
Automating Support for e-Business Contracts

Peter F. Linington.

University of Kent,
Canterbury, Kent, CT2 7NF, UK.

 pfl@kent.ac.uk

Abstract

This position paper considers the steps necessary to
provide sufficient automation in the support of e-Business
contracts for them to become widely used. It focuses on the
role of models, taking a model-driven approach to
development and discussing the transformational pathways
and metamodels needed to support contract-based business
processes.

1. Introduction

In the real world, business activities in which
organizations cooperate are regulated by contracts –
agreements on the patterns of behaviour needed to achieve
mutually agreed goals, and of contingencies and sanctions
to be applied if the expected behaviour is not performed.
These contracts are governed by rules or laws established
by the society concerned. It is highly desirable for the ICT
infrastructure supporting business activities to be controlled
directly by some expression of these contracts, so that
correct operation is assured with a minimum of human
intervention.

However, each organization has its own agenda and,
although the contract represents a mutually acceptable
outcome, this is not generally the most advantageous
outcome for any of the organizations considered separately;
each must have some assurance that the other is keeping
their side of the bargain. Reflecting this division of
responsibilities, the infrastructure will consist of parts
serving each organization and parts operated by third
parties; each party will need some way of checking that the
others are indeed operating according to contract.

Previous work has proposed an architecture for contract
management within the ICT infrastructure [6], for
expression of the contract as a set of policies [2] and for a
monitoring component that can be used to check adherence
to the contract [4]. Work in [3] has proposed a language for

expressing such contracts in a form suitable for the
checking component to operate on. However, the proof of
concept prototypes constructed in the course of this work
were hand built and hand configured. A better solution is
needed for electronic contracting to be cost effective; one
option is Model Driven Development, and that approach is
what this position statement discusses.

2. Model Driven Development

The key to the flexible evolution of ICT systems is
automation, particularly automation of the production of
implementation detail. What needs to be done is to establish
an implementation style for elaboration of a high level
design so that future modifications to the business design
are carried through mechanically, with the minimum of
human intervention, into changes to the detailed
implementation of the infrastructure. This is the concept
behind the model driven development movement.

In this approach (figure 1), the system designers have

two kinds of task to perform. Firstly, they have to generate

Figure 1: Model Transformation

a design in terms of a model that abstracts away from the
details of the supporting infrastructure – a model in
business terms; they will create this model using a suitable
domain-specific language, or metamodel. Second, they will
need to define a transformation from their model to a
solution using available infrastructure components. If the
business metamodel is stable and reasonably well known,
these two tasks can be preformed by different specialists
within the team.

In model driven development, it is assumed that the
source and target metamodels are stable, so that
transformations expressed between them become reusable,
and the tools generated to perform them are then
themselves long-lived. The transformations themselves are
likely to be constructed from reusable components in the
form of broadly accepted templates or patterns.

To apply this style to any particular domain, we need to
have available suitable target metamodels, and
encouragement of reuse dictates that these should have as
broad a scope as possible. They are likely to be produced to
reflect the properties of the available platform architectures
or of general-purpose components. One way of looking at
the process is to see the target metamodel or metamodels as
defining a virtual machine on which the source behaviour is
to be executed.

3. Model Driven Contract Support

How can these ideas be applied to electronic contracts?
It is possible to identify a number of different ways in
which the representation of a contract will be used (see
figure 2). They can be used:

a) to record the results of negotiation between the

parties involved, or their agents, thereby creating a
contract defining some activity that is to be
undertaken; this can be on a one-off basis, or it can
result in a contract that will be applied more than
once;

b) to steer the performance of activities while
carrying out the contract; the contract is used in

identifying obligations and in scheduling resultant
actions or identifying situations where a response
is needed to violations;

c) as a basis for run-time monitoring activities,
carried out by components separate from the
parties directly involved in the contract;

d) during subsequent arbitration of disputes arising
from the contract; this is likely to be based on the
audit trail established by the participants, together
with non-repudiable statements lodged by them in
a mutually agreed trustworthy place.

A single model should be able to represent the contract
in each of these cases, but in each of these cases, a specific
model and metamodel for contract processing will be
needed; the actions to be taken based on interpretation of
the contract will differ in each case.

4. Requirements on the Metamodels

4.1 More detailed requirements

To clarify the roles played by different metamodels, let
us consider the monitoring process and the environment in
which it is carried out in more detail. We assume for
simplicity that a contract has been negotiated, and that it
has been signed by a Notary and lodged in a trusted
contract repository. From there, it is accessed independently
by the contracting parties to guide their activities and by the
monitor to verify that the actions taken are consistent with
the contract.

The contracting parties need to be able to determine at
any point which actions are permitted, which are definitely
required by some obligation, and for these, how soon action
is required and how severe the penalties for failure to
comply with the contract are; they also need to identify
which actions participants are obliged to report, and to
whom. The reporting requirements are likely themselves to
form part of the contract, and may imply reporting either to
a specific entity or to a well-known channel, to make key
events visible to some or all of the participants on an opt-in
basis.

The monitor needs to be able to determine whether
observed actions are valid at the time where they occur, and
what effect they have on the state of, and progression of,
the contract. The monitor needs to record enough of the
state of each activity to be able to perform this kind of
validation.

There may well be a mismatch between the events
observed and the actions declared in the contract. This can
occur because the contract is expressed in more abstract
terms than the actions reported, so that the monitor has to

Figure 2 – Use of Contracts

match patterns representing the more abstract events in
order to recognise them. These patterns need not be fixed in
the contract, since contracting parties will generally have
autonomy in determining how they are to perform
contractual actions. Another reason for there being a non-
trivial mapping between observation and contractual action
is delegation, for example to a sub-contractor, where there
would again be flexibility as to how the contractual action
is to be achieved in detail.

In any of these cases, a mechanism is needed to support
the dynamic binding of detailed behaviour to the
contractual actions. What the binding actually is might be
determined by pre-registration or by inspecting the
parameterisation of initial exchanges in the contract, where
details are being negotiated.

4.2 Correlation Requirements

Another area where significant flexibility is needed is in
identifying when new instances of the contractual
behaviour begin, and which instance of the contract
subsequent actions are to be associated with. This is quite
similar to the problem of identifying correlation sets in a
choreography language like BPEL [8], but with the
additional problem that hierarchical interpretation may
require several steps in an action binding to be interpreted
before the key information for identifying the correlation
set is available.

In more complex cases, this can lead to a need for the
monitor to carry forward a number of possible
interpretations, and to prune incorrect guesses when further
information becomes available. Consider, for example a
contract that includes a sequence of actions involving some
part of the infrastructure that, for legacy reasons, does not

support the correlation identifier used in the initial activities
of the contract instance (see figure 3).

The initial exchanges use as the correlation identifier a
value IDA included in the initial message by party A.
However, the legacy exchanges between party B and party
C cannot convey this item, and so correlation is based on
the value IDX originated by party B; this is not a problem
for party B, which maintains a local mapping between IDA
and IDX, but this mapping cannot be inferred with any
certainty by an external observer, particularly when
concurrent instances of the contract are in progress. The
observer can correlate the final exchanges between parties
A and B with the initial ones, but can only correlate
exchanges involving A and C if there is some other suitable
data item, such as D, which can safely be used as a
correlator. Thus the monitor needs to track multiple
possibilities, and may never in fact be able to resolve the
situation completely if there is no single, complete chain of
correlations.

4.3 Continuous Quantitative Constraints

Some contracts, such as Service Level Agreements,
express a mixture of discrete behaviour, in terms of actions,
and continuous quantitative measures and activities, and
this illustrates another way in which processing decisions
may need to be devolved to the monitor. Consider, for
example, a supplier of raw material, such as orange juice.
This is shipped as concentrate by road tanker to a
packaging plant, and the telemetry on the receiving dock
reports the flow of juice into the plant. The supply contract
requires a lower bound to be placed on the rate of supply of
juice, averaged over a three-day period.

The average could be calculated whenever a telemetry
message was received, but this could place a considerable
burden on the monitor and the notification infrastructure.
Considerable savings could be made if the monitor were to
operate in a pull-mode, in which it queried the packing
plant system about deliveries over a suitably chosen recent
period. The problem is then the choice of this period.

If, at some point in time, the monitor updates its
historical records of juice flow, it can calculate whether
there has been a contract violation. It can also make a worst
case assumption that the juice flow might have stopped just
after this report and then remained at zero. It is then in a
position to calculate the earliest time at which the contract
could, in these circumstances, have been violated. The
earliest possible violation time can then be used as a
deadline for the next reassessment.

Although the details of this example are not likely to be
found in many different contracts, the need to assess rolling
averages subject to domain specific constraints is likely to
be found quite often in a variety of supply contracts and

Figure 3 – Late resolution of correlation

service level agreements. A monitor should therefore be
able to support a framework for this kind of assessment of
continuous conditions.

4.4 Contract Language

Previous work by the author in collaboration with
Milosevic’s team at DSTC has proposed the main features
of a contract monitoring language [3]. This language
supports the structuring of contract definitions by using the
ODP Enterprise concept of communities [1]. A community
in ODP is a configuration of collaborating objects,
representing entities that is formed to meet some goal, and
so the parallel with the structure of participants in a contract
is quite clear. In the ODP work the modelling is generally
assumed to be object based, and so the contracts are
expressed as collaborations of objects, but this is not a
serious limitation when considering business contracts,
because the parties must be reified at least to the degree
necessary to assign obligations and responsibilities to them.
Indeed, stating that something is a party can be taken to
imply that it is an object.

The idea, then, is to identify nested or overlapping
communities as corresponding to contracts, subcontracts or
broader applicable bodies of regulations. Community
definitions are expressed by declaring a collection of roles
and stating the behaviour that these roles are involved in.
The roles are the formal parameters of the community, and
we can think of the community type as a template that is
instantiated by filling the roles with suitable objects. There
is then a correspondence between these objects in the
representative model and the parties to the contract.

The behaviour of the contract as community will
generally consist of some straightforward basic behaviour,
representing the expected course of normal execution of the
contract, and a set of supporting clauses detailing responses
to various exceptions and violations The general shape of
the behaviour description is similar to many existing
process algebra-based notations, with the ability to express
sequence, concurrency as interleaving and guarded choice,
determined either by the object or the environment.

The language in [3] supports a flexible sliding window
construct to express rolling or periodic constraints. From
the point of view of the behavioural specification, this is
essentially a special kind of iterator with support that allows
the iteration process to be driven by temporal constraints
and it supports quite general guards, which can be a mix of
temporal guards and conditions over historical behaviour
within the window defined. It is, therefore, a generalisation
of existing control structures and so integrates quite
smoothly with the rest of the behaviour specification.

5. Notification Metamodel

The notification metamodel is quite straightforward, and
similar in style to any of the commonly used publish and
subscribe messaging services (the JMS model [9] might be
taken as typical). The main additional requirement is for a
more detailed timing and quality of service model than
would perhaps be the norm.

Detailed timing information is needed so that there is
enough information for the monitor to reconstruct the
sequence of events from different sources. To do this, it
needs to be able to correlate source timestamps in the
presence of variable transmission delays and lack of
synchronization of the various local clocks involved (note,
for example, that the JMS model does not name the source
clock domain). This is a particular requirement for contract
monitoring because manipulation of clocks or introduction
of artificial transmission delays can form part of fraud by,
or malicious attack on, the parties involved. Considerations
of this kind of threat have in the past, for example, led to
the banks agreeing to use an independent time signal from a
trusted third party to mark the end of the day for clearing
purposes.

Even with detailed information about timing, there will
still potentially be ambiguity about the actual sequence, and
the monitor will need to take this into account, allowing for
some margin of error before flagging any violation, and
considering the possibility of local reorderings before
deciding on the most likely state of the systems observed.

The notification metamodel therefore consists of:
a) a message addressing and routing part,

describing source and destination identity,
message categorization and associated
metadata; there will generally be a need to link
this with a broader security model

b) a message specific model dealing with the
identity and description of the event being
reported and with the timing considerations
mentioned above. It is important here for the
identity and type information to cover both the
identity of the contract applied and identity of
the event within the contract, since there will, in
general, be a need to track a number of nested
or overlapping contracts at any particular time.
The model should also describe instance data
that can be used for message correlation,
although not all of the message transport
mechanisms will provide this information,
leading to the need for recourse to the kind of
content-based correlation discussed above.

6. Monitoring Metamodel

The core of the monitoring virtual machine will be an
event pattern recogniser, similar to that described in [6],
and so the core of the metamodel will be the grammar for
the event pattern language it recognises. There will then be
multiple instances of this recogniser, linked to reflect both
the structuring into subcontracts and the tracking of
concurrent instances of contract execution. There will also
be a configuration model to couple these various instances
to sources of events and indicate actions to be taken when a
match is found; the action may be re-injection of a more
abstract event or the generation of a progress signal or
violation report from the monitor.

The final element of the metamodel is the language for
describing constraints over the history of events, to support
the ongoing requirements of, for example, service level
agreements. The overview of this structure is shown in
figure 4.

6.1 Event Patterns

The event pattern part of the specification will
concentrate on the construction of patterns by the
composition of events with behaviour composition
operators. A formalization of the BPMN specification [10]
would be a good starting point for this (the block structure
in BPEL [8] is too restrictive to meet the requirements).

The style intended here would be a recogniser of
behaviour expressions in a process-algebra style, similar to
CSP [11] or LOTOS [12], in which a behavior is defined as
a recursive composition of behaviour fragments, starting
with individual actions as primitive pieces of behaviour.
The set of operators would include, as a minimum:

a) sequential composition;

b) concurrency by interleaving;
c) guarded deterministic choice, in which the various

branches of the choice are determined by the state
of the contract, inferred from previous actions and
their parameterization;

d) guarded non-deterministic choice, determined
eventually by the environment;

e) asynchronous exceptions that override some
default behaviour; exceptions of this kind
represent a particular problem for monitoring
because they are inherently unsafe and subject to
race conditions, making timing variations in
reporting problematic.

Other variants seen in languages like BPMN, such as
compensating actions, are not distinct in the primitive
behaviour of the recogniser, but can be constructed.

The internal structure of the monitor is essentially a
recogniser for the grammar of a set of token strings derived
from the behaviour specification, and most practical cases
can be handled by transforming the specification into a state
machine. This machine signals recognition of correct
behaviour when reaching its final state and it may also be
useful for it to recognise key intermediate stages or
progress points within the defined behaviour. However, the
main function of the recogniser is to signals violations on
any event pattern that is inconsistent with the given
behaviour. These may be errors of omission or detection of
events in the wrong context. Rather than just signalling the
fact that there is an error, the behaviour definition will
include clauses associating error events with particular
predictable departures from the defined pattern.

The basic recogniser will report omissions either by
detecting a subsequent event or by time-out. It may seem
inconsistent to divide the handling of time into two areas,
covering simple timeouts and the more complex service
target monitoring described in 4.3 respectively, but in fact
they require quite distinct detection strategies and different
scopes of observation, making the distinction correspond to
different implementation areas.

6.2 Event flow and Configuration

The event flow part would specify how the recogniser
inputs are bound to message categories, possibly providing
for the specification of name translations to reduce the
dependence on application specific details. The actions
taken on pattern matches may also imply translations, and
may generate notification calls to enforcer components or
may generate more human-oriented messages.

In cases where the application reports events with finer
granularity than the contract, the hierarchy or recognisers
can be extended downwards so as to construct the abstract

Figure 4 – Elements of the monitoring
metamodel

events referenced in the contract. Since this may need to be
done dynamically based on the observation of negotiation,
the monitoring virtual machine must support dynamic
binding of recognisers. A dynamic approach also allows the
tracking of contracts that depend on short-term sub-
contracts or the use of delegation. Similar hierarchical
organization can be used to position contracts in
appropriate local legal of regulatory frameworks, and this
style, in particular, emphasises the need to load contract
information from multiple sources and interpret the
structure to achieve late binding of names and inheritance
of behaviour from separately defined contracts defining
local context.

The event flow structure of the recogniser is thus
specified in terms of the static and dynamic wiring of a
number of primitive pattern recognisers. It expresses the
basic structure of the contract into phases and sub-cases,
but it also connects exception events to penalty or
compensating structures.

Finally, the wiring may express the initiation of actions
by boundary components between the automated and non-
automated parts of the system, such as the delivery of
notifications by e-mail or SMS, or even the generation of
solicitor’s letters. Conversely, it will also need to handle the
injection of events reporting on non-automated processes
into the contract monitoring system. This may need to
include reports of disruption of the contractual processes, of
the infrastructure, or of instances of Force Majeure.

6.3 Continuous conditions

Finally, the condition checking part can be expressed by
defining constraints on the results of applying assessment
functions across defined intervals within the historical
record; if such assessment functions can reference the time
or age of the element, they can apply any required
weightings internally, so a wide range of conditions could
be applied by defining a map from the trace items to a
result that is accumulated by a small set of built in
accumulators such as minimum, maximum or average
values. The tactics for steering the polling of continuous
values discussed in section 4.3 are subtle and best
encapsulated within the virtual machine.

The sliding window mechanism discussed earlier is
needed to define the basic timing mechanisms, defining
which parts of the contract’s history is within the scope of
particular constraints, but apart form this the constraints
required are expressed in a declarative constraint language
relating terms in the contract that can be estimated from the
observation of discrete events and continuous quantitative
properties of the services being delivered.

6.4 Managing Ambiguity

The virtual machine implementation should also manage
the tracking and pruning of alternative interpretations
arising from ambiguous event sequences. The
implementation described in [6] showed that this can be
done efficiently without excessive space costs if
alternatives are represented in terms of differences from the
state at the point of divergence of interpretation. The
implementation maintained a concise single representation
of system state for periods sufficiently far in the past for all
ambiguities to have been resolved, but generated a record
of those parts of the system state affected whenever
potential ambiguity was identified by the event pattern
recogniser. Thereafter, the different branches were analysed
in parallel by the recogniser, with separate state records
associated with each branch.

Whenever a branch proved inconsistent, it was pruned,
and the intermediate records discarded if no ambiguity
remained. The alternatives were also merged if alternatives
subsequently converged so that they represented a single
state of the system reached via different routes. Duplicating
only those parts of the state description where there was
divergence has proved to be acceptably efficient in both
space and processing usage, and reconciliation can be
carried out incrementally without sacrificing the real-time
responsiveness of the implementation.

6.5 Combining the pieces

The separation of the contract description into basic
behaviour, with a monitor component that matches event
patterns and re-injects abstract progress or exception
events, configuration of a sequence of such matching
recognisers, and constraint monitoring engines operating
over a progressive moving windows on the contract’s
history leads in turn to a modular monitoring
implementation.

Thus some quite complex matching mechanisms can be
driven from straightforward contract descriptions, with the
bulk of the complexity encapsulated within the reusable
monitoring components, steered by descriptions produced
by transformations of the contract originally negotiated
between the parties, and expressed in business terms.

However, the real test of the effectiveness of this
approach is to apply it to a larger number of more complex
contract examples, and increasing the level of integration
will speed the process of investigating different contracts
and contract styles. It is to be hoped that wider experience
with a range of contractual styles will aid the selection of
the basic set of common monitoring features that need to be
included within the target metamodel, and will allow

features of limited applicability to be discarded, leading to a
tight and efficient reusable core.

7. Conclusions

The main thrust of this position statement is that before a
model driven approach to the support of contracts can be
successful, we need off the shelf components capable of
supporting the monitoring of a large range of contracts, and
that the key to reuse of such components is to define a
family of metamodels for the event distribution and
monitoring functions. If such models exist, they can
provide the targets for transformations from the models
representing the contracts to the steering information
guiding the monitors. This is a general principle, in that
application of a model driven approach in other areas will
also depend on the creation of a supporting commodity
market in components and in the corresponding target
metamodels.

These automated transformations, together with the
kinds of transformation from business logic to executable
processes already given more prominence in model-driven
code generation, should make the support of a wide range
of different specific contracts tractable at reasonable total
cost.

References

[1] ISO\IEC IS 15414, Open Distributed Processing-Enterprise
Language, 2002.

[2] P. F. Linington, S. Neal, Using Policies in the Checking of
Business-to-Business Contracts, Policy 2003 Workshop.

[3] P. F. Linington, Z. Milosevic, J. Cole, S. Gibson, S.
Kulkarni and S. Neal, A unified behavioural model and a
contract for extended enterprise, Data Knowledge and
Engineering Journal, to be published 2004.

[4] S. Neal, J. Cole, P. F. Linington, Z. Milosevic, S. Gibson
and S. Kulkarni, Identifying requirements for Business
Contract Language: a Monitoring Perspective, in Proc. 7th
International Enterprise Distributed Object Computing
Conference, Brisbane, Australia, September 2003.

[5] S. Neal, A Language for the Dynamic Verification of Design
Patterns in Distributed Computing, PhD Thesis, University
of Kent, 2001.

[6] Z. Milosevic. Enterprise Aspects of Open Distributed
Systems. PhD thesis, Computer Science Dept. The
University of Queensland, October 1995.

[7] S. Neal and P. F. Linington., Tool Support for Development
using Patterns, in Proc. 5th International Enterprise
Distributed Object Computing Conference, Seattle, USA,
September 2001.

[8] S. Tatte et al., Business Process Execution Language for
Web Service Version 1.1, BEA Systems, IBM and
Microsoft, May 2003.

[9] Java Message Service 1.1, Sun Microsystems, April 2002.

[10] S. A. White et al., Business Process Modelling Notation,
BPMI.org, August 2003.

[11] C. A. R. Hoare, Communicating Sequential Processes,
Prentice-Hall, 1985.

[12] ISO\IEC IS 8807, Information processing systems -- Open
Systems Interconnection – LOTOS: A formal description
technique based on the temporal ordering of observational
behaviour, 1989.

