
Textual Difference Visualization of
Multiple Search Results utilizing Detail in Context

Edward Suvanaphen and Jonathan C.Roberts
Computing Laboratory,

University of Kent,
Canterbury, Kent, UK, CT2 7NF
{es45,J.C.Roberts}@kent.ac.uk

Abstract

While searching documents on the web users often refine
their query terms, to generate new result lists and explore
different pages, thus they end up with several result sets.
Experience suggests that users compare these different sets,
either implicitly or explicitly. Comparison between these
sets (a) allows users to observe similarities and differences
that are not innately viewable by viewing the sets sepa-
rately, (b) reduces the cognitive effort of switching from
one result set to another and (c) enables them to browse
more effectively. In this paper we investigate comparison
visualization and describe a prototype search-engine
similarity tool (SES), which visualizes the textual difference
of multiple web searches using a combination of multiple
views and visual bracketing.

Keywords: Search result visualization, comparison
visualization, detail in context, multiple linked views.

1 Introduction

Web searching is now an everyday activity. Traditional
search engines display the results in multiple long lists; the
user can scroll the list to view new information or select
‘next’ to display additional items. For the user to progress
they must decide whether to open the linked information in
the current view (the default operation) or to open the in-
formation in a ‘new window’. After viewing several pages
they may change the keywords and perform another (se-
mantically related) search. The users subconsciously start
to realize similarities and differences between searches.

Thus, for a user to (explicitly) compare multiple search
results: they have to use two web-searches displayed side-
by-side in two separate windows and visually inspect the
two results. Consequently, it is difficult for the user to easily

see and understand the similarities and differences between
multiple searches.

In this paper we explore the use of a ‘comparison view’.
Such a view can pre-attentively visualize the associations
between the multiple datasets by explicitly demonstrating
and annotating these features. Through such comparisons
the user can gain a better understanding of the searched in-
formation and they can more effectively browse, because
their attention is drawn towards significant features in the
results. As these observations are explicitly represented the
cognitive overhead of switching from one result-set to an-
other is reduced. The cognitive load can be further exac-
erbated as the results are traditionally displayed in a long
list, which utilize a large amount of space. There are visu-
alizations that address the limited screen space that use ab-
straction, summarization, multiple views and focus+context
methodologies. Our comparison tool uses several of these
techniques. Indeed, the tools summary view reduces the
consumed screen real-estate by producing a comparison
from an intersection of the different search-result lists.

In this paper we focus on the comparison and display of
textual data. Although graphical techniques are useful, and
by mapping the data to a graphical representation it may
allow the user to view the full data set on his screen, but
he/she will often lose the subtle details and context infor-
mation that is provided by a textual representation of the
results. Moreover, everyday users are inherently more fa-
miliar with text-based browsing: Textual visualizations of
the search result data is both important and necessary. Thus
it is important to design a solution that utilizes traditional
representation methodologies but allows the user to easily
compare and contrast different search results. This paper
(a) describes principles behind textual difference (section
2) (b) presents a design and implementation for search en-
gine similarity (SES) that uses multiple and detail+context
views (sections 3and 4) (c) reviews current difference visu-
alization systems (section 6).



Figure 1. Model of Code Comparison Tool.
Two files (A & B) are compared, differences
are highlighted in color and an overview of
the two documents is shown on the right.
Colour highlighting is used to link similar re-
sults (Similarity principle) and Synchronized
scrolling is used to align the two files while
they are being viewed (Symmetry principle).

2 Background & Analysis

The data to form the comparison can come from various
sources. Obviously, the user may wish to compare the re-
sults from a range of search engines, this may be achieved
to observe popularity of different sites or to find particular
results that one search engine may not display. Alterna-
tively, the user may wish to compare the results from multi-
ple searches using different keywords, to find links between
different subjects or to help the user consolidate towards
some ideal search terms. This may involve the use of inter-
section (A∩B), union (A∪B) and difference (A−B) oper-
ations. Additionally, meta or statistical information may be
compared. For example, appearance, link structure or file
size information can be compared. These abstract forms
would need to be visualized in graphical techniques, such
as bar charts or scatter plots.

One of the earliest text-based comparison tools could be
the English Hexapla New Testament [9]. This was printed
in 1841 and displays the original Greek at the top of a page
with six different English translations underneath in paral-
lel columns (three on the left page and three on the right).
This demonstrates the simplest form of comparison, which
is side-by-side. We describe four further categories:

The ‘side-by-side with cues’ category describes the vi-
sualizations that utilize annotations (or various cues) as well
as the parallel views. For example, similar information can

be concurrently highlighted in the same color, or circles and
arrows connecting the objects together could highlight sim-
ilar objects.

Overlaying multiple visualizations will generate one
layered view; much the same way as overlaying a series of
overhead transparency foils would generate a single view.
This enables a visual comparison of the multiple views and
does not alter the format of any visualization. Additionally,
various parts of the information could be ‘shaded out’ to
bring to the foreground (say) similarities between datasets;
see Figure 1.

A merged view shows multiple datasets in one view.
Each of the differences are shown in context with surround-
ing information. For example, Microsoft WordTM provides
a ‘merge document’ facility that aggregates different ver-
sions of the same document together. Sentence or word dif-
ferences are highlighted in color and by striking through
words. The user is given the responsibility to accept or re-
ject individual changes.

Abstract comparison is dissimilar to the aforemen-
tioned categories. Traditional methods display the text in-
formation as text, albeit various characters may be inserted
or highlighted in some form: but it is still a one-to-one map-
ping. However, it is possible to compose and abstract statis-
tical information from this original data. For example, the
structure of a sentence can be represented by a parse tree
(noun, verb phrases etc), these parse trees represent an ab-
stract version of the original sentence; hence it is possible to
compare and visually depict the difference between several
parse trees. Although the comparison can be achieved at the
abstract level the visualization can be displayed at either the
abstract (such as the parse trees) or translated back to the
non-abstract (the original text view). Havre et al [18] utilize
abstract views in the SPARKLER visualization; in their tool
a dot represents a search result, a group of dots represent a
list of search results and multiple groups of dots represent
several searches.

3 Design & the Gestalt Principles

In this paper we wish to visualize textual elements that
are similar or dissimilar between various lists, thus elements
in one list need to be associated with elements in another.
This can be achieved through the use of the Gestalt princi-
ples (from the German word for ‘pattern’). These are based
on work by a group of German psychologists in 1912 who
detail theories of perceptual organization [22]. Although,
many details vary between sources, there is a set of core
principles that remain throughout. From experience and
evaluating other visualizations we can ideate different de-
signs that utilize the Gestalt principles.

The principle of proximity states that objects closer to-
gether will be considered as belonging together. An exam-

2



Figure 2. The SES (Search Engine Similarity) comparison tool.

ple is the SQWID [19] visualization where distance is used
from Nodes determines their relevancy to particular search
terms.

The principle of symmetry states that by placing objects
in symmetry the user can more easily see associated pat-
terns. A design example is Dynamic scrolling lists, where
selection of a result that could be found in more than one
list, scrolls the lists until the similar results were aligned.
Ware [20] describes an application that allows users to align
data in different time-series plots to identify patterns.

The principle of similarity states that objects sharing vi-
sual characteristics (e.g. shape, colour, texture, orientation)
are understood as belonging together. Colour highlighting
can be used to link similar results in different result sets.
This is utilized in the SPARKLER Visualization, by Havre et
al [18].

The Principle of foreground/background states that their
is an implicit understanding of the object and its back-
ground, that being the object will stand out from its back-
ground. This effect can be caused by the relative size differ-
ence between these entities, where the uniform background
space is usually perceived as the larger space, thus drawing
attention to the smaller areas. color, texture or other appro-
priate delimiters can also cause this effect. By highlighting

relevant/similar results in bright colours, and the remainder
in grey, the visualization creates a division which the user
will perceive as ’layers’ (the foreground, and background)

The principle of chronology states that things that move
or change in synchrony seem together. This can be ap-
plied in various ways. For example, items that are animated
and move in unison will seem grouped together. Dynamic
Synchronized scrolling is used in our design to this effect.
This will link the users current result across several differ-
ent views, and will modify each view in concordance with
any changes in the current selected result. This technique is
used in a number of tools, for example, Vdiff provides syn-
chronized scrolling between two textual difference views,
and North and Shneiderman use this in their Snap-together
tool [3].

It is our aim to explicitly visualize the textual difference
of the various search results, thus, we have identified the fol-
lowing design criteria that will allow users to quickly iden-
tify results that are both similar and interesting.

(1) Link Similar results between different views, so that
the user remains coordinated. The Similarity principle
should be used to select suitable variables to link the results.

(2) Provide a method of displaying the large amounts of
data returned by search engines in the limited amount of

3



screen space. Techniques which should be considered in-
clude Detail and Context views, and multiple views.

(3) Provide a summary view of the data which displays
an intersection of results from different search terms. A
summary of the data is created dynamically from the master
repository of data, this in turn can be displayed separately
through the use of multiple views.

4 SES: Search engine Similarity

A screen shot of the system is displayed above in Fig-
ure 2, in this section we detail how a user operates the tool,
then discuss the three sub-components of the GUI: the Sum-
mary view, Overview and bracketed view, detail the use of
coordination between views, and finally describe how the
tool is implemented.

User Operation. The user begins their interaction by
inputting two or three sets of search terms, each of the key-
word groupings should be similar in some way, for instance,
each word may be a synonym of another. These terms are
then submitted to Google using the Google Web API [8].
Two or three sets of search result elements (SRE’s) are re-
turned (depending on the number of terms submitted). Each
SRE represent an individual url, and contains information
concerning nine variables. In this work we focus on four
variables: title, URL, paragraph of text and page size. The
information is then visualized in three coordinated views:
summary, overview and bracketed view. A user can open a
webpage by clicking on the title of the result.

The summary view, shown top left of Figure 2, displays
only the websites that appear in at least two search-result
lists. This view consists of a tabbed pane. The main tab
shows a summary view, that contains a list of URLs each
with three circle-glyphs A/B/C. The circles are shaded in
a value equivalent to there ranking (a darker shade of blue
represents a higher ranking – see Figure 3), unless the par-
ticular result is not present in that search result, when it is
colored gray. The results from each search (A, B or C) are
aligned in columns. Each of the other three tabbed lists
show detailed information for each specific search, includ-
ing page title, fragment of the text, URL and page size. This
tab-pane is shown in Figure 4).

The overview panel (bottom left of Figure 2) provides
a view of the whole dataset, affording context for the other
views. Comparing lists of search results in context allows
the user to identify ‘interesting’ results in both the imme-
diate surroundings and within the macro view of the list.
This is achieved using greeking. In this view, the length
of the line represents the page size and a parallel column
represents each search result list. The information within
each column can be ordered in several ways, such as, by
page size or rank order. In our implementation each of the
columns are ordered by rank. When the user selects one col-

Figure 3. Circle Glyphs. Each of the circles
are shaded in a value equivalent to there
ranking (A darker shade of blue represents
a higher ranking).

umn (e.g. column A) this becomes highlighted and the in-
tersections with the other lists (columns B and C) are shown
in a shade equivalent to the rank of the selected overview
(column A). Thus, for example, a highly ranked hit that is
also contained within the other search results, but at a lower
rank, will appear dark blue in each to denote its high rank-
ing, but will appear higher up in column A, but lower down
in column B and C.

The bracketed view, depicted at the top right of Fig-
ure 2, is based on the visual bracketing principles in [10].
This is a detailed view of the currently selected list in the
overview panel. The bracketing principle is a detail-in-
context view, which allows a user to first focus on one
search result element in detail, while viewing the surround-
ing context, which is achieved by reducing the detail of the
surrounding text.

Coordination. When dealing with multiple views it is
crucial to coordinate between these views [14]. Coordina-
tion is an important part of comparison visualization, for
example when viewing a result in one search result list the
user needs to be aware of the location of similar occurrences
of that result in other lists. This is used in several ways in
SES. First, when the user selects the focus of the summary
view (bottom left) the bracketing view updates to depict the
selected information, see Figure 5. Second, dynamic brush-

4



Figure 4. Summary view (tab view). Each
tab contains a detailed view of each specific
search, including page title, fragment of the
text, URL and page size.

ing is used to highlight every URL that has the same host-
name (highlighted in yellow). As the user moves the cursor
and brushes over a SRE every other occurrence of that SRE
is highlighted, wherever it is located. Finally, every occur-
rence of the hostname that is focused in the bracketed view
is highlighted (in red) in every other view.

Implementation. The Program was implemented using
Java 1.2. Data was obtained through the Java bindings to
the Google Web API [8]. The program uses a model-view-
controller design pattern where the results are stored in a
central data-model and the windows represent views on this
data. Manipulating either the mouse or the scrollbars will
trigger a set of Listener objects which will manipulate the
visualization accordingly. The Listeners also control the
colour-shading, which highlights results as the mouse cur-
sor moves over it.

5 Results & Analysis

We have performed a preliminary user trial; each user
was given a brief demonstration of the program, encouraged
to interact with the visualization, and observed throughout.
Afterwards, each user completed a questionnaire and was
informally interviewed.

We discovered that some of the users found the controls
hard to comprehend at first, but after using the ‘help panel’
the users understood how to control the program. The sum-
mary panel and the dynamic brushing (in yellow) were both
found to be extremely useful in the comparison process.
The summary panel enabled users to quickly observe re-
lationships between similar results. Moreover, users stated

Figure 5. Coordinated views. When the user
selects a result in one view, all the other views
are updated and the result is highlighted in
the other views.

that the focus highlighting (in red) enabled them to locate
relevant results quickly.

The user trial revealed new problems with the GUI,
Some users entered combinations of search terms which
were so far removed from each other that results existing
in multiple lists could not be found. A similar situation also
ensued if the users searches did not return any results or if
the user did not input two or three searches. One solution,
that we plan to investigate in future work, would be to use
synonyms based on the search terms.

Another problem that the user study highlighted was one
of scalability. Ie., how does the system cope with large vol-
umes of search results, or more than three queries.

Currently, the system, by default, displays a maximum
fifty search results for each input term A/B/C. If the user
requires to view more than fifty results then the major chal-
lenge is to accommodate these extra results in the overview-
panel. Both the summary and bracketed view naturally ex-
pand to the number of results presented, however overview-
panel displays a complete ‘overview’ of the data in one
view. A solution could be to place the greeked lines closer
together to fit more data in. But, this would not make much
space saving. Alternatively, the overview could be gener-
ated using an alternative design such as pixel based tech-
niques [5], or even a mixture of greeked lines and pixel
based techniques in a bracketed view [10].

Comparing more than three query terms is perhaps the
more interesting design challenge. For instance, it would
be feasible to imagine that a user would wish to com-
pare their last four or five searches (from a search his-
tory). Solutions to this are ongoing work. One of our
ideas uses non-textual similarity (an abstract graphical re-

5



alization) alongside textual-difference visualization, where
the graphics show the overview and the text view shows the
detail.

6 Related Work

Textual difference visualization has been used in a num-
ber of applications, from general file-differencing tools to
more specific applications such as program code analy-
sis, literature comparison, plagiarism detection, and finally
search result visualization.

Most of the file-difference tools can be classified as
‘side-by-side with cues’ techniques, as shown diagrammat-
ically in Figure 1. These tools typically emphasize the dif-
ferences between the versions rather than emphasizing sim-
ilarity. Often the differences form a smaller set, and thus
can be more easily pre-attentively visualized. For instance,
Vdiff [6] displays two parallel, synchronized views; colors
emphasize the parts that are dissimilar, and similar areas of
the text are enclosed in a bounding box, the boxes in each
of the columns that are similar are joined by explicit lines.
Both parallel views are scrollable and they align to keep
identical parts adjacent. These tools can also be used to an-
alyze program code.

Code development is often done in incremental stages
by many developers. Thus, as parts of the code are writ-
ten, tested, enhanced and extended many versions of the
code are generated. These are often stored in a version-
control repository (such as CVS). Consequently the textual
difference tools enable a developer to better understand in-
cremental changes, identify missing code or errors in the
code. There are many tools available including [1, 2, 7, 21].
Most of the tools share the same basic textual format where
the viewing window is divided into two (or three) principal
sections: one for each file. Usually the differences in each
of the files are highlighted; different colors represent added
lines, deleted lines, and changed lines. Some tools such as
WinDiff [21] merge the information into one view [23], so
different colors are used to represent similar and different
text. SeeSoft visualizes program text and version control
using greeked lines [17]. Greeking exchanges the charac-
ters of the text with straight lines and hence is useful for
providing summary information about a document. Robert-
son and Mackinlay use greeking as part of their Document
Lens [15]. Some of the code visualization tools also provide
additional facilities such as to allow the user to edit the files
that are being differenced or highlighting the location of mi-
nor differences such as letter changes or capitalizations.

As well as visualizing differences in files and program
code, textual difference can be used to investigate corpus in-
formation. ItLv (Interactive Timeline Viewer) [12] by Mon-
roy et al. is a tool that can be used to visualize variations
among documents. They use a timeline viewer, where the

X-axis corresponds to pages in the book, and the Y-Axis
displays multiple rows (one for each edition being com-
pared). Small bars along each progress line depict the dif-
ferences of the editions; the height of the bar denotes the
number of differences. Monroy et al. use this to examine
various editions of Don Quixote.

Plagiarism detection is another use for textual difference
tools, something that is useful in an educational environ-
ment. Websites such as Turnitin.com and wordchecksys-
tems.com offer plagiarism software, which utilizes textual
difference to show where students have copied work from
Internet sites. The distinction with these tools is that, al-
though they adopt a similar side-by-side approach to dif-
ference multiple files, they can compare against versions
stored in a work repository, or against information on the
web, thus deterring students from retrieving texts from
homework repositories or merely copying text from the
web. Abstract comparison and abstract visualization is also
used in plagiarism detection [4, 13].

There are a number of tools which compare search re-
sult data without using text, these abstract comparison tools,
such as SQWID [19] and SPARKLER [18], plot objects
within a two-dimensional axis, instead of representing the
text. SQWID, for example, visualizes search results by sub-
mitting a query, and then locate ‘interesting’ words from
the returned set of results. These words then become term
nodes, and each of the results returned, represented by page
nodes, will gravitate towards different term nodes depend-
ing on their relevance to the term. Sparkler displays its re-
sults as dots along multiple lines drawn from the center of
the view.

Some tools utilize objects within a 3D space to substi-
tute the text. VR-VIBE [16], for example, creates visu-
alizations of bibliographies. The user specifies keywords
that they wish to use to generate the visualization and place
these keywords in 3D-space. Representations of each docu-
ment are then positioned in the space according to how rele-
vant each document is to each of the keywords. Scatter-plot
graphs are another non-textual method of comparison. The
3D scatter plot was part of a series of visualizations for the
NIRVE [11] project. Users enter three search terms that be-
come the three axis of the scatter plot; the results are placed
within the scatter-plot according to the number of times that
the each of the search words appears in each of the results.

All of the abstract search-result visualizations described
use the Gestalt’s similarity principle. The use of color is a
prominent characteristic shared between nearly all the visu-
alizations. Non-textual visualizations also take advantage
of characteristics such as distance to show similarity (as
used by [18] and [19]).

6



7 Future work & conclusion

We have developed and implemented a difference visu-
alization that compares multiple search result lists. Our
system is based on the ‘side-by-side with cues’ category,
and uses Gestalt principles to implement the comparison.
Indeed, we have used multiple views, dynamic brushing
and highlighting techniques to aid in result comparison, and
have implemented a detail-and-context view to aid in view-
ing large data sets. Our user study has shown that users
consider the summary view and color highlighting to be par-
ticularly useful tool for locating similar results.

We believe that such textual comparison is useful, and
that it should be readily available for everyday users. Cur-
rently this is not the case. There is much to improve and
many other ideas to explore. For instance, it would be
useful to apply the other comparison categories of overlay-
ing, merging and abstract views to search-result compari-
son. There has been some research in the application of
abstract views to search-result visualization (as detailed in
section 6), and some work has been done on overlay and
merged views for other application areas.

Apart from further improvements of SES, such as im-
proving the greeked panel and allowing two, three or more
comparisons, employing other (exact or fuzzy) matching
criteria’s (such as hostname, filename, page size or con-
tent), or using different search engines, we envisage that it
would be useful to have a search result difference visualiza-
tion that is fully flexible and integrated into the browser. For
example, it would be favorable to continually add searches,
remove searches from the comparison, compare subsets of
returned results, and to do this natively (within the browser).
Ideally, the comparison would be achieved silently and
historically, such that a user can compare any previously
searched elements (even from previous days) without ex-
plicitly requesting such an action.

Acknowledgements

We thank all those people who have tested the software
especially for their comments and input into this work.

References

[1] Araxis Merge Tool. www.araxis.com/merge, February 2004.
[2] Beyond Compare, advanced file and folder comparison util-

ity. www.scootersoftware.com/, February 2004.
[3] C.North and B.Shneiderman. Snap-together visualization:

A user interface for coodinating visualizations via relational
schemata. In Advanced Visual Interfaces, pages 128–135,
2000.

[4] F. Culwin and T. Lancaster. Visualising intra-corpal plagia-
rism. In 5th International Conference on Information Visu-
alization (IV ’01), pages 289–296. IEEE, July 2001.

[5] D.A.Keim, M.C.Hao, U.Dayal, and M.Hsu. Pixel bar charts:
a visualization technique for very large multi-attribute data
sets. In Information Visualization (InfoVis), pages 20–34.
IEEE, March 2002.

[6] D.J.Barnes and M.T.Russell and M.C.Wheadon. Develop-
ing and adapting UNIX tools for workstations. In EUUG
Conference Proceedings, pages 321–333, 1988.

[7] ExamDiff visual file comparison tool. www.prestosoft.com/
ps.asp?page=edp examdiff, Feb 2004.

[8] Google Web API. http://www.google.com/api, Feb 2004.
[9] English Hexapla new Testament, 1841.

[10] J.C.Roberts and E.Suvanaphen. Visual bracketing for web
search result visualization. In Ebad Banissi et al, editor, Pro-
ceedings Information Visualization (IV03), pages 264–269.
IEEE Computer Society, July 2003.

[11] J.Cugini, S.Laskowski, and M.Sebrechts. Design of 3d visu-
alization of search results: Evolution and evaluation. In Pro-
ceedings of IST/SPIE, Visual Data Exploration and Analysis,
pages 198–210, January 2000.

[12] C. Monroy, R. Kochumman, R. Furuta, and E. Urbina. In-
teractive Timeline Viewer (ItLv): A tool to visualize vari-
ants among documents. Lecture Notes in Computer Science,
2539:39–49, 2002.

[13] R. Ribler and M. Abrams. Using visualization to detect pla-
giarism in computer science classes. In 2000 IEEE Sym-
posium on Information Visualization (InfoVis), page 173.
IEEE, October 2000.

[14] J. C. Roberts. On Encouraging Coupled Views for Visu-
alization Exploration. In R. F. Erbacher and A. Pang, edi-
tors, Visual Data Exploration and Analysis VI, Proceedings
of SPIE, volume 3643, pages 14–24. IS&T and SPIE, Jan-
uary 1999.

[15] G. G. Robertson and J. D. Mackinlay. The document lens.
In Proceedings of the 6th Annual Symposium on User Inter-
face Software and Technology, pages 101–108. ACM Press,
November 1993.

[16] S.D.Benford and D.N.Snowdonand and C.M.Greenhalgh
and R.J.Ingram and I.Knox and C.C.Brown. VR-VIBE: A
virtual environment for co-operative information retreival.
Computer Graphics Forum, 14(3):349–360, 1995.

[17] S.G.Eick, J.L.Steffen, and E.E.Sumner. Seesoft - a tool for
visualizing line oriented software statistics. IEEE Transac-
tions on Software Engineering, 18(11):957–968, November
1992.

[18] S.Havre, E.Hetzler, K.Perrine, E.Jurrus, and N.Miller. Inter-
active visualization of multiple query results. In 2001 IEEE
Symposium on Information Visualization (InfoVis), pages
105–112. IEEE, October 2001.

[19] S.McCrickard and C.Kehoe. Visualizing search results using
SQWID. In Proceedings of the Sixth International World
Wide Web Conference, Apr. 1997.

[20] C. Ware. Information Visualization: Perception for Design.
Morgan Kaufmann Publishers, 2000.

[21] WinDiff Tool, microsoft sdk tools, February 2004.
[22] W.Wertheimer . Laws of Organization in Perceptual forms

(Untersuchungen zur Lehre von der Gestalt II). Psycologis-
che Forschung , 4:301–350, 1923.

[23] W. Yang. How to merge program texts. The Journal of
Systems and Software, 27(2):129–141, November 1994.

7


