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Abstract 

This position paper revisits the requirements for the set 
of Foundation Concepts for the ODP Reference Model and 
the approach originally taken to satisfying them. It then 
examines, in the light of experience, the areas where the 
Foundations have subsided, and areas where extensions 
need to be built. The aim is to provide a starting point for 
discussion on requirements to change the Foundations 
document. 

1. Introduction 

Even before the first draft of the Reference Model for 
ODP was produced, the group of experts working on it had 
found the need for a separate definition of a clear 
conceptual framework on which to base their work; almost 
ten years later, this became Part 2 of the published standard 
[1], and established the conceptual framework for the ODP 
Architecture [2] [3]. The need for the RM-ODP 
Foundations document was clear; experts from a number of 
different backgrounds had come together to work on ODP, 
and they brought with them a wide range of different 
vocabulary and usage, reflecting different assumptions 
about how systems should be structured and specified. 
Progress with a common reference model depended on the 
creation of a common conceptual framework. 

At the same time, no single notation or descriptive 
technique could be expected to dominate. The broad scope 
of the work was such that different techniques would be 
needed to express different areas of concern. It was 
therefore necessary to express the Foundations in abstract 
terms, bringing together the common features of existing 
styles of usage, so that each concrete notation is seen as a 
refinement of the foundation concepts. This is particularly 
the case in the areas of interaction and behaviour, which are 
discussed below. 

 In reviewing how well the RM-ODP has stood the test 
of time, we must be aware of the constraints on modifying 
it. Not only must the Parts of the reference model maintain 
their internal consistency, but the documents that reference 
it must not be undermined. This applies both to the ISO 
standards within the framework the reference model has 
created, and to the work within bodies such as the ITU-T 
and the OMG, and also the usage within the wider 
community. We do not have a green field; we have a 
responsibility to perform restoration, not demolition and 
replacement. The Foundations may need to be strengthened, 
but not relaid. 

2. Objects and Interactions 

At the time that the Foundations was being debated, two 
formal description techniques were also being developed 
within the same parent standards committee. These were 
LOTOS [4] and ESTELLE [5]; they differ significantly in 
their representation of interaction and this coloured the 
discussions in ODP. In LOTOS, the processes interact at 
gates in a synchronous way, in that all the parties to an 
interaction would agree on when the interaction occurs 
(although basic LOTOS deals with action sequence, not 
timing). In ESTELLE, on the other hand, modules are 
linked by communication links, which contain umbounded 
queues, so that interaction is represented by distinct sending 
and receiving actions that are sequenced but not 
simultaneous. 

This led to a need for a common modelling basis that 
was capable of unifying both approaches.  Interactions in 
ODP are synchronous, but are defined between an object 
and its environment. If we then constrain the way objects 
are composed so that each object binds directly to another 
object in its environment, the resulting communication is 
synchronous, but if objects bind to link ends in their 
environment, the resulting communication is asynchronous. 



One might feel that the asynchronous representation was 
slightly cumbersome, but the Foundations also provide the 
less closely coupled concept of communication, which 
represents a sequence of causally related interactions, so 
that channels between communicating objects can (but need 
not) be completely hidden in this style of notation. 

Currently, the Foundations do not distinguish between 
different kinds of interaction, but leave it to the 
specification using them to refine the basic concept. This, 
together with the connotations in English of the work 
“interaction”, may have given the impression that the 
intension is something like a method call. This could be 
avoided and the full generality demonstrated by including 
in the standard non-exclusive definitions for some common 
refinements of interaction, such as invocation, message 
transfer and event notification.1 For brevity, these examples 
are taken from a computational domain, but the definitions 
added should be viewpoint-independent, with notes to 
clarify their application, including examples in at least the 
engineering and enterprise domains. 

3. Interface 

The Foundations define an interface in terms of a view 
of the behaviour of an object, resulting from taking a subset 
of the interactions of the object and hiding all the other 
interactions and behavioural constraints that involve them. 
This definition is basically sound, but there are some 
subtleties that need to be taken into account in order to 
understand it fully. 

Let us consider a computational application of the 
definition to see some of the problems; assume a style of 
interaction in which there is a clear causal initiative, so that 
an object is invoked by its clients and may, as a result, 
invoke other objects providing services (see figure 1). 

The object, Obj, has four interfaces and its complete 
behaviour places constraints within and between them. Its 
environment contains four objects, A to D. The figure 
shows that: 

a) object A can initiate interaction P at interface 
If1 at any time; 

b) object B can initiate interaction Q at interface 
If2 at any time; 

c) object B can initiate interaction R at interface 
If2 but constraint C1 requires Q to happen first; 
when R does occur, it is followed by Obj 
initiating interaction T with object D at If4; 

                                                           
1 The foundations originally avoided the use of the term event 
because of the connotations arising from the world of discrete 
event simulation; however, the use of the term event notification 
seems to avoid this. 

d) object B can initiate interaction S at interface 
If2 at any time; when S does occur, it is 
followed by Obj initiating interaction U with 
object C at If3; the behaviour of C results in an 
interaction V with Obj at interface If2. 

 
Now let us see how the definition of the interface 

concept works. The first thing to note is that all the 
interactions of Obj are considered, and not just those in 
which it acts as a responder. Thus we are dealing with four 
interfaces, whereas a computational middleware might only 
consider interfaces 1 and 2 at which services are offered. 
Secondly, the interactions here are action occurrences, and 
not action types; actions P and Q could be of the same type, 
but the occurrences in the two interfaces are distinct. In 
fact, as a result of this, the sets of interactions are normally 
infinite, because most objects will have a behaviour that 
allows arbitrary repetition of smaller fragments of 
behaviour associated with some sort of thread or session; 
almost all notations simplify this by considering as a unit 
the sets of interactions with similar types and names (where 
the naming domain is associated with the interface). Note 
that this idea of equivalence sets implies that the 
identification of interfaces is a design activity – the 
interfaces cannot be deduced by examination of the overall 
computational behaviour (although, once the decision has 
been made, it is generally reflected by the naming structure 
used for interactions in the engineering viewpoint). 

Figure 1 – Interfaces and Object Behaviour 



Now let us consider the individual interfaces in the 
example. Interface 1 consists of occurrence of members of 
the set P without further constraint.  

Interface 2 consists of the interaction sets Q, R, S and V, 
but subject to the constraint that an R must be preceded by 
an occurrence of Q. The constraints 2 and 3 are hidden in 
interface 2 because they involve interactions T and U, 
which are themselves hidden. The multi-step constraint 
between S and V is hidden for the same reason – it depends 
on U and also on the behaviour of C, which are themselves 
both hidden. These constraints only become apparent when 
the full behaviour of the object is considered; the link from 
S to V depends on specific behaviour in the environment, 
and so cannot be deduced from constraint 3 alone. 
However, a constraint between S and V could have been 
stated in interface 3 in terms of locally available properties, 
such as the presence of a correlation identifier as a data 
item in both the interactions.2 

Interfaces 3 and 4 are again straightforward; apart from 
the placement of the initiative for interaction, they are 
structurally similar to interface 1. 

What we have not yet considered is the dynamic 
lifecycle of an interface. Before interaction can take place, 
there are normally two steps to be taken. First, the object 
must be in a state where it is willing to interact 
(corresponding to the creation of the interface and its 
associated naming domain for interactions and initialisation 
of related internal state of the object) and second any 
interactions with the environment needed to establish 
preconditions for interactions at the interface must have 
been performed (corresponding to the establishment of a 
binding and associated communication and resultant state 
shared between the objects involved). After the first step, 
there is potential for interaction, but no specific partner for 
interaction has been selected, whilst after the second step 
interaction with specific partners can take place. Different 
kinds of object behaviour allow the description of one-to-
one bindings or many-to-one client-server bindings. Similar 
considerations apply to the deletion of a binding and an 
interface. 

When the Foundations were being drafted, a number of 
ways of modelling this process were considered, mostly 
based on including an intermediate concept for the unbound 
state, such as semi-interfaces or unbound interfaces, but 
none of them were successful. It would be worth revisiting 
this issue, but a better solution might be to consider a more 
general way of describing the potential behaviour of an 
object that is currently in a particular state (see section 8 
below). 

                                                           
2 This has different semantics, particularly with respect to the trust 
implications for C, but it may be equivalent for practical purposes. 

4. Components 

One of the significant changed in the last ten years has 
been the growth of interest in component-oriented 
architectures, so a natural question to ask is whether the 
Foundations should include a general definition of what a 
component is. If we consider, for example the CORBA 
Components 3.0 Specification (figure 2), and ask what the 
key properties of a component are, we find 

a) encapsulation; 
b) interactions at ports; the ports can be specialised as 

facets, receptacles, event sources, event sinks or 
attributes; 

c) a component equivalent interface that provides 
metadata, navigation and control for the 
component; 

d) an associated component home interface, 
representing a container in which components of 
the given type can be instantiated. 

 
In fact, all of these can be modelled using the existing 

Foundations. The general concept of interaction is rich 
enough to be refined into any of the defined port types, and 
the equivalent and home interfaces are just conventional 
computational interfaces. The container property requires a 
specialisation of the object concept to make explicit the 
relation to the instantiation of templates involved when it 
acts as a factory. 

The ability to support both facets (server interfaces) and 
receptacles (client interfaces) as specialisations of the ODP 
concept of interface has already been mentioned above; it is 
primarily this generality, and the equivalent capabilities for 
interaction support, that make the foundation concept of 
object so flexible. 

 Perhaps a little more needs to be said about 
encapsulation. The Foundations explain encapsulation as 
the property of an object such that it can only have its state 
changed by interactions or internal actions expressed in the 
model. As such, the definition is more related to 

Figure 2 – A component model 



completeness of description than to level of abstraction. 
Indeed, the inability to guarantee encapsulation on 
structural refinement is one of the problems in security 
analysis (see figure 3), for example, since structural 
refinements may introduce backdoors, and it is difficult to 
apply constraints to the refinement process that prevent this.  

 
However, there would be nothing to choose between an 

object model and a component model built on the 
Foundations in this respect, even if our common intuition is 
that encapsulation of a component is a less abstract claim 
than encapsulation of an object. 

As a result there is no need for extension of the 
Foundations if it was felt that there was a need to 
incorporate a computational or engineering component 
model into the architecture. However, there could be merit 
in adding derived definitions for component and factory, 
making it clear how the existing definitions can be used to 
model them. 

5. Roles 

The Foundations define a role as “an identifier for a 
behaviour, which may appear as a parameter in a template 
for a composite object, and which is associated with one of 
the component objects of the composite object”. This 
definition has been much misunderstood, and some authors 
have tried to rework the definition in terms of static class 
structures, without much success. To attempt to do so is to 
miss the point of the definition, but clearly it does not, in its 
present form, convey the intent, which is indicated by the 
reference to templates and to the actualisation of parameters 
in its second paragraph (which is not quoted here). 

The discussion here is based on the explanation in [6]. 
The metaphor on which the role concept is based is 
theatrical. The text of a play is expressed in terms of lines 
and actions associated with various roles, which are 
declared initially in a cast-list. Putting the play on involves 
assigning actors to the various roles, although one actor 
may play several minor roles, and the actor playing a role 
may change during the run of the production. Identifying 

the roles rather than the actors obviously makes the script 
more reusable. 

The key idea is that some constraints on system 
behaviour are associated with objects dynamically as a 
consequence of an earlier part of the behaviour, such as 
performance of a piece of negotiation. However, although 
the potential behaviour can be referenced (and hence the 
talk of an identifier in the definition) it is not associable 
with an actual object until the template is instantiated and 
the role bound to a specific object3. It is thus impossible to 
represent what is going on within a static class hierarchy.  

The solution to the misunderstandings is to remove the 
idea of there being a parameter identifier in the template’s 
behaviour to the explanatory note, and to focus the first 
paragraph of the definition on the idea of parameter 
substitution. Perhaps more importantly, though, we need to 
clarify the way the potential behaviour of an object is 
restricted when it is bound to a role, and this needs a proper 
framework for the discussion of potential behaviour of the 
kind described in section 8 below. 

The second problem with the role concept at present is 
with usage rather than definition. There has been 
widespread discussion in ODP circles of community-roles 
in the Enterprise Language, but unfortunately this has been 
expressed the term using role without qualification, leading 
to an implicit assumption that saying role implies 
community-role. As shown above, role is defined as a 
parameterization mechanism for templates, and so can 
potentially be applied to anything for which a template can 
be defined. Indeed, there are other places where the role 
concept is not just useful but is vital to making necessary 
distinctions in the template definition. 

Perhaps the clearest present need is in the definition of 
action templates, particularly interaction templates. In an 
interaction between, say, a client and a server object, it is 
essential to know which is which.  We can do this by saying 
that the two objects in this example fill client and server 
roles in the interaction, and by associating necessary 
properties and constraints with these roles. At one point in a 
system’s behaviour, an object A can fill the buyer role in a 
purchase interaction, while object B fills the seller role, and 
later the roles can be reversed, so that B is the buyer and A 
is the seller. The richer the interaction, the more useful this 

                                                           
3 Depending on the nature of the template involved, some roles 
may be bound after the instantiation of the object defining them. 
This is particularly true of objects representing potentially long-
lived structures like communities, where the behaviour will 
commonly include the dynamics of community-role bindings (e.g. 
changes of committee membership). However, the lifetime of the 
role binding is always within the lifetime of the defining object, so 
that the objects created by a factory are not simply filling roles in 
it. 

Figure 3 – Refinement breaks a security 
boundary 



approach is likely to be; it is particularly effective, for 
example, for expressing the capabilities and obligations 
associated with secure multi-way interactions, where 
capabilities or access permissions are clearly associated 
with a specific role. Another example is for distinguishing 
between actor and artifact roles in enterprise interactions. 
Users of the role concept should be encouraged always to 
qualify their use of role with the template type name, as in 
action-role and community-role. 

6. Obligations 

The Foundations define a number of deontic concepts, 
particularly obligations, permissions and prohibitions, but 
this part of the framework was produced before there had 
been much experience with their application in ODP. The 
result is that the definitions were taken directly from the 
Standard Deontic Logic (SDL), including a simple set of 
relations between the concepts, such as the assertion that a 
permission for something is an indication that there is not 
an obligation not to do it. 

There is nothing wrong with these as statements from 
the SDL, but experience has shown that the SDL approach 
is somewhat brittle for enterprise modelling, and it would 
be better to take a less prescriptive approach in the 
Foundations, allowing, for example, a style of modelling 
based on Utilitarianism to be exploited if it proves 
effective. See [8] for a discussion of how obligations might 
be represented in this way. 

7. The lifecycle of ODP specifications 

It has always been a principle in the development of 
ODP that the reference model is neutral with regard to the 
methodologies to be applied, and maintaining this position 
gives the most broadly applicable framework. 

However, It is clear that most systems will evolve over 
time, and the reference model needs to take this into 
account. The Foundations includes the concept of an epoch 
to describe the way in which objects or configurations of 
objects evolve through a series of stages. This concept can 
also be used to describe the evolution of the specification 
itself. This allows a new version of a specification to 
describe, for example, how it might be introduced as a 
staged transition from the previous version. 

One area where there must be an expectation of 
evolution and statements of constraints on it is in the 
definition of policies. The current Foundations definition of 
a policy is very weak. It is just defined as “a set of rules 
related to a particular purpose”, with an indication that the 
rules are expected to be expressed in deontic terms. There 
has been a great deal of work on the use of policies, 

particularly in various styles of policy-based management, 
since the creation of the reference model, and the 
requirements are now much better understood. We can now 
identify at least two stronger requirements for a rule to be 
considered a policy. 

The first of these is that there must be some element of 
choice associated with any policy. Policies are identified in 
a specification wherever it is recognised that a rule may 
need to be changed during the lifetime of the specification; 
selecting a structure for the specification that emphasises 
the scope of the policy makes it easier to modify it without 
wholesale revision, and allows the likelihood of change to 
be reflected in the implementation. This is generally done 
by encapsulating associated decisions as the behaviour of a 
distinct computational or engineering object that can be 
replaced whenever the policy is changed. 

Thus a rule that is universally true, and cannot be 
changed without wholesale replacement of the 
specification, is not a policy. The speed of light is not a 
policy, but the setting of interest on credit at a certain 
percentage above base rate is. Whether an organization 
operates with the status of a charity either might or might 
not be a policy, depending on whether the specifiers 
foresaw the possibility that the status might change and 
planned for it. 

The second thing to be said about policy is that the 
specifiers who identify it will generally wish to limit the 
range of behaviour that would be acceptable; this gives rise 
to the idea of a policy envelope [7], which limits the range 
of behaviour any particular policy is allowed to specify. 
Knowledge of the policy envelope allows the verification of 
invariants on the specification that are independent of the 
particular policy in use at any particular instant. 

Another aspect of the lifecycle of an ODP specification 
is the relationship between specification and instantiation, 
which is discussed in [6]. This paper identifies the need to 
enhance the ODP conformance model slightly so that it is 
able to distinguish between classes of use to which the 
specification is being put. The current ODP conformance 
model describes the relations between system the specifier, 
the implementor and the tester, and describes how 
conformance is deduced from observation during testing, 
confirming that the implementation is consistent with the 
original specification. A proposal made in [6] is to 
introduce the role of system owner, so that statements of 
rights to implement and use the design embodied in the 
specification can be made and then interpreted during the 
testing process to guide the interpretations made by the 
tester. 

Making this comparatively minor extension opens the 
way to a more formal model of licensing and rights to use 
the design, and could help clarify the constraints on system 



evolution involving reuse of design libraries or 
components. 

8. Frames and unified semantics 

Several of the areas examined so far have involved the 
need to describe the possibility of change or of the system 
responding to reaching a certain state of affairs or set of 
objectives. Constraints of the same basic kind are involved 
in basic behaviour like the interface and binding lifecycle, 
the definition of policies and the use or reuse of 
specifications. It would be a great aid to consistency of 
modelling if all these were based on a similar underlying 
model structure. 

Most of the notations of practical interest here have their 
semantics defined denotationally, in terms of a mapping 
from notational elements to some mathematical target 
domain. For example, LOTOS is defined in terms of a 
labelled transition system. Other notations, such as UML, 
still lack a uniform and consistent semantic mapping. What 
is needed is a common target domain that is a natural 
extension of those in common use but with the power to be 
a target all the ODP-related notations, including the deontic 
aspects of enterprise languages. 

 
One possible direction would be to introduce a frame-

based model such as one based on Kripke Frames (see [9] 
for an accessible review of these and other related systems 
able to support modal logics). The idea (see figure 4) is that 
the development or evolution of the system is represented 
by a model consisting of: 

a) a set, W, of possible worlds of interest; the form of 
description of the world is not of interest here, 
except that it is decomposable into a set of 
attributes that carry Boolean values; 

b) a dyadic relation, R, representing the reachability 
between members of W; R is true if w2 is 
accessible from w1, and false otherwise; 

c) a value assignments, V, that assigns truth values to 
the attributes of each world in W. 

This model captures in a mathematical way the intuition 
that we can describe any situation of interest for ODP as a 
set of worlds with local states of affairs and a set of 
statements as to whether any world can evolve into any 
other. Something is possible in a world if there exist worlds 
reachable from it in which that thing would be true, and 
something is necessary in a world if that thing would be 
true in all worlds reachable from it. Clearly, this kind of 
structure is capably of defining concepts like obligation, 
which is the deontic version of necessity. 

From such a model we can go a step further by dividing 
the model into a set of related frames <W, R> and a 
separate set of value assignments, or markings, V. This is 
not quite as flexible as the general related worlds model, 
but does separate the structural aspects of evolution from 
the constraints on variables, making it easier to reason 
about. Frames of this kind are called Kripke Frames. 

It would be possible to add such a frame definition to the 
clauses of the Foundations on basic interpretation concepts 
(putting mathematical detail in an annex, if necessary, to 
avoid possible intimidation of some readers) and thereby 
establish a common framework for supporting the basic 
behavioural and deontic aspects, and possibly the broader 
conformance and evolutionary issues as well. 

Let us consider some of the problems discussed earlier 
in this light. First, consider the lifecycle of interfaces and 
bindings. The ability of an object to be involved in a 
particular kind of action or interaction can be represented as 
a marking in any particular world, and the ability to create 
an interface or perform a binding interaction is a special 
case of this; the actual performance of the interaction would 
result in changes to the markings between a world and any 
of its successors that are reached by performing the 
interaction. 

Now, the existence of an interface can be deduced in a 
particular world from the existence of paths of succession 
between that world and worlds that are marked as allowing 
the associated interactions without, in so doing, traversing 
any successor step corresponding to interface creation – 
that is, if there is no creation between the point considered 
and some point of use. Essentially, what this is saying is 
that the property describing the existence of an interface is 
shared by all the worlds that can reach a world in which an 
interaction at that interface takes place (interaction is 
possible) without passing between a pair of worlds whose 
linking relationship corresponds to the creation of the 
interface. Although this may sound trivial, it gives a basis 

Figure 4 – A frame-based model 



for determining precisely the circumstances under which an 
interface exists, and so interactions at it can happen. It also 
implies some consistency conditions, in that, if two worlds 
are reachable by multiple paths, either all of the paths must 
include a step representing interface creation or none of 
them can. 

Similar conditions can be applied to the existence of 
bindings. In this way we can describe the way in which 
objects are characterised by their potential to engage in 
bindings or specific interactions with an unbounded set of 
candidate peer objects, without requiring detail of the 
behaviour involved in their doing so. Clearly, the set of 
worlds that are equivalent in having the property that a 
binding exists must be a subset of the possible worlds that 
are equivalent in having the property that all the interfaces 
to be bound exist. However there is not a subset 
relationship between the sets in which each of the 
individual interfaces exist. 

In a similar approach, we can capture the way in which 
the potential behaviour of an object is modified by creation 
of a community and by the object filling a community-role; 
filling the role results in a modification of the set of 
accessible worlds.  The performance of an action commits 
the objects involved to playing their action-roles, and the 
preconditions for so doing can be derived from the 
accessibility relations. 

Before leaving this issue, it should be stressed that what 
is being discussed here is a sketch of the definition of 
semantics for the basic modelling and specification 
concepts. There is no intention that the average user of 
these concepts would be involved in such considerations, 
but the unified underpinnings would give the basis for 
reasoning about the consistency of the framework and the 
correctness of interpretations by tools in difficult or 
potentially ambiguous cases. 

9. Gaps and omissions 

Finally, there are a number of areas in which the current 
Foundations standard omits material on the grounds that it 
is self evident or sufficiently obvious to be taken as read. 
Experience has shown that it is worth making even 
apparently well-understood concepts explicit if they are to 
be used in a formal way. 

One example is the omission of terms in common 
technical usage, such as relationship or association, 
definitions of which should be included on the basis of 
significant usage in ODP specification, even if they seem 
obvious. The Foundations should include generic 
definitions consistent with, but less detailed and restrictive 
than those in the ISO General Relationship Model [10]. 
These generic definitions would then need to be related to 

the specific relationships that are already defined in the 
Foundations, such as the subtype and subclass relationships. 

Another example is the omission of ODP specific detail 
or logical consequences of the existing definitions. Here 
one might consider the explicit definition of the concept of 
an inter-viewpoint correspondence, which is not discussed 
when viewpoint is defined. It should, indeed, be obvious to 
everyone that a system is only defined if both the 
viewpoints and the correspondences between them are 
detailed to a sufficient level to unify the overall 
specification, but sets of viewpoint specifications are often 
published without clear statements of correspondences, and 
a more balanced set of definitions would help just a little to 
get this message across. 

Finally, the clause on specification concepts should be 
reviewed to check whether residual restrictions on usage 
are necessary. Many of the concepts, such as type and class, 
can be applied to a wide range of basic concepts. Thus, for 
example, the concept type (of an <X>) can be applied to 
any <X>. An individual specification can then declare 
which kinds of terms in it can have types. At present, 
however, composition only applies to objects, and 
refinement only applies to specifications. Discussion will 
be needed to determine whether these two concepts should 
be of an <X> or applied indirectly as relating specification 
fragments; either way, there would be a minor incompatible 
change to one or other of the concepts. 

10. Conclusions 

It seems that, in general terms, the ODP Foundations 
document has stood the test of time quite well. There is a 
need for some clarification of the definitions of roles and 
policies, and for addition of clear definitions of a number of 
concepts originally assumed to be well known, such as 
relation. 

The most pressing need is for more explicit definitions 
relating to evolution in time, relating both to system 
behaviour (for example the lifecycle of interfaces) and, 
more generally, of a set of ODP specifications to reflect 
changes of requirement and policy. This can best be done 
by having an explicit representation of the possible worlds a 
specification applies to; this would need to be referenced as 
part of the most fundamental support for modelling used to 
define the basic and specification concepts. 

Although the concept definitions are quite stable, they 
are not always used to best advantage in related standards. 
In particular, because the ODP Architecture was developed 
in parallel with the Foundations, there are places where 
usage in Part 3 is incorrect or where rules could be 
expressed more precisely by making best use of the 
foundation concepts. Part 1 could be improved by making 



the usage of the concepts from the Foundations more 
consistent and complete. It would also be possible to 
improve Part 4 by interpreting some of the concepts directly 
in terms of the semantic domain for the formal description 
techniques rather than writing them in the techniques 
directly. However, it seems unlikely that there is enough 
expert effort available to attempt so major a task on Part 4, 
and the refinement of Parts 2 and 3 of the reference model 
should be the primary target at present. 
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