
Source-Based Trace Exploration
— Work in Progress —

Olaf Chitil

University of Kent, UK

Abstract. Hat is a programmer’s tool for generating a trace of a com-
putation of a Haskell 98 program and viewing such a trace in various
different ways. Applications include program comprehension and debug-
ging. The trace viewing tools show expressions and equations of a com-
putation, but they hardly refer to the source program. This disregard
of the program is odd, because the computation follows from the pro-
gram and the usually familiar source program can help orientation in
a complex computation. Hence I started the development of new trace
viewing tools that are based on showing the source program with various
changing markings.

1 Introduction

A tracer gives the programmer access to otherwise invisible information about
a computation. It is a tool for understanding how a program works and for
locating errors in a program. Hat is a tracer for the lazy functional language
Haskell 98, that combines the tracing methods of several preceding systems [6,
2, 3]. Tracing a computation with Hat consists of two phases, trace generation
and trace viewing:

input output hat-observe

self-tracing
computation

trace hat-trail

hat-detect

First, a special version of the program runs. In addition to its normal in-
put/output behaviour it writes a trace into a file. The trace as concrete data
structure liberates the views from the time arrow of the computation. A trace
is a complex graph of expression components [6]. Second, after the program has
terminated, the programmer studies the trace with a collection of viewing tools.

– hat-detect provides algorithmic debugging, that is, semi-automatic local-
isation of program faults. Trace viewing consists of the system asking ques-
tions about the computation such as “Should factorial 3 = 42?” which
the programmer has to answer with “yes” or “no”. After a series of questions
and answers the debugger gives the location of a fault in the program.



– hat-trail enables the programmer to follow redex trails; the programmer
explores a computation backwards, from an effect — such as output or a run-
time error — to its cause. Trace viewing consists of the programmer selecting
expressions whose parent, the function call that generated the expression,
is then displayed. An example with programmer-selected expressions under-
lined: 42→ 3*14→ 2*7→ factorial 2→ factorial 3.

– hat-observe allows the observation of functions. A functional value is dis-
played as a finite mapping from all the arguments the function was called
with in the computation to the respective results, for example: {factorial 0
= 7, factorial 1 = 7, factorial 2 = 14, factorial 3 = 42}.

Each tracing method gives a different view of a computation; in practice, the
views are complementary and can productively be used together [1].

All Hat viewing tools display only expressions and equations of the traced
computation. They just allow opening a program source browser with the cursor
positioned at the redex or at the definition of the function of current interest.

All expressions of the traced computation originate from the source program.
The programmer is likely to be familiar with the source program, because they
wrote it, read it beforehand and/or will have to modify it. A source program can
provide a concise orientation structure for the often huge computation trace.

In both hat-detect and hat-trail navigation through the trace actually
follows the source program structure. In hat-detect the order of questions
follows a call-by-value call-structure, that is, after a question about a function
call has been answered with “no”, the following questions will be about function
calls from the definition body of this function. In hat-trail a marked expression
is part of an instance of a function body and its parent is the corresponding
instance of the function application. Sadly this close relationship to the source
program is currently lost on many programmers using Hat.

These are several arguments for extending the existing tools with a display of
the program source, with various parts of interest marked. I started developing
such a source-based extension of hat-detect . Quickly it became apparent that
the source display could provide far more than just an orientation point for the
navigation through the questions of algorithmic debugging.

2 Source-Based Algorithmic Debugging

Algorithmic debugging is based on the representation of a computation as an
Evaluation Dependency Tree (EDT). Each node is labelled with an equation,
which is a reduction of a redex to a value. The tree is basically the proof tree of
a natural semantics for a call-by-value evaluation with miraculous stops where
arguments are not needed for the final result value. The call-by-value structure
ensures that arguments are values, not complex unevaluated expressions, and
that the tree structure reflects the program structure. So the redexes of children
are all instances of the definition body of the function that is reduced in their
parent node.



main = sort ‘‘sort’’

sort :: Ord a => [a] -> [a]

sort [] = []

sort (x:xs) = insert x (sort xs)

insert :: Ord a => a -> [a] -> [a]

insert x [] = [x]

insert x (y:ys) = if x <= y then x : ys else y : insert x ys

Fig. 1. A faulty insertion sort program

×

×

Fig. 2. Evaluation Dependency Tree for insertion sort

In algorithmic debugging the programmer states that some nodes of the EDT
are correct, that is, the reduction of the function agrees with the semantics the
programmer intends the function to have. Other nodes the programmer declares
to be incorrect. A node that is incorrect but whose children are all correct is
faulty. The definition of the function reduced in this node is faulty and needs to
be modified. This localisation of a program fault is intuitive: if the reduction of
a function is incorrect, but all the calls made from this function call are correct,
then the definition body must be faulty.

There are many options for marking program parts of interest and supporting
navigation in an algorithmic debugging viewer with source display.

– Navigation: The redex of the current node could be marked where it appears
in a definition body. The whole definition body, which belongs to the func-
tion of the parent of the current node, could also be marked. Additionally all
siblings of the current node could be marked in the definition body. These
markings would improve orientation and simplify free navigation through



the EDT. The programmer could quickly navigate to EDT nodes of interest
and declare only nodes as correct or incorrect where this judgement is cer-
tain. The markings of redexes in the definition body could even be different
depending on if they were declared correct or incorrect.

– Slicing: If a node is incorrect, then either itself or one of its descendants
must be faulty. With each node a function definition is associated. So with
an incorrect node we can associate the function definitions of itself and all
its descendant nodes. The fault causing the incorrect node must be in these
function definitions. When the current node is incorrect, these function def-
initions could be marked. Their might be so few definitions that the pro-
grammer spots the fault straight away or the programmer might only be
interested that certain definitions cannot be responsible for the incorrect
node.

– Coverage: For a specific reduction usually only parts of the definition body
of the reduced function are evaluated, both because of conditionals and lazy
evaluation. The Hat trace contains this information and hence instead of
marking full definitions only those parts that were demanded should be
marked. Only those parts can be faulty.

Highlighting each marking in the source program in a different colour would
create a very colourful but confusing display. Hence experiments are needed to
determine the usefulness of each marking and their combinations.

3 Information Available in the Trace

The trace is a huge and complex graph structure; however, just from a local part
of the trace a local part of an EDT can be constructed.

The trace generation of Hat follows a simple reduction model. In a reduction
the application of a function is replaced by an instance of the function body. The
same happens in the trace, except that the instance of the function application
is not replaced, but connected to the newly added instance of the function body.
In consequence a trace contains the full instance of a definition body, even if only
parts of that are later evaluated. Evaluated parts of the definition body can easily
be identified, because they are connected to instances of their function bodies.
However, the trace does not contain any information about the definitions of
functions that were never evaluated. To access any of these, a trace viewing tool
would need to include a full Haskell front end (as the Hat transformation tool
that generates self-tracing programs does) to process the source program. The
trace also does not include any information on the pattern matching process and
the locations of patterns in the source program.

Originally the Hat trace contained for each recorded expression and each
defined function the filename, line and column where it starts in the source
program. I extended Hat to record a full location that also includes the line and
column at which such an expression or definition ends in the program source.

Some source program markings refer to whole expressions and definitions,
but others refer to slices. Slices are collections of program constructs that may



not include all subexpressions. In an extreme case an application has to be
marked, without marking its function and arguments. Such a marking can be
obtained from subtracting the locations of the subexpressions from the location
of the whole application. In the case of an application only the space between
the function and the arguments is marked.

4 Related Work

Program slicing is a well-known technique for analysing and particularly debug-
ging programs [5]. The set of all function definitions (or even just its evaluated
part) of a subtree of the EDT is a dynamic slice in that sense, with the reduc-
tion of the root node as slicing criterion. The paper “Dynamic Slicing Based
on Redex Trails” [4] is just about to appear. It describes a slicing method for a
core language of the Haskell-like functional logic language Curry. Although the
slicing criterion is also based on a reduction, these slices are not related to EDTs
and the authors do not claim that a fault has to be within a slice. Their trace
structure, although also called redex trail, differs in several points. In particular,
parent pointers have a different meaning; they do not point to an EDT parent
and hence it is unclear if an EDT can be reconstructed from this trace structure.

5 Conclusions

There is a need for extending current tracing tools for functional languages
with a display of the program source with various program slices of current
interest being marked. The outlined new source-based algorithmic debugging
tool is still under heavy development. The tool combines algorithmic debugging
with dynamic program slicing and coverage analysis. Only practical use can show
in which directions the tool best should evolve.

Acknowledgements

This work relies heavily on previous work on the Haskell tracer Hat by Colin
Runciman, Malcolm Wallace and Thorsten Brehm.

References

1. Olaf Chitil, Colin Runciman, and Malcolm Wallace. Freja, Hat and Hood — A
comparative evaluation of three systems for tracing and debugging lazy functional
programs. In Markus Mohnen and Pieter Koopman, editors, Implementation of
Functional Languages, 12th International Workshop, IFL 2000, LNCS 2011, pages
176–193. Springer, 2001.

2. Olaf Chitil, Colin Runciman, and Malcolm Wallace. Transforming Haskell for trac-
ing. In Proceedings of the 14th International Workshop on Implementation of Func-
tional Languages (IFL 2002), LNCS 2670, pages 165–181, 2003.



3. Koen Claessen, Colin Runciman, Olaf Chitil, John Hughes, and Malcolm Wallace.
Testing and tracing lazy functional programs using QuickCheck and Hat. In 4th
Summer School in Advanced Functional Programming, LNCS 2638, pages 59–99,
August 2003.

4. C. Ochoa, J. Silva, and G. Vidal. Dynamic Slicing Based on Redex Trails. In
Proc. of the ACM SIGPLAN 2004 Symposium on Partial Evaluation and Program
Manipulation (PEPM’04). ACM Press, 2004. to appear.

5. Frank Tip. A survey of program slicing techniques. Journal of programming lan-
guages, 3:121–189, 1995.

6. Malcolm Wallace, Olaf Chitil, Thorsten Brehm, and Colin Runciman. Multiple-
view tracing for Haskell: a new Hat. In Preliminary Proceedings of the 2001 ACM
SIGPLAN Haskell Workshop, UU-CS-2001-23. Universiteit Utrecht, 2001. Final
proceedings to appear in ENTCS 59(2).


