |= P until Q

■

THEOREM 12. — For any σ ∈ I and any PITL0 formula F , Θ(σ) |=C F iff σ |= F

PROOF. — Theorem 12 is a corollary of Lemma 11. ■

LEMMA 13. — Let σ ∈ I and Θ′(σ) = 〈0, |σ|, {0, . . . , |σ|},P〉. Let M ⊆
{0, . . . , |σ|} and i, n, t0, t1, . . . , ts ∈ M s.t. i = t0 < t1 < . . . < ts = n and
∀r ∈ N. 0 ≤ r < s⇒ ¬∃k ∈M. tr < k < tr+1. Then, for any PITL1 formula F the
following holds:

〈i, n,M,P〉 |=C′ F iff σt0 , . . . , σts |= F

PROOF. — The proof is by induction on |F |

Case |F | = 1:

〈i, n,M,P〉 |=C′ v iff [def. of |=C′]
(V, S) ∈ P ∧ i ∈ S iff [def. of P]
v ∈ σi iff [i = t0]
v ∈ σt0 iff [def. of |=]
〈σt0 , . . . , σts〉 |= v

〈i, n,M,P〉 |=C′ empty iff [def. of |=C′]
i = n iff [i = t0, n = ts]
|〈σt0 , . . . , σts〉| = 0 iff [def. of |=]
〈σt0 , . . . , σts〉 |= empty

By definition 〈i, n,M,P〉 2C′ False and σt0 , . . . , σts 2 False

Case |F | > 1:

〈i, n,M,P〉 |=C′ ¬P iff [def. of |=C′ ]
〈i, n,M,P〉 2C′ P iff [hyp. on |P | < |F |]
〈σt0 , . . . , σts〉 2 P iff [def. of |=]
〈σt0 , . . . , σts〉 |= ¬P
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〈i, n,M,P〉 |=C′
©P iff [def. of |=C′]

∃j ∈M. cons(M, i, j) ∧ 〈j, n,M,P〉 |=C′ P iff [hyp. on |P | < |F |,
i = t0, cons(M, t0, t1),
def. of M ]

〈σt1 , . . . , σts〉 |= P iff [def. of |=]
〈σt0 , . . . , σts〉 |= ©P

〈i, n,M,P〉 |=C′ P ∨Q iff [def. of |=C′ ]
〈i, n,M,P〉 |=C′ P ∨ 〈i, n,M,P〉 |=C′ Q iff [hyp. on |P | < |F |,

|Q| < |F |]
〈σt0 , . . . , σts〉 |= P ∨ 〈σt0 , . . . , σts〉 |= Q iff [def. of |=]
〈σt0 , . . . , σts〉 |= P ∨Q

〈i, n,M,P〉 |=C′ P ; Q iff [def. of |=C′ ]
∃k ∈M. i ≤ k ≤ n ∧
〈i, k,M,P〉 |=C′ P ∧ 〈k, n,M,P〉 |=C′ Q iff [hyp. on |P | < |F |,

|Q| < |F |,
i = t0, n = ts,
def. of M ]

∃k ∈M. t0 ≤ k ≤ ts ∧
〈σt0 , . . . , σk〉 |= P ∧ 〈σk, . . . , σts〉 |= Q iff [def. of |=]
〈σt0 , . . . , σts〉 |= P ; Q

〈i, n,M,P〉 |=C′ P ∗ iff [def. of |=C′]
i = n ∨
∃k0, k1, . . . , km ∈M. i = k0 < k1 < . . . < km = n ∧
∀j. 0 ≤ j < m⇒ 〈kj , kj+1,M,P〉 |=C′ P iff [hyp. on

|P | < |F |,
i = t0, n = ts,
def. of M ]

t0 = ts ∨
∃k0, k1, . . . , km ∈M. t0 = k0 < k1 < . . . < km = ts ∧
∀j. 0 ≤ j < m⇒ 〈σkj

, . . . , σkj+1
〉 |= P iff [def. of |=]

〈σt0 , . . . , σts〉 |= P ∗
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〈i, n,M,P〉 |=C′ P until Q iff [def. of |=C′ ]
∃k ∈M. i ≤ k ≤ n ∧ 〈k, n,M,P〉 |=C′ Q ∧
∀j ∈M. i ≤ j < k ⇒ 〈j, n,M,P〉 |=C′ P iff [hyp. on |P | < |F |,

|Q| < |F |,
i = t0, n = ts,
def. of M ]

∃k ∈M. t0 ≤ k ≤ ts ∧ 〈σt0 , . . . , σts〉 |=C′ Q ∧
∀j ∈M. t0 ≤ j < k ⇒ 〈σj , . . . , σts〉 |=C′ P iff [def. of |=]
〈σt0 , . . . , σts〉 |= P until Q

〈i, n,M,P〉 |=C′ P proj Q iff [def. of |=C′]
i = n ∨ ∃M ′ = {k0, k1, . . . , km} ⊆M.
i = k0 < k1 < . . . < km = n ∧
∀j. 0 ≤ j < m⇒ 〈kj , kj+1,M,P〉 |=C′ P ∧
〈i, n,M ′,P〉 |=C′ Q iff [hyp. on |P | < |F |,

|Q| < |F |,
i = t0, n = ts,
def. of M ]

t0 = ts ∨ ∃M ′ = {k0, k1, . . . , km} ⊆M.
t0 = k0 < k1 < . . . < km = ts ∧
∀j. 0 ≤ j < m⇒ 〈σkj

, . . . , σkj+1
〉 |= P ∧

〈σk0 , . . . , σkm
〉 |= Q iff [def. of |=]

〈σt0 , . . . , σts〉 |= P proj Q

■

THEOREM 14. — For any σ ∈ I and for any PITL1 formula F ,

Θ′(σ) |=C′ F iff σ |= F

PROOF. — Theorem 14 is a corollary of Lemma 13. ■

LEMMA 15. — Let σ ∈ I and Θ′′(σ) = 〈0, 0, |σ|, {0, . . . , |σ|},P〉. Let M ⊆
{0, . . . , |σ|} and i, j, n, t0, t1, . . . , ts ∈ M s.t. i = t0 < t1 < . . . < ts = n,
j = tu, 0 ≤ u ≤ s and ∀r ∈ N. 0 ≤ r < s ⇒ ¬∃k ∈ M. tr < k < tr+1. Then, for
any PITL formula F the following holds:

〈i, j, n,M,P〉 |=C′′ F iff (〈σt0 , . . . , σts〉, tu − t0) |= F

PROOF. — The proof is by induction on |F |.

Case |F | = 1:
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〈i, j, n,M,P〉 |=C′′ v iff [def. of |=C′′]
(V, S) ∈ P ∧ j ∈ S iff [def. of P]
v ∈ σj iff [j = tu]
v ∈ σtu iff [def. of |=]
(〈σt0 , . . . , σts〉, tu − t0) |= v

〈i, j, n,M,P〉 |=C′′ empty iff [def. of |=C′′ ]
j = n iff [j = tu, n = ts]
|〈σtu , . . . , σts〉| = 0 iff [def. of |=]
(〈σt0 , . . . , σts〉, tu − t0) |= empty

By definition 〈i, j, n,M,P〉 2C′′ False and (〈σt0 , . . . , σts〉, tu − t0) 2 False

Case |F | > 1:

〈i, j, n,M,P〉 |=C′′ ¬P iff [def. of |=C′′ ]
〈i, j, n,M,P〉 2C′′ P iff [hyp. on |P | < |F |]
(〈σt0 , . . . , σts〉, tu − t0) 2 P iff [def. of |=]
(〈σt0 , . . . , σts〉, tu − t0) |= ¬P

〈i, j, n,M,P〉 |=C′′
©P iff [def. of |=C′′ ]

∃k ∈M. cons(M, j, k) ∧ 〈i, k, n,M,P〉 |=C′′ P iff [hyp. on |P | < |F |,
j = tu,
cons(M, tu, tu+1),
def. of M ]

(〈σt0 , . . . , σtu+1
, . . . , σts〉, tu+1 − t0) |=C′′ P iff [def. of |=]

(〈σt0 , . . . , σts〉, tu − t0) |= ©P

〈i, j, n,M,P〉 |=C′′ P ∨Q iff [def. of |=C′′]
〈i, j, n,M,P〉 |=C′′ P ∨
〈i, j, n,M,P〉 |=C′′ Q iff [hyp. on |P | < |F |, |Q| < |F |]
(〈σt0 , . . . , σts〉, tu − t0) |= P ∨
(〈σt0 , . . . , σts〉, tu − t0) |= Q iff [def. of |=]
(〈σt0 , . . . , σts〉, tu − t0) |= P ∨Q
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〈i, j, n,M,P〉 |=C′′ P ; Q iff [def. of |=C′′]
∃k ∈M. j ≤ k ≤ n ∧
〈i, j, k,M,P〉 |=C′′ P ∧
〈i, k, n,M,P〉 |=C′′ Q iff [hyp. on |P | < |F |, |Q| < |F |,

j = tu, n = ts, def. of M ]
∃k ∈M. tu ≤ k ≤ ts ∧
(〈σt0 , . . . , σtu , . . . , σk〉, tu − t0) |= P ∧
(〈σt0 , . . . , σk, . . . , σts〉, k − t0) |= Q iff [def. of |=]
(〈σt0 , . . . , σts〉, tu − t0) |= P ; Q

〈i, j, n,M,P〉 |=C′′ P ∗ iff [def. of |=C′′]
j = n ∨
∃k0, k1, . . . , km ∈M. j = k0 < k1 < . . . < km = n ∧
∀r. 0 ≤ r < m⇒ 〈i, kr, kr+1,M,P〉 |=C′′ P iff [hyp. on

|P | < |F |,
j = tu,
n = ts,
def. of M ]

tu = ts ∨
∃k0, k1, . . . , km ∈M. tu = k0 < k1 < . . . < km = ts ∧
∀r. 0 ≤ r < m⇒ (〈σt0 , . . . , σkr

, . . . , σkr+1
〉, kr − t0) |= P iff [def. of |=]

(〈σt0 , . . . , σts〉, tu − t0) |= P ∗

〈i, j, n,M,P〉 |=C′′ P until Q iff [def. of |=C′′]
∃k ∈M. j ≤ k ≤ n ∧ 〈i, k, n,M,P〉 |=C′′ Q ∧
∀r ∈M. j ≤ r < k ⇒ 〈i, r, n,M,P〉 |=C′′ P iff [hyp. on |P | < |F |,

|Q| < |F |,
j = tu, n = ts,
def. of M ]

∃k ∈M. tu ≤ k ≤ ts∧
(〈σt0 , . . . , σts〉, tu − t0) |=C′′ Q ∧
∀r ∈M. tu ≤ r < k ⇒
(〈σt0 , . . . , σr, . . . , σts〉, r − t0) |=C′′ P iff [def. of |=]
(〈σt0 , . . . , σts〉, tu − t0) |= P until Q
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〈i, j, n,M,P〉 |=C′′ P proj Q iff [def. of |=C′′ ]
j = n ∨ ∃M ′ ⊆M.
M ′ = {i, . . . , k0, k1, . . . , km} ∧
∀t. i ≤ t ≤ k0 ⇒ (t ∈M ⇔ t ∈M ′) ∧
j = k0 < k1 < . . . < km = n ∧
∀r. 0 ≤ r < m⇒ 〈kr, kr+1,M,P〉 |=C′′ P ∧
〈i, j, n,M ′,P〉 |=C′′ Q iff [hyp. on

|P | < |F |,
|Q| < |F |,
j = tu, n = ts,
def. of M ]

tu = ts ∨ ∃M ′ ⊆M.
M ′ = {i, . . . , k0, k1, . . . , km} ∧
∀t. i ≤ t ≤ k0 ⇒ (t ∈M ⇔ t ∈M ′) ∧
tu = k0 < k1 < . . . < km = ts ∧
∀r.0 ≤ r < m⇒ (〈σt0 , . . . , σkr

, σkr+1
〉, kr − t0) |= P ∧

(〈σt0 , . . . , σk0 , . . . , σkm
〉, tu − t0) |= Q iff [def. of |=]

(〈σt0 , . . . , σts〉, tu − t0) |= P proj Q

〈i, j, n,M,P〉 |=C′′ P
∼
; Q iff [def. of |=C′′]

∃k ∈M. i ≤ k ≤ j ∧
〈i, k, n,M,P〉 |=C′′ P ∧ 〈k, j, n,M,P〉 |=C′′ Q iff [hyp. on |P | < |F |,

|Q| < |F |,
j = tu, n = ts,
def. of M ]

∃k ∈M. i ≤ k ≤ t0 ∧
(〈σt0 , . . . , σk, . . . , σts〉, k − t0) |= P ∧
(σk, . . . , σts〉, tu − k) |= Q iff [def. of |=]
(〈σt0 , . . . , σts〉, tu − t0) |= P

∼
; Q

〈i, j, n,M,P〉 |=C′′ P S Q iff [def. of |=C′′]
∃k ∈M. i ≤ k ≤ j ∧ 〈i, k, n,M,P〉 |=C′′ Q ∧
∀ r ∈M. k < r ≤ j ⇒ 〈i, r, n,M,P〉 |=C′′ P iff [hyp. on |P | < |F |,

|Q| < |F |,
j = tu, n = ts,
[def. of M ]

∃k ∈M. i ≤ k ≤ tu ∧
(〈σt0 , . . . , σk, . . . , σts〉, k − t0) |= Q ∧
∀r ∈M. k < r ≤ tu ⇒
(〈σt0 , . . . , σr, . . . , σts〉, r − t0) |= P iff [def. of |=]
(〈σt0 , . . . , σts〉, tu − t0) |= P S Q
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〈i, j, n,M,P〉 |=C′′
©- P iff [def. of |=C′′ ]

cons(M,k, j) ∧ 〈i, k, n,M,P〉 |=C′′ P iff [hyp. on |P | < |F |,
|Q| < |F |,
j = tu, n = ts,
[def. of M ]

cons(M, tu−1, tu) ∧
(〈σt0 , . . . , σtu−1

, σtu , . . . , σts〉, tu−1 − t0) |= P iff [def. of |=]
(〈σt0 , . . . , σts〉, tu − t0) |= ©- P

■

THEOREM 16. — For any σ ∈ I and for any PITL formula F ,

Θ′′(σ) |=C′′ F iff (σ, 0) |= F

PROOF. — Theorem 16 is a corollary of Lemma 15. ■


