
What Foundations does the RM-ODP Need?

Peter F. Linington.

University of Kent,
Canterbury, Kent, CT2 7NF, UK.

 pfl@kent.ac.uk

Abstract

This position paper revisits the requirements for the set
of Foundation Concepts for the ODP Reference Model and
the approach originally taken to satisfying them. It then
examines, in the light of experience, the areas where the
Foundations have subsided, and areas where extensions
need to be built. The aim is to provide a starting point for
discussion on requirements to change the Foundations
document.

1. Introduction

Even before the first draft of the Reference Model for
ODP was produced, the group of experts working on it had
found the need for a separate definition of a clear
conceptual framework on which to base their work; almost
ten years later, this became Part 2 of the published standard
[1], and established the conceptual framework for the ODP
Architecture [2] [3]. The need for the RM-ODP
Foundations document was clear; experts from a number of
different backgrounds had come together to work on ODP,
and they brought with them a wide range of different
vocabulary and usage, reflecting different assumptions
about how systems should be structured and specified.
Progress with a common reference model depended on the
creation of a common conceptual framework.

At the same time, no single notation or descriptive
technique could be expected to dominate. The broad scope
of the work was such that different techniques would be
needed to express different areas of concern. It was
therefore necessary to express the Foundations in abstract
terms, bringing together the common features of existing
styles of usage, so that each concrete notation is seen as a
refinement of the foundation concepts. This is particularly
the case in the areas of interaction and behaviour, which are
discussed below.

 In reviewing how well the RM-ODP has stood the test
of time, we must be aware of the constraints on modifying
it. Not only must the Parts of the reference model maintain
their internal consistency, but the documents that reference
it must not be undermined. This applies both to the ISO
standards within the framework the reference model has
created, and to the work within bodies such as the ITU-T
and the OMG, and also the usage within the wider
community. We do not have a green field; we have a
responsibility to perform restoration, not demolition and
replacement. The Foundations may need to be strengthened,
but not relaid.

2. Objects and Interactions

At the time that the Foundations was being debated, two
formal description techniques were also being developed
within the same parent standards committee. These were
LOTOS [4] and ESTELLE [5]; they differ significantly in
their representation of interaction and this coloured the
discussions in ODP. In LOTOS, the processes interact at
gates in a synchronous way, in that all the parties to an
interaction would agree on when the interaction occurs
(although basic LOTOS deals with action sequence, not
timing). In ESTELLE, on the other hand, modules are
linked by communication links, which contain umbounded
queues, so that interaction is represented by distinct sending
and receiving actions that are sequenced but not
simultaneous.

This led to a need for a common modelling basis that
was capable of unifying both approaches. Interactions in
ODP are synchronous, but are defined between an object
and its environment. If we then constrain the way objects
are composed so that each object binds directly to another
object in its environment, the resulting communication is
synchronous, but if objects bind to link ends in their
environment, the resulting communication is asynchronous.

One might feel that the asynchronous representation was
slightly cumbersome, but the Foundations also provide the
less closely coupled concept of communication, which
represents a sequence of causally related interactions, so
that channels between communicating objects can (but need
not) be completely hidden in this style of notation.

Currently, the Foundations do not distinguish between
different kinds of interaction, but leave it to the
specification using them to refine the basic concept. This,
together with the connotations in English of the work
“interaction”, may have given the impression that the
intension is something like a method call. This could be
avoided and the full generality demonstrated by including
in the standard non-exclusive definitions for some common
refinements of interaction, such as invocation, message
transfer and event notification.1 For brevity, these examples
are taken from a computational domain, but the definitions
added should be viewpoint-independent, with notes to
clarify their application, including examples in at least the
engineering and enterprise domains.

3. Interface

The Foundations define an interface in terms of a view
of the behaviour of an object, resulting from taking a subset
of the interactions of the object and hiding all the other
interactions and behavioural constraints that involve them.
This definition is basically sound, but there are some
subtleties that need to be taken into account in order to
understand it fully.

Let us consider a computational application of the
definition to see some of the problems; assume a style of
interaction in which there is a clear causal initiative, so that
an object is invoked by its clients and may, as a result,
invoke other objects providing services (see figure 1).

The object, Obj, has four interfaces and its complete
behaviour places constraints within and between them. Its
environment contains four objects, A to D. The figure
shows that:

a) object A can initiate interaction P at interface
If1 at any time;

b) object B can initiate interaction Q at interface
If2 at any time;

c) object B can initiate interaction R at interface
If2 but constraint C1 requires Q to happen first;
when R does occur, it is followed by Obj
initiating interaction T with object D at If4;

1 The foundations originally avoided the use of the term event
because of the connotations arising from the world of discrete
event simulation; however, the use of the term event notification
seems to avoid this.

d) object B can initiate interaction S at interface
If2 at any time; when S does occur, it is
followed by Obj initiating interaction U with
object C at If3; the behaviour of C results in an
interaction V with Obj at interface If2.

Now let us see how the definition of the interface

concept works. The first thing to note is that all the
interactions of Obj are considered, and not just those in
which it acts as a responder. Thus we are dealing with four
interfaces, whereas a computational middleware might only
consider interfaces 1 and 2 at which services are offered.
Secondly, the interactions here are action occurrences, and
not action types; actions P and Q could be of the same type,
but the occurrences in the two interfaces are distinct. In
fact, as a result of this, the sets of interactions are normally
infinite, because most objects will have a behaviour that
allows arbitrary repetition of smaller fragments of
behaviour associated with some sort of thread or session;
almost all notations simplify this by considering as a unit
the sets of interactions with similar types and names (where
the naming domain is associated with the interface). Note
that this idea of equivalence sets implies that the
identification of interfaces is a design activity – the
interfaces cannot be deduced by examination of the overall
computational behaviour (although, once the decision has
been made, it is generally reflected by the naming structure
used for interactions in the engineering viewpoint).

Figure 1 – Interfaces and Object Behaviour

Now let us consider the individual interfaces in the
example. Interface 1 consists of occurrence of members of
the set P without further constraint.

Interface 2 consists of the interaction sets Q, R, S and V,
but subject to the constraint that an R must be preceded by
an occurrence of Q. The constraints 2 and 3 are hidden in
interface 2 because they involve interactions T and U,
which are themselves hidden. The multi-step constraint
between S and V is hidden for the same reason – it depends
on U and also on the behaviour of C, which are themselves
both hidden. These constraints only become apparent when
the full behaviour of the object is considered; the link from
S to V depends on specific behaviour in the environment,
and so cannot be deduced from constraint 3 alone.
However, a constraint between S and V could have been
stated in interface 3 in terms of locally available properties,
such as the presence of a correlation identifier as a data
item in both the interactions.2

Interfaces 3 and 4 are again straightforward; apart from
the placement of the initiative for interaction, they are
structurally similar to interface 1.

What we have not yet considered is the dynamic
lifecycle of an interface. Before interaction can take place,
there are normally two steps to be taken. First, the object
must be in a state where it is willing to interact
(corresponding to the creation of the interface and its
associated naming domain for interactions and initialisation
of related internal state of the object) and second any
interactions with the environment needed to establish
preconditions for interactions at the interface must have
been performed (corresponding to the establishment of a
binding and associated communication and resultant state
shared between the objects involved). After the first step,
there is potential for interaction, but no specific partner for
interaction has been selected, whilst after the second step
interaction with specific partners can take place. Different
kinds of object behaviour allow the description of one-to-
one bindings or many-to-one client-server bindings. Similar
considerations apply to the deletion of a binding and an
interface.

When the Foundations were being drafted, a number of
ways of modelling this process were considered, mostly
based on including an intermediate concept for the unbound
state, such as semi-interfaces or unbound interfaces, but
none of them were successful. It would be worth revisiting
this issue, but a better solution might be to consider a more
general way of describing the potential behaviour of an
object that is currently in a particular state (see section 8
below).

2 This has different semantics, particularly with respect to the trust
implications for C, but it may be equivalent for practical purposes.

4. Components

One of the significant changed in the last ten years has
been the growth of interest in component-oriented
architectures, so a natural question to ask is whether the
Foundations should include a general definition of what a
component is. If we consider, for example the CORBA
Components 3.0 Specification (figure 2), and ask what the
key properties of a component are, we find

a) encapsulation;
b) interactions at ports; the ports can be specialised as

facets, receptacles, event sources, event sinks or
attributes;

c) a component equivalent interface that provides
metadata, navigation and control for the
component;

d) an associated component home interface,
representing a container in which components of
the given type can be instantiated.

In fact, all of these can be modelled using the existing

Foundations. The general concept of interaction is rich
enough to be refined into any of the defined port types, and
the equivalent and home interfaces are just conventional
computational interfaces. The container property requires a
specialisation of the object concept to make explicit the
relation to the instantiation of templates involved when it
acts as a factory.

The ability to support both facets (server interfaces) and
receptacles (client interfaces) as specialisations of the ODP
concept of interface has already been mentioned above; it is
primarily this generality, and the equivalent capabilities for
interaction support, that make the foundation concept of
object so flexible.

 Perhaps a little more needs to be said about
encapsulation. The Foundations explain encapsulation as
the property of an object such that it can only have its state
changed by interactions or internal actions expressed in the
model. As such, the definition is more related to

Figure 2 – A component model

completeness of description than to level of abstraction.
Indeed, the inability to guarantee encapsulation on
structural refinement is one of the problems in security
analysis (see figure 3), for example, since structural
refinements may introduce backdoors, and it is difficult to
apply constraints to the refinement process that prevent this.

However, there would be nothing to choose between an

object model and a component model built on the
Foundations in this respect, even if our common intuition is
that encapsulation of a component is a less abstract claim
than encapsulation of an object.

As a result there is no need for extension of the
Foundations if it was felt that there was a need to
incorporate a computational or engineering component
model into the architecture. However, there could be merit
in adding derived definitions for component and factory,
making it clear how the existing definitions can be used to
model them.

5. Roles

The Foundations define a role as “an identifier for a
behaviour, which may appear as a parameter in a template
for a composite object, and which is associated with one of
the component objects of the composite object”. This
definition has been much misunderstood, and some authors
have tried to rework the definition in terms of static class
structures, without much success. To attempt to do so is to
miss the point of the definition, but clearly it does not, in its
present form, convey the intent, which is indicated by the
reference to templates and to the actualisation of parameters
in its second paragraph (which is not quoted here).

The discussion here is based on the explanation in [6].
The metaphor on which the role concept is based is
theatrical. The text of a play is expressed in terms of lines
and actions associated with various roles, which are
declared initially in a cast-list. Putting the play on involves
assigning actors to the various roles, although one actor
may play several minor roles, and the actor playing a role
may change during the run of the production. Identifying

the roles rather than the actors obviously makes the script
more reusable.

The key idea is that some constraints on system
behaviour are associated with objects dynamically as a
consequence of an earlier part of the behaviour, such as
performance of a piece of negotiation. However, although
the potential behaviour can be referenced (and hence the
talk of an identifier in the definition) it is not associable
with an actual object until the template is instantiated and
the role bound to a specific object3. It is thus impossible to
represent what is going on within a static class hierarchy.

The solution to the misunderstandings is to remove the
idea of there being a parameter identifier in the template’s
behaviour to the explanatory note, and to focus the first
paragraph of the definition on the idea of parameter
substitution. Perhaps more importantly, though, we need to
clarify the way the potential behaviour of an object is
restricted when it is bound to a role, and this needs a proper
framework for the discussion of potential behaviour of the
kind described in section 8 below.

The second problem with the role concept at present is
with usage rather than definition. There has been
widespread discussion in ODP circles of community-roles
in the Enterprise Language, but unfortunately this has been
expressed the term using role without qualification, leading
to an implicit assumption that saying role implies
community-role. As shown above, role is defined as a
parameterization mechanism for templates, and so can
potentially be applied to anything for which a template can
be defined. Indeed, there are other places where the role
concept is not just useful but is vital to making necessary
distinctions in the template definition.

Perhaps the clearest present need is in the definition of
action templates, particularly interaction templates. In an
interaction between, say, a client and a server object, it is
essential to know which is which. We can do this by saying
that the two objects in this example fill client and server
roles in the interaction, and by associating necessary
properties and constraints with these roles. At one point in a
system’s behaviour, an object A can fill the buyer role in a
purchase interaction, while object B fills the seller role, and
later the roles can be reversed, so that B is the buyer and A
is the seller. The richer the interaction, the more useful this

3 Depending on the nature of the template involved, some roles
may be bound after the instantiation of the object defining them.
This is particularly true of objects representing potentially long-
lived structures like communities, where the behaviour will
commonly include the dynamics of community-role bindings (e.g.
changes of committee membership). However, the lifetime of the
role binding is always within the lifetime of the defining object, so
that the objects created by a factory are not simply filling roles in
it.

Figure 3 – Refinement breaks a security
boundary

approach is likely to be; it is particularly effective, for
example, for expressing the capabilities and obligations
associated with secure multi-way interactions, where
capabilities or access permissions are clearly associated
with a specific role. Another example is for distinguishing
between actor and artifact roles in enterprise interactions.
Users of the role concept should be encouraged always to
qualify their use of role with the template type name, as in
action-role and community-role.

6. Obligations

The Foundations define a number of deontic concepts,
particularly obligations, permissions and prohibitions, but
this part of the framework was produced before there had
been much experience with their application in ODP. The
result is that the definitions were taken directly from the
Standard Deontic Logic (SDL), including a simple set of
relations between the concepts, such as the assertion that a
permission for something is an indication that there is not
an obligation not to do it.

There is nothing wrong with these as statements from
the SDL, but experience has shown that the SDL approach
is somewhat brittle for enterprise modelling, and it would
be better to take a less prescriptive approach in the
Foundations, allowing, for example, a style of modelling
based on Utilitarianism to be exploited if it proves
effective. See [8] for a discussion of how obligations might
be represented in this way.

7. The lifecycle of ODP specifications

It has always been a principle in the development of
ODP that the reference model is neutral with regard to the
methodologies to be applied, and maintaining this position
gives the most broadly applicable framework.

However, It is clear that most systems will evolve over
time, and the reference model needs to take this into
account. The Foundations includes the concept of an epoch
to describe the way in which objects or configurations of
objects evolve through a series of stages. This concept can
also be used to describe the evolution of the specification
itself. This allows a new version of a specification to
describe, for example, how it might be introduced as a
staged transition from the previous version.

One area where there must be an expectation of
evolution and statements of constraints on it is in the
definition of policies. The current Foundations definition of
a policy is very weak. It is just defined as “a set of rules
related to a particular purpose”, with an indication that the
rules are expected to be expressed in deontic terms. There
has been a great deal of work on the use of policies,

particularly in various styles of policy-based management,
since the creation of the reference model, and the
requirements are now much better understood. We can now
identify at least two stronger requirements for a rule to be
considered a policy.

The first of these is that there must be some element of
choice associated with any policy. Policies are identified in
a specification wherever it is recognised that a rule may
need to be changed during the lifetime of the specification;
selecting a structure for the specification that emphasises
the scope of the policy makes it easier to modify it without
wholesale revision, and allows the likelihood of change to
be reflected in the implementation. This is generally done
by encapsulating associated decisions as the behaviour of a
distinct computational or engineering object that can be
replaced whenever the policy is changed.

Thus a rule that is universally true, and cannot be
changed without wholesale replacement of the
specification, is not a policy. The speed of light is not a
policy, but the setting of interest on credit at a certain
percentage above base rate is. Whether an organization
operates with the status of a charity either might or might
not be a policy, depending on whether the specifiers
foresaw the possibility that the status might change and
planned for it.

The second thing to be said about policy is that the
specifiers who identify it will generally wish to limit the
range of behaviour that would be acceptable; this gives rise
to the idea of a policy envelope [7], which limits the range
of behaviour any particular policy is allowed to specify.
Knowledge of the policy envelope allows the verification of
invariants on the specification that are independent of the
particular policy in use at any particular instant.

Another aspect of the lifecycle of an ODP specification
is the relationship between specification and instantiation,
which is discussed in [6]. This paper identifies the need to
enhance the ODP conformance model slightly so that it is
able to distinguish between classes of use to which the
specification is being put. The current ODP conformance
model describes the relations between system the specifier,
the implementor and the tester, and describes how
conformance is deduced from observation during testing,
confirming that the implementation is consistent with the
original specification. A proposal made in [6] is to
introduce the role of system owner, so that statements of
rights to implement and use the design embodied in the
specification can be made and then interpreted during the
testing process to guide the interpretations made by the
tester.

Making this comparatively minor extension opens the
way to a more formal model of licensing and rights to use
the design, and could help clarify the constraints on system

evolution involving reuse of design libraries or
components.

8. Frames and unified semantics

Several of the areas examined so far have involved the
need to describe the possibility of change or of the system
responding to reaching a certain state of affairs or set of
objectives. Constraints of the same basic kind are involved
in basic behaviour like the interface and binding lifecycle,
the definition of policies and the use or reuse of
specifications. It would be a great aid to consistency of
modelling if all these were based on a similar underlying
model structure.

Most of the notations of practical interest here have their
semantics defined denotationally, in terms of a mapping
from notational elements to some mathematical target
domain. For example, LOTOS is defined in terms of a
labelled transition system. Other notations, such as UML,
still lack a uniform and consistent semantic mapping. What
is needed is a common target domain that is a natural
extension of those in common use but with the power to be
a target all the ODP-related notations, including the deontic
aspects of enterprise languages.

One possible direction would be to introduce a frame-

based model such as one based on Kripke Frames (see [9]
for an accessible review of these and other related systems
able to support modal logics). The idea (see figure 4) is that
the development or evolution of the system is represented
by a model consisting of:

a) a set, W, of possible worlds of interest; the form of
description of the world is not of interest here,
except that it is decomposable into a set of
attributes that carry Boolean values;

b) a dyadic relation, R, representing the reachability
between members of W; R is true if w2 is
accessible from w1, and false otherwise;

c) a value assignments, V, that assigns truth values to
the attributes of each world in W.

This model captures in a mathematical way the intuition
that we can describe any situation of interest for ODP as a
set of worlds with local states of affairs and a set of
statements as to whether any world can evolve into any
other. Something is possible in a world if there exist worlds
reachable from it in which that thing would be true, and
something is necessary in a world if that thing would be
true in all worlds reachable from it. Clearly, this kind of
structure is capably of defining concepts like obligation,
which is the deontic version of necessity.

From such a model we can go a step further by dividing
the model into a set of related frames <W, R> and a
separate set of value assignments, or markings, V. This is
not quite as flexible as the general related worlds model,
but does separate the structural aspects of evolution from
the constraints on variables, making it easier to reason
about. Frames of this kind are called Kripke Frames.

It would be possible to add such a frame definition to the
clauses of the Foundations on basic interpretation concepts
(putting mathematical detail in an annex, if necessary, to
avoid possible intimidation of some readers) and thereby
establish a common framework for supporting the basic
behavioural and deontic aspects, and possibly the broader
conformance and evolutionary issues as well.

Let us consider some of the problems discussed earlier
in this light. First, consider the lifecycle of interfaces and
bindings. The ability of an object to be involved in a
particular kind of action or interaction can be represented as
a marking in any particular world, and the ability to create
an interface or perform a binding interaction is a special
case of this; the actual performance of the interaction would
result in changes to the markings between a world and any
of its successors that are reached by performing the
interaction.

Now, the existence of an interface can be deduced in a
particular world from the existence of paths of succession
between that world and worlds that are marked as allowing
the associated interactions without, in so doing, traversing
any successor step corresponding to interface creation –
that is, if there is no creation between the point considered
and some point of use. Essentially, what this is saying is
that the property describing the existence of an interface is
shared by all the worlds that can reach a world in which an
interaction at that interface takes place (interaction is
possible) without passing between a pair of worlds whose
linking relationship corresponds to the creation of the
interface. Although this may sound trivial, it gives a basis

Figure 4 – A frame-based model

for determining precisely the circumstances under which an
interface exists, and so interactions at it can happen. It also
implies some consistency conditions, in that, if two worlds
are reachable by multiple paths, either all of the paths must
include a step representing interface creation or none of
them can.

Similar conditions can be applied to the existence of
bindings. In this way we can describe the way in which
objects are characterised by their potential to engage in
bindings or specific interactions with an unbounded set of
candidate peer objects, without requiring detail of the
behaviour involved in their doing so. Clearly, the set of
worlds that are equivalent in having the property that a
binding exists must be a subset of the possible worlds that
are equivalent in having the property that all the interfaces
to be bound exist. However there is not a subset
relationship between the sets in which each of the
individual interfaces exist.

In a similar approach, we can capture the way in which
the potential behaviour of an object is modified by creation
of a community and by the object filling a community-role;
filling the role results in a modification of the set of
accessible worlds. The performance of an action commits
the objects involved to playing their action-roles, and the
preconditions for so doing can be derived from the
accessibility relations.

Before leaving this issue, it should be stressed that what
is being discussed here is a sketch of the definition of
semantics for the basic modelling and specification
concepts. There is no intention that the average user of
these concepts would be involved in such considerations,
but the unified underpinnings would give the basis for
reasoning about the consistency of the framework and the
correctness of interpretations by tools in difficult or
potentially ambiguous cases.

9. Gaps and omissions

Finally, there are a number of areas in which the current
Foundations standard omits material on the grounds that it
is self evident or sufficiently obvious to be taken as read.
Experience has shown that it is worth making even
apparently well-understood concepts explicit if they are to
be used in a formal way.

One example is the omission of terms in common
technical usage, such as relationship or association,
definitions of which should be included on the basis of
significant usage in ODP specification, even if they seem
obvious. The Foundations should include generic
definitions consistent with, but less detailed and restrictive
than those in the ISO General Relationship Model [10].
These generic definitions would then need to be related to

the specific relationships that are already defined in the
Foundations, such as the subtype and subclass relationships.

Another example is the omission of ODP specific detail
or logical consequences of the existing definitions. Here
one might consider the explicit definition of the concept of
an inter-viewpoint correspondence, which is not discussed
when viewpoint is defined. It should, indeed, be obvious to
everyone that a system is only defined if both the
viewpoints and the correspondences between them are
detailed to a sufficient level to unify the overall
specification, but sets of viewpoint specifications are often
published without clear statements of correspondences, and
a more balanced set of definitions would help just a little to
get this message across.

Finally, the clause on specification concepts should be
reviewed to check whether residual restrictions on usage
are necessary. Many of the concepts, such as type and class,
can be applied to a wide range of basic concepts. Thus, for
example, the concept type (of an <X>) can be applied to
any <X>. An individual specification can then declare
which kinds of terms in it can have types. At present,
however, composition only applies to objects, and
refinement only applies to specifications. Discussion will
be needed to determine whether these two concepts should
be of an <X> or applied indirectly as relating specification
fragments; either way, there would be a minor incompatible
change to one or other of the concepts.

10. Conclusions

It seems that, in general terms, the ODP Foundations
document has stood the test of time quite well. There is a
need for some clarification of the definitions of roles and
policies, and for addition of clear definitions of a number of
concepts originally assumed to be well known, such as
relation.

The most pressing need is for more explicit definitions
relating to evolution in time, relating both to system
behaviour (for example the lifecycle of interfaces) and,
more generally, of a set of ODP specifications to reflect
changes of requirement and policy. This can best be done
by having an explicit representation of the possible worlds a
specification applies to; this would need to be referenced as
part of the most fundamental support for modelling used to
define the basic and specification concepts.

Although the concept definitions are quite stable, they
are not always used to best advantage in related standards.
In particular, because the ODP Architecture was developed
in parallel with the Foundations, there are places where
usage in Part 3 is incorrect or where rules could be
expressed more precisely by making best use of the
foundation concepts. Part 1 could be improved by making

the usage of the concepts from the Foundations more
consistent and complete. It would also be possible to
improve Part 4 by interpreting some of the concepts directly
in terms of the semantic domain for the formal description
techniques rather than writing them in the techniques
directly. However, it seems unlikely that there is enough
expert effort available to attempt so major a task on Part 4,
and the refinement of Parts 2 and 3 of the reference model
should be the primary target at present.

References

[1] ISO\IEC IS 10746-2, Open Distributed Processing –
Reference Model: Foundations, 1996.

[2] ISO\IEC IS 10746-3, Open Distributed Processing –
Reference Model: Architecture, 1996.

[3] P. F. Linington, RM-ODP: The Architecture, In K.
Raymond and E. Armstrong, editors, Open Distributed
Processing: Experience with Distributed Environments,
pages 15-33. IFIP, Chapman and Hall, February 1995.

[4] ISO\IEC IS 8807, Information processing systems -- Open
Systems Interconnection – LOTOS: A formal description
technique based on the temporal ordering of observational
behaviour, 1989.

[5] ISO/IEC IS 9074, Information technology -- Open Systems
Interconnection -- Estelle: A formal description technique
based on an extended state transition model, 1997.

[6] P. F. Linington and W. F. Frank, Specification and
implementation in ODP, In J. Cordeiro and H. Kilov,
editors, Proceedings of the 1st Workshop on Open
Distributed Processing: Enterprise, Computation,
Knowledge, Engineering and Realisation, pages 69-80,
Setubal, Portugal, July 2001. ICEIS Press.

[7] P. F. Linington and S. Neal, Using policies in the checking
of business to business contracts, In H. Lutfiyya, J. Moffat,
and F. Garcia, editors, Fourth IEEE International Workshop
on Policies for Distributed Systems and Networks, pages
207-218, Lake Como, Italy, June 2003. IEEE Computer
Society.

[8] P. F. Linington, Z. Milosevic and K. Raymond, Policies in
Communities: Extending the ODP Enterprise Viewpoint, In
Proceedings of 2nd International Workshop on Enterprise
Distributed Object Computing (EDOC98), San Diego, USA,
November 1998.

[9] G.E.Hughes and M. J. Cresswell, A Companion to Modal
Logic, Methuen, London, 1984

[10] ISO/IEC IS 10165-7, Information Technology – Open
Systems Interconnection – Structure of management
information: General relationship model, 1996.

