
A Viewpoints Approach to Designing Group Based Applications 

D.H.Akehurst, A.G.Waters, J. Derrick 
Computing Laboratory, University of Kent 

Canterbury, Kent, CT2 7NF, UK 
{D.H.Akehurst, A.G.Waters, J.Derrick}@kent.ac.uk 

Keywords: Groups, multicast, Open Distributed Processing, 
viewpoints, system design. 
Abstract 
There is increasing interest in group-based applications for 
video distribution, multimedia conferencing, publish and 
subscribe etc. Such applications can use networks efficiently 
by multicasting (supported traditionally at the network layer, 
but also now at the application layer). Designing such large-
scale distributed systems is a complex task that can be aided 
by using a viewpoint approach to separate out different 
concerns, for example to separate object interaction from 
communications support.  This paper extends earlier work on 
the design of distributed systems that use point-to-point 
communication to propose a framework within which 
viewpoints can be used to assist the design of complex 
applications involving groups and multicasting. 

1 Introduction 
The Internet supports point-to-point communication 

between two computers placed geographically anywhere in 
the world. Other applications operate in a distinctly different 
manner, to support a group of end-users. Rather than 
employing a one-to-one communications path between two 
specified users, they operate over a communications model 
supporting one-to many and many-to-many connections. 
One-to-many examples include video distribution, News 
Broadcasts, Advertising and Stock Price Updates. Examples 
of applications using many-to-many communication are 
Video Conferencing and Shared Whiteboards.  

Group-based applications have a variety of requirements, 
which we discuss below. A key requirement is that they 
make efficient use of the network and this can be done by 
multicasting, which avoids unnecessary duplication of 
messages across network links.  Multicast provision at the 
network layer is provided on Internet routers through the host 
group model [8].  The model is based on best-efforts delivery 
and is open and dynamic: the membership is unknown and 
anyone can transmit to a group. Blocks of addresses for 
multicasting are provided in both IPv4 and IPv6. 

Concerns remain about the scalability and security of 
the host group model and the lack of provision for 
sophisticated applications. Many Internet routers are not yet 
configured to be multicast-capable. For these reasons, the 
current trend is to implement Application Layer 
Multicasting (ALM), whereby the application layer itself 
takes responsibility for organizing multicast trees and 
forwarding messages. ALM is less efficient, but has the 
flexibility to support a wide range of group-based services.  

Group-based applications raise many design issues and 
these issues span networking layers. Host groups are ideal 
for open information services where there are a small 
number of informally co-ordinated senders. Comprehensive 
group support requires authenticated membership, group 
management, identifiable senders, security and support for 
real-time Quality of Service (QoS) and for mobility.   

Such extra support can be offered at the transport or 
application layer.  IETF proposals at the transport layer are 
most advanced for Reliable Multicast Transport (RMT) 
[26]. The approach is to use building blocks from which 
users can construct the required functionality, such as 
Forward Error Correction or hierarchical acknowledgement 
trees. The traditional broadcast ordering protocols could 
also be provided at this layer. Specific group-based 
applications also have their individual requirements: for 
example layered video coding, publish and subscribe 
mechanisms or floor management for real-time 
conferencing.  

It is clear that designing group-based distributed 
systems is a complex task.  We believe that design 
methodologies can assist with this task and will enable 
group-based applications to work over different 
infrastructures and different engineering environments. 
Additionally we believe that it will encourage more 
widespread implementation of group-based applications. 

Designs should be able to illustrate multiple instances of 
objects and interfaces, belonging to different capability 
classes. Groups can be expected to be large, possibly 
hierarchically organized and their membership may be 
unknown and may change frequently, as members join and 



leave.  Designs should be capable of specifying the required 
support mechanisms. The methodology should offer designs 
that are easy to specify and understand and are unambiguous. 
For example, a design might help the implementers to see the 
consequences of scaling their groups and of implementing 
reliability and security options. 

Most current designs for multicast group applications are 
very specific e.g. [27]; they take a simple black-box approach 
in which the use of specific protocols is also indicated. This 
approach can serve simple applications well, but we believe 
that a more general, well-defined and integrated approach is 
needed and are not aware of other work describing such an 
approach. 

To date, most design languages and methodologies have 
assumed an infrastructure supporting point-to-point 
communication. The ISO standard Reference Model for 
Open Distributed Processing (RM-ODP) addresses the issues 
involved with the complexities of designing distributed 
applications. By drawing on ideas from the RM-ODP 
framework, we demonstrate a means to design group-based 
applications that make use of multicast technology. 

An important requirement is to enable a separation of 
concerns between the issues involved in designing the 
computational aspects of an application and the issues 
involved in designing support for group communication. 

Specification from different separations of concern is 
often referred to as viewpoint-based or aspect-oriented 
design. There is much research surrounding the use of 
viewpoints  [11, 12, 20] and aspects [6, 9, 13] However, 
these ideas have not yet made it into the standards for 
mainstream design approaches such as the Unified Modelling 
Language (UML); nor do these standardised methodologies 
and languages provide facility for addressing the issues of 
Group communication. 

The research reported in this paper addresses the group 
support aspects of the Design Support for Distributed 
Systems (DSE4DS) project [2, 10] which aimed to extend 
facilities for the design of multimedia distributed systems, to 
ensure that they can effectively meet the needs of complex 
systems which will include the use of stream communication, 
multicasting and Quality of Service (QoS) constraints. The 
project has defined UML-related notations and 
methodologies, which are aimed at addressing the 
complexities of designing distributed systems. We chose 
UML because it is widely used as a design medium for 
object-oriented design. The emergence of the Object 
Constraint Langauge (OCL) has gone some way to help 
avoid potential inconsistencies in behaviour specification. 

The project has also shown how to derive Timed 
Automata models from the design [4], which are formally 
analysed to provide verification of QoS specifications 
against the functional aspects of the design. The results of 
the verification are fed back to the designer in the context 
of the original design and design notation; [4] discusses the 
verification aspects of our work. 

This paper extends the design notations proposed by the 
project to facilitate specification of group based 
applications. In particular this paper addresses techniques 
for designing the communication mechanisms required for 
supporting ALM. 

In Section 2 we introduce the concepts used for our 
designs. Section 3 introduces the computational design of 
an example group application, which is extended in Section 
4 where we explore alternative designs for a group 
communication mechanism. Section 5 discusses related 
work and the paper concludes in Section 6 with a summary 
and discussion of future work. 

2 Viewpoint Based Design 
The IEEE Recommended Practice for Architectural 

Description of Software-Intensive Systems [16] defines the 
notions of view and viewpoint as important parts of its 
conceptual framework. Many other works [11, 12, 20] also 
discus the use of viewpoints and propose viewpoint based 
approaches to the design of computing systems. 

We are specifically interested in the design of 
distributed computing systems. The ISO/ITU 
standardisation bodies have published a set of standards 
called the Reference Model for Open Distributed 
Processing (RM-ODP) [28]. These standards make use of 
viewpoints within a framework for addressing the design of 
distributed systems. 

The RM-ODP framework proposes a multi-paradigm 
specification approach by identifying five separations of 
concern (viewpoints) and addresses the design of the 
system from each. Different languages may be used for 
each viewpoint so that the relative strengths of different 
specification languages can be exploited.  

The five viewpoints are: enterprise, information, 
computational, engineering and technology; further 
information regarding both the reference model and its 
approach to using viewpoints can be found in [19, 25, 28]. 
Briefly: 

• The Enterprise Viewpoint is concerned with the 
purpose, scope and policies of the organization of 
which the system is a part. 



• The Information Viewpoint is concerned with 
information handled by the system. 

• The Computational Viewpoint is concerned with the 
functional decomposition of the system. 

• The Engineering Viewpoint is concerned with the 
infrastructure required to support distribution. 

• The Technology Viewpoint is concerned with the 
choice of technologies with which to build the system. 

For the purpose of this paper, we focus on the 
Computational and Engineering Viewpoints. The concepts 
addressed within each of these viewpoints are described in 
the following subsections. 

Part 3 of the RM-ODP defines the concepts and 
structuring rules that define an ‘abstract’ language for each of 
the viewpoints. The definitions must be considered abstract, 
as there is no defined (concrete) syntax specified for any of 
the viewpoint languages. 

The above concepts and rules can be modelled using the 
OMG’s MOF [22] concepts of class, association, 
generalization etc. (These are a subset of the specification 
concepts found in the more commonly used UML.) In [3] we 
model the RM-ODP concepts and propose a concrete 
notation to be used for the design of concepts within the 
computational viewpoint. In Section 3 we discuss this 
approach and extend it by including the Group Management 
functions offered by an Engineering specification. In Section 
4 we propose a UML based notation for the design of 
concepts within the Engineering viewpoint; focusing 
specifically on the design of our group communication 
example. 

3 Computational Viewpoint 
The Computational Viewpoint is defined in the RM-ODP 

as being concerned with the logical and functional 

decomposition of the system into a set of objects that 
interact at interfaces; this decomposition is to enable 
distribution. The primary concern of the computational 
viewpoint is the distribution of processing. However, it 
should be emphasized that it is not concerned with the 
interaction mechanisms that enable distribution to occur. 

A computational viewpoint definition of a system 
should describe an object-based model that defines: 

• A set of distributable computational objects  
• The interfaces through which an object 

communicates 
• The bindings between interfaces and the interactions 

they offer 
• The actions that a computational object can perform 

– e.g. creation of objects, interfaces and bindings. 
A language enabling the definition of computational 

viewpoint specifications provides, in essence,  a 
programming model for a generic virtual machine. The 
mechanisms offered by this virtual machine, model the 
infrastructure over which the system operates, and is 
realised by definitions provided as part of the Engineering 
and Technology viewpoints. 

Computational objects (which we abbreviate to 
compObjects) are self-contained, distributable units of 
computation – i.e. they exhibit some well-defined 
independent behaviour. To communicate with other 
compObjects they require interfaces that depend upon the 
type of interaction required. The RM-ODP classifies 
communication interactions into three distinct types – 
Operations, Signals, and Flows (or Streams). Each 
interaction occurs between two or more compObjects, and 
the interface through which the interactions occur indicates 
the compObject’s role as the source or the target of the 
communication.  

In order for the interaction to pass from one 
compObject interface to another, a communications path is 
required. Such communication paths are modelled in the 
computational viewpoint as bindings. The ODP standard 
defines a binding as follows: “A binding is an infrastructure-
provided configuration of network connections and behaviour.” 

Figure 1  

 A primitive binding ties one interface directly to 
another (of the same type), enabling interactions to occur 
between the two compObjects. However, in many 
situations, a more complex compound binding is necessary. 
For example, to involve more than two compObjects in an 
interaction, or to offer application based control over the 
communications path (e.g. to manipulate the QoS 
: Service Interface 

: Conference 
Manager 

: Conference Binding 

: CBCtrl 

 
 MPM snapshot before users have joined the

conference 



characteristics), or perhaps to facilitate monitoring of the 
communication. 

For modelling system applications that involve group 
communication, compound bindings are of significant 
interest and importance. Compound bindings model a 
communications path between two or more, different, 
compObject interfaces. Thus, as illustrated by examples in 
the RM-ODP standard, a compound binding can be used to 
model the presence of a multicast communications path 
between the source of a multicast interaction and a number of 
destination compObjects. 

The Multicast functionality is an infrastructure provided 
facility, where that infrastructure is defined by the 
Engineering and Technology specifications, which detail the 
particular multicast implementations to be used. Thus, the 
multicast functions become part of the Computational 
Language virtual machine and can be treated as atomic 
actions. However, it is still necessary to provide interfaces in 
a computational viewpoint description that enable 
compObjects to invoke the multicast facilities. This is 
achieved by providing a ‘Control’ interface on a multicast 
binding, that offers (as an example) operations for adding or 
removing members of the multicast target group. 

To illustrate the group-specific facilities of our design 
approach and languages we present, in the following 
subsections, the computational design of a multi-party 
messaging system. 

3.1 Design of a Multi-Party Messaging System 
Our example of a Multi-Party Messaging (MPM) System 

enables members to join a conference in which each 
participant can send text messages to all other participants. 
Members can join and leave the conference by informing the 
conference manager. The example has been kept small for 
the purposes of explanation of the design concepts. 

We start by showing some Snapshots that illustrate 
possible configurations of objects in the system. These 
highlight the facilities for representing groups of objects in 
the diagrams. Following this we show the specification of 
object templates and interface signatures from which the 
system can be instantiated, showing how groups are 
facilitated in such specifications. 

u3: 
Member 

 

u2: 
Member 

 

u1: 
Member 

: Service 
Interface

: Service Interface

: Conference 
Manager 

: Conference Binding 

: CBCtrl 
- FromMember 

* 

- ToMember 

* 

: Service 
Interface

: Service 
Interface 

 
Figure 2 MPM snapshot showing one user having joined the conference 

The final part of the example illustrates our 
specification technique for the behaviour of the object 
components in the system; this raises some issues (which 
are discussed) regarding the use of Group functions offered 
by the underlying Engineering environment. Our work in 
[3, 4] show how QoS specifications are added to a design. 

3.2 Using the System (Computational Snapshots) 
To make use of the messaging system, each user must 

instantiate a Member object; this compObject enables 
connection to a ConferenceManager, which provides an 
interface to which members are bound; that interface 
supports operations to join the conference. Figure 1 shows 
a snapshot of a system before any users have joined. 

Each Member object instantiates a client 
ServiceInteface which must be bound to the conference 
manager’s server ServiceInterface. After users have made a 
connection to the conference manager, the next action is for 
them to join the conference; by sending a message to the 
conference manager – via its ServiceInterface. This results 
in bindings to the FromMember and ToMember interfaces 
of the conference binding object. 

Figure 2 shows that the u1 Member object has joined 
the conference, with users’ u2 and u3 bound to the 
conference manager. If we were to depict many more users 
within this snapshot, it would soon become overwhelmed 
with Member objects. Additionally we may wish to depict 
the group of Member objects without specifically 



identifying them or the size of the group. To achieve this we 
facilitate the use of a stacked circle to represent a group of 
objects. Figure 3 shows a Computational Snapshot, showing 
five users as a group, participating in the conference 

Each group member supports a ServiceInterface, bound to 
the conference manager, and both a FromMember and 
ToMember interface, bound to the conference binding. The 
number of group members may be shown (as in Figure 3); or 
a group of unspecified size can be defined using a ‘[0..*]’ 
label. 

The interface symbol attached to the group of objects 
represents a group of interfaces (each member of the group 
has its own interface). The dashed line representing a 
primitive binding may represent either: 

• that each of the interfaces at the group end are bound 
to a single interface at the opposite (conference 
binding) end; or 

• that each interface at the group end is bound to a 

different interface instance at the opposite end.  

u[1..5] : 
Member 

: Service 
Interface

: Service Interface

: Conference 
Manager 

: Conference Binding 

: CBCtrl 
- FromMember 

* 

- ToMember 

* 

Figure 3 MPM snapshot showing 5 users having joined 
the conference 

This difference is distinguished by adding a ‘*’ to the 
opposite end of the binding line if there are a group of 
interfaces at that end, as in the case of the FromMember 
and ToMemeber interfaces; or by omitting the ‘*’ if there is 
a single interface, as in the case of the ServiceInterface. 

3.3 Computational Templates 
We can construct a computational viewpoint template 

diagram (similar to a UML class diagram) that defines the 
component types for our example application, Figure 4. In a 
similar fashion to class diagrams, Interface Signatures and 
compObject Templates are defined using 
compartmentalised boxes. The top compartment illustrates 
the name of the template type, and the bottom compartment 
shows the properties (attributes or operations) of the type. 
We use an icon in the top right of the box and a label 
enclosed in guillemots («..») to aid the visual distinction 
between interface, compObject and binding object 
templates. 

The UML symbol for composition (a line with a solid 
diamond at the tail) shows that a compObject or binding 
object template offers a particular interface type in the role 
of producer/consumer, client/server, or initiator/responder, 
as indicated by a label in guillemots attached to the 
composition line. 

This specification defines two computational object 
templates, Member and ConferenceManager. These two 
compObjects both support instances of the ServiceInterface 
interface signature, one in the role of server the other as a 
client. The ServiceInterface signature defines two 
operations, one for a member to join the conference, the 
other enabling a member to leave the conference. Each of 

 «CompObjectTemplate» 
ConferenceManager 

«CompObjectTemplate» 
Member 

«OperationBindingObjectTemplate» 
ConferenceBinding 

«OperationInterfaceSignature» 
ServiceInterface 

join(fr:FromMember, to:ToMember) : void 
leave(fr:FromMember, to:ToMember) : void 

«server» 

«client» 

«client» 

«client» 

«OperationInterfaceSignature» 
CBCtrlInterface 

join(fr:FromMember, to:ToMember) : void 
leave(fr:FromMember, to:ToMember) : void
 

«server» 

«server» 

« OperationInterfaceSignature » 
ToMember 

receiveFrGrp(msg:String) : void 

«client» 

«server» 

0..*

« OperationInterfaceSignature » 
FromMember 

transmitToGrp(msg:String) : void 0..*

 
Figure 4 Computational Template Diagram 



these operations takes a reference to an instance of the 
FromMember and ToMember interfaces as parameters; this 
enables the specific member object to be identified and 
facilitates binding of those interfaces to interface instances of 
opposite role on the conference binding object. 

The ConferenceBinding specification defines a template 
for an operation binding object; it supports a CBCtrlInterface 
interface signature in the role of server, used by a conference 
manager object to communicate joining and leaving of 
members. In addition the ConferenceBinding template 
supports a group of FromMember interfaces in the role of 
server, from which messages are received; and a group of 
ToMember interface signatures, to which messages are sent. 

3.4 Computational Behaviour 
The functional behaviour of the system can be defined 

using the Statechart [15] notation. Events are caused by each 
interaction that occurs at a particular interface. These events 
are used as the semantic mechanism to trigger transitions in a 
Statechart. 

Actions caused by a transition are either operations called 
on management object interfaces (supported by the 
‘engineering virtual machine’ – ODP management functions) 
or the activation of an interaction at a connected output 
interface. 

The behaviour of our Conference Binding object is 
illustrated by Figure 5. This shows two threads of behaviour. 
The top thread shows that the binding object must always 
forward messages transmitted by any group member to all 
group members. The bottom thread indicates that binding 
handles requests from members to join and leave the group. 

This thread initially creates a group identifier, to which 
further group interactions are sent (as described below). 

3.5 Events and Messages 
Interaction between computational objects is via the 

interfaces supported by each object. An object may respond 
to messages or events received at a specific interface and 
may cause events or message to be sent at other interfaces. 
Sending or receiving a message (at an Operational 
interface) can be treated in the same manner as sending or 
receiving an event (with the name of the operation) at that 
interface. 

In general an object will respond to events at server, 
consumer and responder interfaces, and raise events at 
client, producer and initiator interfaces. Events may also be 
raised at server interfaces in order to respond with results or 
exceptions to client-server interactions. An event is 
identified jointly by the identification of an interface and 
the name of an Operation, Signal or Flow defined for that 
interface. Interfaces can be identified using explicitly given 
names or by using a combination of the role and interface 
signature name; e.g. in our example, a conference manager 
object can refer to the event caused by receiving a join 
operation message with the following expression: 

serverCBCtrlInterface^join(fr,to) 

The first part of the expression gives the role and 
signature name of an interface, in the context of a 
conference manager object there is only one such interface, 
thus the identifier is unambiguous and sufficient. The last 
part refers to the join operation defined for ServiceInterface 
interfaces, the parameter values of which can be identified 
using the names fr and to. The two parts are separated using 
a carat ‘^’, this is the OCL [23] notation for referring to 
messages; we use this notation in order to stay with a 
notation familiar to the UML family of languages. 

 
ConferenceBinding 

Waiting 

Waiting 

grp^transmitToGrp(msg) /
   grp^receiveFrGrp(msg) 

serverCBCtrlInterface^join(fr,to) / 
  grp.AddMember(fr,to) 

serverCBCtrlInterface^leave(fr,to) / 
  grp.RemoveMember(fr,to) 

/ grp := createGroup(FromMember, 
ToMember) 

Figure 5 Computational Behaviour of 
ConferenceBinding 

The same notation is used both to refer to events and 
actions. The context of the expression determines the 
intended meaning. In a Statechart, such expressions would 
occur in the context of a transition as either: 

• the event part, for identifying events to respond to; 
or 

• the actions part, for causing operations and signals 
to be sent 

3.6 The Group Management Function 
The RM-ODP does not give much detail regarding the 

group management function; it simply states that this 



function “
the interac

The g
Interaction

• Int
par

• Co
int

• Or
ord

• Me
and

In ou
computati
function w
for use wi

• cre
ide
sup

On ea
operations

• gro
me
the
ref
(de

• gro
rem
   

: ServerNode 

: MemberNode 

«BasicEngineeringObject» 

:Member 

: MemberNode 

«BasicEngineeringObject» 

:Member 

«BasicEngineeringObject» 
:ConferenceManager 

groupChannel 

serverChannel serverChannel 

: ServerNode 

mn[8] : MemberNode 

«BasicEngineeringObject» 
:Member 

«BasicEngineeringObject» 
:ConferenceManager 

groupChannel serverChannel 

* 

(a) (b)  
Figure 6 Engineering snapshots of the Multi-Party Messaging System 
provides the necessary mechanisms to coordinate 
tions of objects in a multi-party binding.”  

• groupId^<DefinedOperation> - Any operation 
defined on the interface signature can be sent as a 
message to every member of the group by calling 
that operation on the group identifier. 

roup function requires the definition of an 
 Group and manages: 

eraction – deciding which group members 
ticipate in which interactions. 

The ‘.’ notation is used for adding and removing 
members as we are calling an operation for interpretation 
by the interaction group concept itself, rather than intending 
a message to be sent to each member of the group. 

llation – derivation of a consistent view of 
eractions (including failures). 
dering – ensuring that interactions are correctly 
ered. 4 Engineering Viewpoint 

An Engineering viewpoint design describes the 
infrastructure and resources required to support interaction 
between objects; and rules for structuring the 
communication channels over which interactions occur. 

mbership – dealing with addition, removal, failure 
 recovery of members. 
r approach, to provide reference in the 

onal viewpoint, to engineering support of the group 
e provide the following set of functions, available 

thin behaviour specifications: 
Processing resources are known as Nodes. Through a 

hierarchy of Clusters and Capsules (not discussed here, see 
[28] for details) compObjects execute behaviour on Nodes, 
and communicate through a configuration of other, 
engineering, objects that form a communications channel. 
Channels are constructed from configurations of stub, 
binder, protocol and controller objects. The channel objects 
execute on the Nodes linked by the channel; the subset of 
objects executing on each particular node are know as 
channel endpoints and are linked by a communications 
domain (network). 

ateGroup(sig:InterfaceSignature) – returns an 
ntifier for a group; each member of the group must 
port the specified interface signature. 
ch group identifier we can call the following 
: 
upId.AddMember(ref:InterfaceReference) – adds a 
mber to the group; the member is referred to using 
 passed interface reference which must be a 
erence to an interface signature of the correct type 
fined when the group was created). 4.1 Design of Multi-Party Communication Mechanisms 
upId.RemoveMember(ref:InterfaceReference) – 
oves a member from the group. 

The design of the communication channels requires us 
to identify the structure and behaviour of the channel 
endpoints for each different channel type. 



In our example system there are two communication 
paths: communication between the conference manager and 
members of the conference (serverChannel); and the 
multicast communication between groups of members 
participating in a conference (groupChannel). 

We explore a number of different design options, 
showing the design of the group channel endpoint in each 
case. The computational aspects of the design are not 
affected by the choice of option made in the engineering 
viewpoint. The options, illustrated in Figure (a-d), are as 
follows: This is illustrated in Figure 6(a) and (b). Figure 6(a) 

shows an engineering snapshot of three processing nodes. 
The two MemberNodes have a Member object running on 
them, whereas the ServerNode has a ConferenceManager 
object running on it. The dashed lines indicate 
communication channels between the objects. The 
groupChannel links all the Member objects and the 
Conference manager. The serverChannel provides 
communication between the Member objects and the 
Conference Manager (i.e. for registration, joining, leaving, 
etc.). It is obvious that if we were forced to explicitly 
represent every member of a group in the snapshot, our 
diagrams would be unusable for large group sizes. Hence, in 
a similar way to the mechanism provided in Computational 
Viewpoint diagrams, we provide the alternative notation 
shown in Figure 6(b); this shows a group of 8 MemberNodes 
each with a Member object that is connected to the 
groupChannel. The groupChannel is marked at the Member 
object end with a ‘*’ to indicate multiple endpoints. 
Conversly, the serverChannel has no additional marking, and 
therefore represents 8 separate channels from the 
ConferenceManager to each Member object. 

a. The communications domain supports network-layer 
multicast. 

b. We provide ALM by creating a communication path 
between each pair of group members. 

c. We provide ALM by providing a group server. 
d. We provide ALM by providing a hierarchy of group 

servers. 
There are two types of endpoint within the group 

channel, distinguished by their interface type and 
functionality: those that connect the member objects to the 
channel and the one that connects the conference manager 
to the channel. We call the endpoints connecting members 
“group channel endpoints”; and the endpoint connecting the 
conference manager a “group channel controller endpoint”. 

4.2 Network-layer Option 
If our network supports multicast routing, Figure (a), we 

design the group channel endpoint to make use of it. A 
client and server stub are required to marshal and un-
marshal the sent messages and pass them to and from the 
Member objects. 

A protocol object is used to send and receive the 
messages to and from a multicast group address. The 
controller object sends appropriate messages to the network 
(via the protocol object) to add and remove members from 
the group. This structure is illustrated in Figure 7. 

The serverChanel is a one-to-one operational binding, 
enabling members to request that they join or leave a 
particular conference. The design of the engineering channel 
that supports this binding is not complex. An implementation 
of the channel could be by using simple Remote Procedure 
Calls, CORBA method invocation, or a Web Services 
framework. In each case the channel components are pre 
designed and can be used ‘out of the box’. 

server 
stub 

channel 
controller 

client

More interesting is the design of the groupChannel 
components, which must address the flowing issues. 

1. Each endpoint is both a source and a destination. 
2. There are potentially multiple (>2) end points. 
3. The channel has some specific computational 

behaviour of its own. 
Each of these issues means that a more complex set of 

channel components is required. In addition, there is a choice 
to make; does the targeted communications domain support 
group communication (network-layer multicast) or do we 
design the channel components to provide the group support 
(application-layer multicast)? 

 
stub 

protocol 
object 

: ToMember 

: CBCtrl 

a 

b 

c 

: FromMember

GroupChannelEndpoint 

protocol 
object 

GroupChannelControllerEndpoint 

 
 

server 
stub 

channel 
controller 

client 
stub 

protocol 
object 

: ToMember 

: CBCtrl 

a 

b 

c 

: FromMember

GroupChannelEndpoint 

protocol 
object 

GroupChannelControllerEndpoint 

 
 

Figure 7 Network-layer Option Endpoints



We do not include a binder object, as it is not necessary in 
this case, although one could be added between the protocol 
and stub objects. The interfaces illustrated with thick lines 
correspond to the interfaces for the binding object defined in 
the computational viewpoint design. The interfaces and 
primitive bindings (labelled a-c), which connect channel 
components, require further specification; this would be 
achieved using a Template Diagram, similar to Figure 4. 

4.3 Multi-path Option 
If network-layer multicast is not available, then we must 

provide the group support explicitly. A simple (but 
inefficient) approach would be to provide binder objects 
within the channel (as shown in Figure ). These binder 
objects would have the responsibility of recording all of the 
members of the group, copying outgoing messages to each 
member, and receiving incoming messages from each 
member. 

Multiple protocol objects would be required, each 
providing the connection to every other member in the group, 
Figure (b). However, there would only be one channel 

controller object and its add and remove requests can be 
propagated around the group like other messages, although 
they would be filtered out and used by the binder object 
rather than being forwarded to the stub for processing by 
the connected member object. 

 

(c) (a) (b) (d)  
Figure 8 Alternative Group Configurations

4.4 Group Server Option 
A more efficient option for the design of the group 

channel endpoints is to provide ALM by adding a specific 
group server at a ‘well-known’ address in the network, 
Figure (c); probably provided on the same node as the 
conference manager (though not required to be). 

The protocol object is configured to communicate 
point-to-point with a group server as the means to provide 
group based communication. All messages are tagged with 
the identity of a particular group; it is subsequently the 
responsibility of the group server to communicate the 
message to all members of the group. (See Figure 9.) 

This mechanism is offered by the JGroups library [17], 
which we have used to investigate implementation of the 
various channel endpoints. 

server 
stub 

channel 
controller 

client 
stub 

protocol 
object 

: ToMember 

: CBCtrl 

a 

b 

c 

: FromMember 

GroupChannelEndpoint 

protocol 
object 

GroupChannelControllerEndpoint 

group 
server 

protocol 
object 

protocol 
object 

d 

d 

 
Figure 9 Group Server Option



4.5 Hierarchy of Group Servers 
The group server option does not scale well (see [7]). A 

more scalable option is to provide a hierarchy of group 
servers; with each server responsible for a subset of the 
whole group. 

To achieve this, we must allow group servers to be 
members of groups themselves. When they receive a 
message that is to be sent to the whole group, they send it to 
all of the subgroup members serviced by this server, 
including members of that subgroup that are themselves 
group servers. The group server hierarchy should be set up to 
provide the most efficient coverage of the overall group 
members. Typically group servers would execute on the 
Node of one of the group members, but they need not 
necessarily do so. 

5 Related Work 
CoSMIC [14] is a project which is developing a Model 

Driven Architecture (MDA) based tool suite for generating, 
configuring and assembling distributed real-time and 
embedded applications. 

This work focuses on: the MDA aspects of generation 
from a high level model onto a variety of middleware 
platforms; and on the aspect-oriented cross-cutting of QoS 
requirements into the specification and resulting 
implementation. 

The tool and results produced by the project are highly 
relevant and complementary to our work; addressing similar 
challenges, but do not focus on groups. 

Oldengarm and Haltern [21] propose a multi-viewpoint 
architecture for defining distributed systems; based on the 
RM-ODP viewpoints. This work focuses on using the 
viewpoint framework to visualise what is happening within a 

program; for purposes such as debugging. They suggest a 
mapping from CORBA concepts to the concepts of the 
RM-ODP engineering viewpoint. This mapping is too 
simplistic for our purposes in the suggestion that an 
Engineering Channel maps to a CORBA TCP/IP 
connection. 

 

server 
stub 

client 
stub 

binder 

: ToMember a 

b 
f 

: FromMember 

GroupChannelEndpoint 

protocol 
object 

protocol 
object 

d 

d 

channel 
controller 

: CBCtrl 

e 

protocol 
object 

binder 

GroupChannelControllerEndpoint 

There is also work within the Object Management 
Group (OMG) regarding the specification of an Enterprise 
Distributed Object Computing profile for UML [24]. This 
work does not sufficiently address issues regarding 
engineering viewpoint design and, specifically, does not 
facilitate a mechanism for designing complex bindings such 
as that required for group based applications. 

Figure 10 Multi-path Option 6 Conclusion and Future Work 
This paper concentrates on the multicast and group 

support mechanism aspects of the DSE4DS project; the 
project advocates a viewpoint-based approach to distributed 
system design, built on the ISO standard RM-ODP 
framework. This paper has illustrated how to make use of 
group management functions within the computational 
viewpoint design and proposed a (UML based) notation for 
designing the engineering viewpoint communication 
channels. Specifically, this notation facilitates the design of 
group-based applications, which are not addressed by 
standard design notations such as the UML. 

This approach enables computational aspects of the 
design to be separated from the design of mechanisms to 
support the group-based communication. In fact we have 
illustrated that multiple different designs of the 
communication mechanism may be provided without 
affecting the computational design. The key to scalability is 
in providing notations for specific components and concise 
representation for multiple instances of these components. 

6.1 Future Work 
We plan to extend the notation described in this paper to 

cover designs that include more comprehensive support 
mechanisms for groups, as discussed in the introduction. 
Providing a framework for the definition of components 
and their interactions enables other support mechanisms to 
be defined, such as a compObject that offers membership 
authorization or, in the Engineering viewpoint, protocol 
objects that allow designated receivers to take part in a 
scalable acknowledgement scheme for reliable multicast 
transport.  

We also intend to model the transformation  from 
designs to Timed Automata (TA) using the techniques 



described in [1, 5] and making use of MDA technology and 
tools, such as the Kent Modelling Framework (KMF) [18], to 
generate tools that automate the design-to-TA 
transformation. Additionally, again using an MDA approach, 
we believe that by drawing on design information from 
multiple viewpoints it will be possible to generate system 
implementations from designs such as those presented in this 
paper. This concept is supported by similar suggestions in the 
UML profile for Enterprise Distributed Object Computing 
[24]. 

We also intend to extend existing QoS verification 
techniques to verify systems based on information from 
multiple viewpoints. 

Acknowledgements 
 The DSE4DS project was supported by the UK 

Engineering and Physical Sciences Research Council 
(GR/M69500/01). 

References 
[1] Akehurst D. H., "Model Translation: A UML-based specification 

technique and active implementation approach," thesis, Department of 
Computing, University of Kent at Canterbury, Canterbury, 2000 

[2] Akehurst D. H., Bordbar B., Derrick J., and Waters A. G., "Design 
Support for Distributed Systems: DSE4DS," in J. Finney, M. Haahr, 
and A. Montressor (eds) proceedings 7th Cabernet Radicals Workshop, 
Bologna, Italy, October 2002. 

[3] Akehurst D. H., Derrick J., and Waters A. G., "Addressing 
Computational Viewpoint Design," in proceedings Enterprise 
Distributed Object Computing Conference, EDOC 2003, Brisbane, 
Australia, pp. 147, September 2003. 

[4] Akehurst D. H., Derrick J., and Waters A. G., "Design and Verification 
of Distributed Multi-media Systems," in E. Najm, U. Nestmann, and P. 
Stevens (eds) proceedings Formal Methods for Open Object-Based 
Distributed Systems, FMOODS 2003, Paris, pp. 276-292, November 
2003. 

[5] Akehurst D. H. and Kent S., "A Relational Approach to Defining 
Transformations in a Metamodel," in J.-M. Jézéquel, H. Hussmann, and 
S. Cook (eds) proceedings The Unified Modeling Language 5th 
International Conference, LNCS, Springer, 2460, Dresden, Germany, 
pp. 305-320, 2002. 

[6] Aldawud O., Kande M., Booch G., Harrison B., and Stein D., 
"Proceedigns of Third International Workshop on Aspect-Oriented 
Modeling," 2003, 
http://lglwww.epfl.ch/workshops/aosd2003/papers/Schedule.htm 

[7] Banerjee S., Bhattacharjee B., and Kommareddy C., "Scalable 
Application Layer Multicast," in proceedings ACM Sigcomm, pp. 205-
220, 2002. 

[8] Cain B., Deering S., Kouvelas I., and Fenner B. T., " Internet Group 
Management Protocol, Version 3," IETF, RFC 3376, 2002. 

[9] Constantinides C. A., Bader A., and Elrad T., "An Aspect Oriented 
Design Framework," ACM Computing Surveys, March 2000. 

[10] DSE4DS-team, "Design Support for Distributed Systems (DSE4DS) 
Project Home Page," 2000, 
http://www.cs.ukc.ac.uk/projects/dse4ds/index.html 

[11] Emmerich W., Arlow J., Madec J., and Phoenix M., "Tool 
Construction for the British Airways SEE with the O2 ODBMS," 
Theory and Practice of Object Systems, vol. 3, pp. 213-231, 1997. 

[12] Finkelstein A., Kramer J., Nuseibah B., Finkelstein L., and Goedicke 
M., "Viewpoints: A Framework for Integrating Multiple Perspectives 
in System Development," International Journal of Software 
Engineering and Knowledge Engineering, vol. 2, pp. 31-58, March 
1992. 

[13] Glandrup M., Clarke S., Tarr P., and Akkawi F., "Proceedings of 
Aspect Oriented Design (AOD) 2002 Workshop on Identifying, 
Separating & Verifying Concerns in the Design," 2002, 
http://www.iit.edu/~akkawif/workshops/AOSD2002/AOSD1.html 

[14] Gokhale A., Natarjan B., Schmidt D. C., Nechypurenko A., Wang N., 
Gray J., Neema S., Bapty T., and Parsons J., "CoSMIC: An MDA 
Generative Tool for Distributed Real-time and Embdedded 
Component Middleware and Applications," in proceedings OOPSLA 
2002 Workshop on Generative Techniques in the Context of Model 
Driven Architecture, Seattle, WA, November 2002. 

[15] Harel D., "Statecharts: A Visual Formalism for Complex Systems," 
Science of Computer Programming, vol. 8, pp. 231-274, 1987. 

[16] IEEE, "IEEE Recommended Practice for Architectural Description of 
Software-Intensive Systems," Institute of Electrical and Electronics 
Engineers, Inc., IEEE Std 1471-2000, ISBN 0-7381-2519-9, 
September 2000. 

[17] JGroups-team, "JGroups - A Toolkit for Reliable Multicast 
Communication," 2002, 
http://www.javagroups.com/javagroupsnew/docs/index.html 

[18] KMF-team, "Kent Modelling Framework (KMF)," 2002, 
www.cs.kent.ac.uk/projects/kmf 

[19] Linington P. F., "RM-ODP: The Architecture," in K. Raymond and 
E. Armstrong (eds) proceedings Open Distributed Processing: 
Experience with Distributed Environments, 3rd IFIP TC 6/WG 6.1 
International Conference on Open Distributed Processing, Chapman 
and Hall, February 1995. 

[20] Nuseibah B., Kramer J., and Finkelstein A., "A Framework for 
Expressing the Relationships Between Multiple Views in 
Requirements Specification," IEEE Transactions on Software 
Engineering, vol. 20, pp. 760-773, October 1994. 

[21] Oldengarm P. and van Haltern A., "A Multiview Visualisation 
Architecture for Open Distributed Systems," in proceedings 22nd 
International Computer Software & Applications Conference 
(Compsac'98), Vienna, AUSTRIA. 

[22] OMG, "Meta Object Facility (MOF) Specification, Version 1.4," 
formal/2002-04-03, April 2002. 

[23] OMG, "Response to the UML 2.0 OCL Rfp (ad/2000-09-03), 
Revised Submission, Version 1.6," Object Management Group, 
ad/2003-01-07, January 2003. 

[24] OMG, "UML Profile for Enterprise Disributed Object Computing," 
Object Management Group, ptc/02-02-05, Febuary 2002. 

[25] Putman J. R., Architecting with RM-ODP: Prentice Hall, ISBN 0-13-
019116-7, 2001. 

[26] Whetten B., Vicisano L., Kermode R., Handley M., Floyd S., and 
Luby M., "Reliable Multicast Transport Building Blocks for One-to-
Many Bulk-Data Transfer," IETF, RFC 3048, 2001. 

[27] Willebeek-LeMair M. H. and Shae Z.-Y., "Videoconferencing over 
packet-based networks," IEEE Journal on Selected Areas in 
Communication, vol. 15, pp. 1101-1114, 1997. 

[28] X.901-5, "Information Technology - Open Distributed Processing - 
Reference Model: All Parts," ITU-T Recommendation, 1996-99. 

 

http://lglwww.epfl.ch/workshops/aosd2003/papers/Schedule.htm
http://www.cs.ukc.ac.uk/projects/dse4ds/index.html
http://www.iit.edu/~akkawif/workshops/AOSD2002/AOSD1.html
http://www.javagroups.com/javagroupsnew/docs/index.html
http://www.cs.kent.ac.uk/projects/kmf

	Introduction
	Viewpoint Based Design
	Computational Viewpoint
	Design of a Multi-Party Messaging System
	Using the System (Computational Snapshots)
	Computational Templates
	Computational Behaviour
	Events and Messages
	The Group Management Function

	Engineering Viewpoint
	Design of Multi-Party Communication Mechanisms
	Network-layer Option
	Multi-path Option
	Group Server Option
	Hierarchy of Group Servers

	Related Work
	Conclusion and Future Work
	Future Work

	Acknowledgements
	References

