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Abstract 
We describe a system to automatically generate 

metro maps using a multicriteria approach. We have 
implemented a hill climbing optimizer which uses a 
fitness score generated from a sum of several aesthetic 
metrics. This is used to move from the initial geographic 
layout of the map to a schematic layout that is intended 
to aid travellers’ navigation. We describe the software 
and show its application to a number of real world metro 
maps. 

 
Keywords--- metro map layout problem, public 

transport schematics, multicriteria optimization, 
graph drawing. 
 
 

1. Introduction 

Metro maps, or public transport schematics, are 
familiar to most people. Many cities have underground 
metros or above ground tram networks which are usually  
represented by a schematic map. The map simplifies the 
true geographic layout of the network by straightening 
lines and evenly distributing stations along the lines [8]. 
These maps take inspiration from what is considered the 
first such schematic, developed by Harry Beck for the 
London Underground [3]. Travellers find it easier to use 
such a simplified map to plan routes between start and 
destination stations. 

However, these schematics are typically created by 
hand taking a large amount of effort. The goal of our 
research project is to address the metro map layout 
problem, where we attempt to automatically generate a 
schematic for a metro map. 

Such maps are not only used in public transport. 
Closely related schematics can be found in circuit 
diagrams (from which Harry Beck drew his inspiration) 
and public utility pipeline diagrams. The metro map 
metaphor has also been considered to be a useful 
visualization technique for non-spatial data [10]. 

We have approached the problem by using a hill 
climbing multicriteria optimization technique. 
Multicriteria systems have been seen before in other 
graph layout applications [2] and a number of metrics 

have been investigated [1][6]. In our case we represent a 
metro map as a graph, with stations represented by nodes 
and lines between stations represented by edges, 
including multiple edges where there is more than one 
line between stations. We start with the geographic 
layout of the network. A number of aesthetic metrics are 
calculated in the graph and summed to produce a total 
fitness value. The nodes are tested in turn to see if a 
position can be found that improves the score. This 
process continues for a specified number of iterations. 

The implemented metrics are: edge crossings; edge 
length, which attempts to position nodes evenly; angular 
resolution, which attempts to avoid very narrow angles 
for edges attached to the same node; line straightness, 
which attempts to avoid a change in direction when a 
metro line goes through a node; and 4-gonal, which tries 
to make lines horizontal, vertical or 45° diagonal. 

In addition to the basic multicriteria system, we have 
implemented other features to improve the final layout 
including a simple labelling strategy that tests a number 
of possible label orientations. We also implemented a 
useful technique to contract long lines. Here we replace a 
chain of degree two nodes with one weighted edge. The 
layout is then generated, after which the edge is 
expanded, so that the nodes in the contracted line 
reappear. This avoids the computational expense and 
difficulties inherent in optimising a long line in the map. 
A further technique deals with over-length edges. Here, 
two clusters of stations are separated by a edge that is too 
long. It is difficult to deal with this problem directly as 
an aesthetic criteria, so tests for such edges are made 
periodically during the optimising process. When such 
edges are found, the clusters are moved together. We 
also experimented with a restriction on the movement of 
nodes to maintain some physical relationship between 
neighbours, so that for example if one node is north of 
another, it remains north in the final layout. We do not 
use this restriction in the examples in the paper, because 
the degree of movement allowed in the current 
implementation is too small, and because in any case, 
without this restriction in place the nodes do not actually 
wander very far from the desired relationship to each 
other. 

There is some closely related work, one paper 
describes a force directed attempt to solve the closely 



related problem of laying out schematic cable plans [7]. 
We know of one previous attempt at automatically laying 
out public transport schematics by Hong et. al. [4][5]. 
Their work introduces the “Metro Map Layout Problem” 
and describes an implemented solution to it. They take a 
force directed approach, and use a very similar graph 
model to the one presented in this paper, and as with our 
work they have a contraction preprocessing step. Rather 
than begin with the geographic position of stations as a 
starting layout, their work begins with a random layout. 
They consider similar aesthetics to those we have 
chosen, although we have not produced metrics for 
dealing with overlapping labels or methods for drawing 
lines with unique colours. We have additional metrics: 
the edge length and angular resolution metrics are not 
explicitly present in their work. We have also 
experimented with enforcing a geographic relationship 
rule, not present in their work. 

Our approach is relatively slow compared to force 
directed methods. However, there are significant 
benefits. The requirements for the layout can be specified 
directly, and adjusted to user preference by altering the 
relative weights of each metric. Moreover, further 
metrics can easily be implemented and to deal with 
specific difficulties in the layout or user requirements. 
For instance, a metric could be implemented to ensure 
that stations appear in suitable positions relative to other 
geographic features, such as rivers or roads. 

The remainder of this paper is organized as follows: 
Section 2 gives a detailed description of our method 
applied to real metro maps; Section 3 shows some 
examples; and Section 4 gives our conclusions, discusses 
some problems with the method and outlines further 
work. 

2. Method 

A metro map can be represented as a graph where 
stations are nodes and lines between stations are edges. 
As some metro maps feature multiple lines between two 
stations, we have to take into account multiple edges 
between nodes. We use the term ‘line’ to talk about the 
subset of edges and nodes that form a line in the map and 
are normally distinguished by colour (for example, the 
Central Line on the London Underground map). 

We embed the graph on an integer grid. This 
minimizes the number of points to consider when 
moving nodes and therefore reduces the overall running 
time of the algorithm. It also encourages edges to be 
more orthogonal. 

The method that we have developed involves using a 
multicriteria optimization technique with a hill climbing 
approach. A number of metrics are calculated in order to 
determine an aesthetic quality for the graph. Nodes are 
moved such that the total metric value never increases. A 
preprocessing step is also included which simplifies the 
graph by contracting nodes of degree two. A software 
tool is used to visualize and manipulate the graphs and 
algorithm parameters.  

2.1. Schematics Software Tool 

In order to experiment with various metrics and their 
settings, we decided to implement our own software tool 
in Java. The tool (Figure 1) consists of a graphical 
interface where nodes and edges can be created and 
manipulated. Whole graphs can be saved in text files so 
that the tool can display graphs that have been worked on 
previously. 

 

 
Figure 1. Screenshot of the schematics software tool 

2.2. Preprocessing – Graph Contraction 

Metro maps tend to have a certain characteristic of 
long lines of stations radiating from a central area. These 
lines can usually be drawn as a single straight line. 
Replacing them by a single edge means the optimizer 
does not have to attempt to generate the straight line 
iteratively (which does not always occur) and means that 
the process has improved performance, because the 
number of nodes that are moved during each iteration is 
reduced. 

The preprocessing step involves contracting the 
graph such that all nodes of degree two are removed 
from the graph and replaced by a single weighted edge. 
The removed nodes and edges are not considered during 
calculation of the aesthetic metrics. At the end of the 
algorithm, the contracted edges are expanded and nodes 
are replaced at regular intervals between the endpoints of 
the edge. 

However, it might not be desirable in every case to 
contract the graph in this manner. Once an edge is 
contracted it merely becomes a single straight edge, 
losing any bends between nodes in between the end 
points of the contracted edge. 

2.3. The Hill Climbing Optimizer 

The hill climber is an iterative process. During each 
iteration, an attempt is made to move each node in the 
graph. Any nodes which satisfy the conditions for 
movement are moved to their new positions. 

There are various ways in which moves can be made 
when optimizing a graph. We have experimented with 
random movement of nodes, however it can take a 
considerable time for the random positioning to find the 



ideal location for a particular node. Instead, we constrain 
nodes to the grid and calculate the metrics for each 
possible location in a square around the start point of the 
node. The size of this square area is specified at the start 
of the algorithm. For example, specifying a size as one 
will allow the node to move to any of the eight 
immediately adjacent grid points. The node is moved to 
the point showing the largest improvement to the total 
weighted metrics. A move is also allowed if the total 
weighted metric value is the same as the start point. If all 
the possible moves are worse than the current value for 
the node, no movement is made. 

A cooling option is provided in order to allow the 
maximum distance that a node can move to decrease 
linearly with each iteration. The reasoning behind this is 
that the graph initially requires relatively large node 
movements to form a overall structure for the layout. In 
later iterations, only minor movements need to be made 
to node positions in order to refine the layout within the 
structure developed in the first iterations. 

We experimented with enforcing a geographical 
relationship rule whereby nodes that were to the north of 
those nodes stayed to the north of other nodes, nodes to 
the east stayed to the east, etc. However, we decided that 
enforcing these rules was not flexible enough as there are 
many situations where the rule has to be broken to 
achieve a better layout (particularly in the case of highly 
connected regions of graphs). 

Finally, before a movement is made, the graph is 
checked to make sure that the movement does not 
introduce edge crossings or that the node and its adjacent 
edges do not occlude any other nodes or edges. 

2.4. Aesthetic Metrics 

We implemented a total of five different metrics 
based on various geometric measurements that we 
believe affect the quality of the graph. A metric involves 
iterating through either all the nodes or all the edges in 
the graph and calculating a value for each item. These 
are then summed to provide the value for the metric. In 
order to overcome some of the problems with metric 
values being disproportionate, each metric value is 
multiplied by a weighting. Altering the weighting also 
allows the user to emphasize or de-emphasize particular 
criteria. All the metrics we implemented are invariant 
under scaling, so that if the graph (and underlying grid) 
are scaled, the value for the metric remains the same. 

The five metrics that we implemented are: 
 
Edge Crossings Metric. The edge crossings metric 

is defined as the total number of edge intersections. As 
this is typically a low number, the weighting for this 
particular metric tends to be significant compared to the 
weightings for other metrics. It can be argued that edge 
crossings have meaning in metro maps, representing a 
line that crosses another. However, as edges are 
represented as straight lines between stations and not as 
their true route, unwanted edge crossings may be 
inadvertently introduced into the initial layout of the 

graph. This metric will only remove edge crossings that 
are in the initial layout because node movement is 
constrained to never adding an edge crossing. 

 
4-gonality Metric. The 4-gonality metric is a 

measure of how close edges are to being horizontal, 
vertical or at 45° diagonal [12]. The intention of this 
metric is to favour edges which are orthogonal or at a 
45° diagonal. Other edges as penalized with respect to by 
how much an angle they differ from being orthogonal or 
at 45° diagonal. 

The metric for a graph containing edges E is: 
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where (u, v) is an edge between nodes u and v, and y(v) 
and x(v) are the y- and x-coordinate of node v 
respectively. 

 
Edge Length Metric. In order to make sure that 

nodes are spaced evenly along lines, it is necessary to try 
to minimize the length of edges in the graph. The 
smallest edge length will be no less than the spacing of 
one grid point, so edge lengths are considered as being 
multiples of the grid spacing. 

The edge length metric for a graph containing edges 
E is: 
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where e  is the length of an edge and g is the grid 

spacing. For contracted edges, the number of hidden 
nodes must be taken into account. The metric is therefore 
modified: 
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where d is the number nodes of degree two that e 
represents. This will cause contracted edges which are 
too short as well as too long to contribute to the metric. 

 
Angular Resolution Metric. This metric attempts 

to ensure that all the edges incident to a node are evenly 
spaced. For example, if the node has four incident edges, 
the ideal angle between each pair of adjacent edges will 
be 90°. Maximising the angular resolution in this way 
reduces the possible confusion between edges which 
would otherwise be drawn very close together. 

To calculate the metric, the absolute value of the 
difference between the ideal angle and the angle between 
each pair of adjacent incident edges is found and 
summed for all the nodes v in the graph: 
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where deg(v) is the degree of node v and ( )1, 2e eθ  is the 

angle between the adjacent edges e1 and e2. 



 
Line Straightness Metric. An obvious feature of 

public transport schematics is that lines should appear to 
pass straight through nodes much the same way as the 
metro line passes through the station. 

In order to measure this metric, a subgraph for each 
line in the graph is considered and all the nodes of degree 
two are then found. For each of these nodes, the 
difference in angle between the two incident edges is 
found:  

 ( )
1, 2 where 1& 2
are theonly twoedges

of thesameline incident to

1, 2
v V e e E e e

v

e eθ
∈ ∈

      
∑ ∑  (5) 

where ( )1, 2e eθ  is the angle between the adjacent edges 

e1 and e2. 
Figure 2 shows a simple example of how the line 

straightness metric is calculated. The angles θ1 and θ2 
show the angles which are measured as part of the 
metric. 

 

θ1

θ2
 

Figure 2. Line straightness metric example 

Therefore, if the two edges are parallel, the metric 
evaluates to 0. If the two edges are at right angles, the 
metric evaluates to 90. This will penalize edges which 
double back on themselves more than edges which bend 
only slightly. 

If a node in the subgraph for a line has a degree of 
more than two (for example, a line that branches), the 
node is not included in the line straightness metric. This 
is because it is not obvious as to which of the edges is the 
main line (and should therefore be straightened) and 
which is the branch line. 

 
Total Metrics.  The hill climber uses the sum of the 

weighted metrics to calculate a value for the total 
aesthetic metric for any particular layout of the graph. 

2.5. Dealing with Over-length Edges 

One of the problems that we discovered while 
developing this work was that the graph would tend to 
form small clusters of nodes, particularly at the ends of 
lines or where a line branched. This is because with only 
moving one node at a time, the nodes at the edge of each 
cluster can’t move towards the rest of the graph. A 
feature of these clusters is that the they are connected to 
the rest of the graph by one (or more) long edge. 

We initially tried to find the clusters using the k-
means clustering algorithm. However, this method is not 
used because we discovered clusters are not easy to find, 
particularly where the number of clusters and the number 
of nodes in each cluster varies. 

Our next approach was to limit ourselves to clusters 
that formed at the end of lines. These are relatively easy 
to find by using an algorithm to find over-length bridge 
edges. These are edges which are longer than one grid 
spacing and whose removal would disconnect the graph. 

To find bridge edges, a recursive algorithm is used. 
Starting with an over-length edge, the graph is 
recursively explored starting from the two endpoint 
nodes of the over-length edge. If at any point the 
algorithm comes upon the node at the other end of the 
over-length edge, it can be assumed that the edge is not a 
bridge edge (there must have been some other route 
between the two endpoint nodes rather than directly 
along the over-length edge). If the over-length edge is a 
bridge edge, then the algorithm returns two sets of nodes, 
representing the subgraph formed at each end of the 
over-length edge. 

Once all the over-length bridge edges are found, all 
of the nodes that are on the far end of the bridge edge 
(the smaller of the two sets of nodes) are moved so they 
are closer to the rest of the graph. If both sets of nodes 
are the same size, then one set is chosen arbitrarily. 
Figure 3 shows an example of a bridge edge where the 
edge b is over-length. Neither of the two end nodes of b 
can move towards each other without increasing the 
length of two or more edges. In this case, the three nodes 
to the right of b will be moved closer to the other four 
nodes as it is the smallest subset of nodes. This process is 
implemented as an optional step to be performed after 
each iteration. 

 

b

 

Figure 3. Bridge edge example 

2.6 Labelling 

We have implemented a simple labelling strategy for 
station names. Station labels can be oriented in up to 
eight different directions, listed in order of preference: 
horizontally to the right of the node, horizontally to the 
left of the node, 45° diagonally above-right, below-right, 
above-left and below-left of the node, vertically above 
the node or vertically below the node. To determine in 
which orientation to place a label, each possible 
orientation is checked in order of preference and the first 
location which is clear of incident edges is used for the 
label. An example of labelling a map is shown in Figure 
8. No checks are made to make sure that the label does 
not obscure other nodes, edges or labels. 

3. Examples 

To illustrate the performance of our algorithm, we 
show how it performs on three metro maps of increasing 
size and complexity. The Atlanta MARTA Rail map [9] 



is an example of a small metro map with only two lines 
and 38 nodes. The Washington Metro [13] is an example 
of a medium sized map with 86 nodes and five lines. For 
an example of a large metro map, we use the Sydney 
Suburban CityRail map [11] which has 172 nodes and 
seven lines. The layout of the Atlanta map is dealt with 
in more detail than the other two maps to show 
intermediate stages during the running of the algorithm. 

Examples were run on a 2.4GHz Pentium 4 machine 
with 512MB of RAM using Java 2 v1.4.2. The running 
time in seconds for each map using both contracted and 
uncontracted edges with the metrics weightings as shown 
in the following sections and with ten iterations is shown 
in Table 1. As the complexity of the map increases, the 
time taken to layout the map increases. Using the 
preprocessing step to contract edges significantly reduces 
the running time of the algorithm. 
 

Map Uncontracted 
Graph - Time 

Contracted 
Graph - Time 

Atlanta 10.665 0.260 
Washington 161.394 16.865 
Sydney 1690.228 241.590 

Table 1. Running times for the three examples 

On most of the examples, labels have been omitted 
for clarity. 

3.1. Atlanta MARTA Rail Map 

The Atlanta MARTA Rail Map is used as an 
example of a small metro map. It’s structure is that of a 
tree as it has no cycles. The initial layout of the map is 
shown in Figure 4, and like all our examples, the starting 
layout is the geographic position of the stations. The 
metric weightings used to generate this map are: edge 
crossings, 10000; 4-gonality 8.0; edge length 7.0; 
angular resolution 0.0; line straightness 1.0. Angular 
resolution has a value of 0.0 because it has little effect in 
this particular example and therefore discounting it speed 
up finding the final layout. 

Figure 5 and Figure 6 show the graph during and 
after the first iteration. It is evident that only one iteration 
is required to remove any edges that are not 4-gonal. It 
can also be seen in Figure 6 that all the over-length edges 
are shortened to their shortest length. However, owing to 
not enforcing geographical relationships between nodes, 
the single-node branch at the western end of the darker 
east-west line has been moved to the wrong side of the 
line. 

Figure 7 shows the final layout of the Atlanta map 
after 10 iterations. Figure 8 shows the same final layout, 
this time with labels to illustrate the labelling of station 
names. It is clearly a much improved layout than the 
initial layout shown in Figure 4. The overall topology of 
the map has been preserved. However, the darker east-
west line seems to have skewed. This is partially due to 
the order in which the nodes are processed by the 
algorithm. Also, neither of the two nodes either side of 
the intersection with the other line can move without 

introducing an extra bend in the line. This is a problem 
that could be solved by using contracted edges. 

 

Figure 4. Initial layout of the Atlanta MARTA Rail 
map 

 

 

Figure 5. During the first iteration, before over-
length edges are processed 

 

 

Figure 6. After the first iteration 



 

Figure 7. Final layout of the Atlanta MARTA 
Rail map 

 
Figure 8. Final layout of the Atlanta MARTA Rail 

map with labelling 

3.2. Washington Metro 

The Washington Metro map is more complex than 
the Atlanta map. The initial layout of the Washington 
Metro map is shown in Figure 9. Of note are the 
introduction of loops of nodes, particularly in the centre 
of the map and on the two north-eastern lines. The map 
also has multiple edges between certain stations. For this 
map, the algorithm used the edge contraction 
preprocessing step, the result of which can be seen in 
Figure 10. The metric weightings used to generate this 
map are: edge crossings, 10000; 4-gonality 5.0; edge 
length 4.0; angular resolution 0.05; line straightness 2.0. 

Figure 11 shows the final layout of the Washington 
map after four iterations. The finished graph is greatly 
improved from the initial graph, with lines significantly 
straightened and in the majority of cases each line can be 
followed easily enough. The resulting graph shows a 
problem with the loop of stations at the north-east where 
the loop has been significantly squashed. This problem is 
caused by the edge contraction stage. A possible solution 
to this problem would be to use one or two intermediate 

nodes as ‘anchor-node’ so that both halves of the loop 
are not totally contracted. Another problem also arises in 
the centre of the graph where some of the edges are 
drawn with a disproportionate length. However, this is 
also a problem for the designers of the real map, so 
perhaps it is unreasonable to draw each edge with the 
same length. 

 

Figure 9. Initial layout of the Washington Metro Map 

 

Figure 10. Initial layout with contracted edges (dotted 
edges represent contracted edges) 

 

Figure 11. Final layout of the Washington map 



3.3. Sydney Suburban CityRail 

The Sydney Suburban CityRail map (shown as part 
of Figure 12) is used as an example of using our 
algorithm to lay out a large metro map. We only use the 
suburban part of the map and leave out the intercity lines 
such as the northernmost line. This makes it difficult to 
compare our results against those in [4], where a larger 
map is used. Figure 13 shows the initial layout of the 
CityRail map while Figure 14 and Figure 15 show two 
final layouts after ten iterations, the first a layout 
generated using contracted edges, the second without. 
The metric weightings used to generate this map are: 
edge crossings, 10000; 4-gonality 8.0; edge length 7.0; 
angular resolution 0.0; line straightness 1.0. 

 

 

Figure 12. Sydney CityRail map 

Both the final graphs show significant straightening 
of all the lines. The graph drawn without edge 
contraction is closer to the initial layout but at the cost of 
more time required to create the layout. We believe that 
both of the final graphs are preferable to the 
approximation when it comes to using them for 
navigation round the network. 

In Figure 14, some contracted edges are clearly not 
4-gonal. There are two possible reasons for this. Firstly, 
that it is not possible to move the nodes at the end of the 
contracted to improve the metrics without moving more 
than one node. Secondly, that in the case of diagonal 
edges, because the integer grid restricts the possible 
positions for nodes, which means that the best position 
for the endpoints of the edge is slightly offset from the 

45° diagonal in order to satisfy the edge length metric. 
Some sections of the graph also suffer from irregular 
node spacing, mainly where more than one bridge edge 
partitions the graph. 

Figure 15 suffers from similar problems to Figure 
14, mainly with respect to irregular spacing of nodes 
along lines. Both graphs struggle to cope with the small 
loop in the middle on the right; the loop is excessively 
large in order to accommodate the small branch line 
inside the loop. 

 

 

Figure 13. Initial layout of the Sydney CityRail map 

 

Figure 14. Final layout of the Sydney CityRail map 
using contracted edges 



 

Figure 15. Final layout of the Sydney CityRail map 
without using contracted edges 

4. Conclusions and Future Work 

In this paper we presented an algorithm using a hill 
climbing multicriteria optimisation technique to 
automatically generate good layouts of metro maps. We 
implemented a preprocessing step to contract nodes of 
degree two and an additional step at each iteration of the 
algorithm to deal with over-length edges. The final 
layouts of the metro maps show a significant 
improvement on the original geographic layout and make 
the maps much easier to navigate. 

We believe that out multicriteria optimisation 
technique can be extended relatively easily with other 
metrics in order improve further on the quality of the 
final map layouts. In particular, metrics can be 
introduced so that station labels are positioned with 
regard to the rest of the map – for example, it is generally 
desirable when labelling metro maps that labels never 
obscure edges, nodes or other labels. Other metrics might 
include constraining the graph to a certain area or to 
reduce the chance that a node could move close to 
another edge. Another improvement would be to use 
polylines to draw edges that cannot be drawn either 
orthogonally or diagonally. 

There are also other problems that need to be 
considered. These include dealing with highly connected 
maps, contracting multiedges and reducing over-length 
edges when there is more than one over-length bridge 
edge separating the graph. 

 
 
 
 
 
 
 
 

As the size of the network increases, the speed of 
our system degrades significantly. There is a great deal 
of optimisation that could be implemented, for example 
the metrics are completely recalculated for each node 
movement. This could be improved by the system 
reusing many of the calculations in subsequent iterations. 
The calculations of the metrics could be speeded up by 
integrating the calculation of multiple metrics. 

5. References 

[1] G. Battista, P. Eades, R. Tamassia and I. Tollis. Graph 
Drawing: Algorithms for the Visualisation of Graphs. 
Prentice Hall. 1999. 

[2] R. Davidson, D. Harel. Drawing Graphs Nicely Using 
Simulated Annealing. ACM Trans. Graphics, 15(4):301-
331, 1996. 

[3] K. Garland. Mr. Beck’s Underground Map. Capital 
Transport Publishing. England. 1994. 

[4] S. H. Hong, D. Merrick, H. A. D do Nascimento. The 
Metromap Layout Problem. Technical Report IT-IVG-
2003-03, School of IT, University of Sydney, 2003. 

[5] S. H. Hong, D. Merrick, H. A. D do Nascimento. The 
metro map layout problem, in N. Churcher and C. 
Churcher, eds, Information Visualisation 2004, Vol. 35 
of Conferences in Research and Practice in Information 
Technology, ACS, pp. 91-100. 2004. 

[6] M. Kaufmann and D. Wagner. Drawing Graphs: 
Methods and Models, LNCS 2025. 2001. 

[7] Ulrich Lauther, Andreas Stübinger. Generating 
Schematic Cable Plans Using Springembedder Methods. 
Proc. Graph Drawing 2001. LNCS 2265. pp. 465-466. 
Springer. 2001. 

[8] M. Ovenden, Metro Maps of the World, Capital 
Transport Publishing, England, 2003. 

[9] Metropolitan Atlanta Rapid Transport Authority network 
map, http://www.itsmarta.com/getthere/schedules/index-
rail.htm. Accessed on 5 March 2004. 

[10] E.S. Sandvad, K. Grønbæk, L. Sloth, J.L. and Knudsen. 
A Metro Map Metaphor for Guided Tours on the Web: 
the Webvise Guided Tour System. Proc. 10th International 
World Wide Web Conference, Hong Kong, May 1-5, 
2001. ACM: New York, 2001. pp. 326-333. 

[11] Sydney CityRail network map, 
http://www.cityrail.info/networkmaps/selection.jsp. 
Accessed on 5 March 2004. 

[12] R. Tamassia. On Embedding a Graph in the Grid with the 
Minimum Number of Bends. SIAM Journal of 
Computing. Vol. 16. No. 3. pp. 421-444. June 1987. 

[13] Washington Metro network map, 
http://www.wmata.com/metrorail/systemmap.cfm. 
Accessed on 5 March 2004. 


