
Observing Functional Logic Computations?

Bernd Braßel1 Olaf Chitil2 Michael Hanus1 Frank Huch1

1 Institut für Informatik, CAU Kiel, Olshausenstr. 40, D-24098 Kiel, Germany
{bbr,mh,fhu}@informatik.uni-kiel.de

2 Computing Laboratory, University of Kent, Canterbury, Kent CT2 7NF, UK
O.Chitil@kent.ac.uk

Abstract. A lightweight approach to debugging functional logic pro-
grams by observations is presented, implemented for the language Curry.
The Curry Object Observation System (COOSy) comprises a portable
library plus a viewing tool. A programmer can observe data structures
and functions by annotating expressions in his program. The possibly
partial values of observed expressions that are computed during pro-
gram execution are recorded in a trace file, including information on
non-deterministic choices and logical variables. A separate viewing tool
displays the trace content. COOSy covers all aspects of modern func-
tional logic multiparadigm languages such as lazy evaluation, higher
order functions, non-deterministic search, logical variables, concurrency
and constraints. Both use and implementation of COOSy are described.

1 Introduction

With improvements in the implementation of declarative languages and com-
puter architecture, applications written in declarative languages have become
larger. Because of this increase in application size, the need for debugging tools
has become crucial. The step-by-step style of imperative debugging is not suffi-
cient for declarative programs (first detailed discussion in [16]). This is especially
true for the complex operational behaviour of lazy evaluation [11]. The program-
mer needs a debugging model that matches the high-level programming model
of the declarative language.

Gill introduced a method for observing the values that expressions evaluate to
during the execution of a lazy functional program [5]. These values give insight
into how a program works and thus help the programmer locating bugs. Not
only data structures but also functions can be observed. Observing does not
change the normal behaviour of a program. If an expression is only partially
evaluated, then exactly this partial value is observed. The most distinguishing
feature of the method is that it can be implemented for a full lazy functional
language by a small portable library. The programmer just imports the library
and annotates expressions of interest with an observation function. Gill’s Haskell
Object Observation Debugger (HOOD)3 has become a valuable tool for Haskell
[13] programmers and was integrated into the popular Haskell system Hugs4.
? This work has been partially supported by the DFG under grant Ha 2457/1-2.
3 http://www.haskell.org/hood
4 http://www.haskell.org/hugs

In this paper we extend the observation method to the more demanding
setting of functional logic programming in the language Curry [7, 10]. The im-
plementation as a library of observation combinators proves to be flexible in
that it is not necessary to deal specially with some language features such as
concurrency and constraints. However, two logical language features, namely
non-determinism and logical variables, do require fundamental extensions of the
implementation. In return for these complications we are able to observe more
than just values. We observe additional information about non-determinism and
the binding of logical variables that proves to be helpful for locating bugs in
functional logic programs. In this paper we describe both the use and the im-
plementation of the Curry Object Observation System (COOSy).

The next section gives a short demonstration of observations in purely func-
tional Curry programs. In Section 3 we look at a number of Curry programs
using non-determinism and logical variables; we see which information can be
obtained by observations and how this information can be used to locate bugs.
Sections 4 and 5 present the implementation of COOSy in Curry. In Section 6
we relate our work to others’. Section 7 concludes. We assume familiarity with
Haskell [13] and Curry [7, 10] or the basic ideas of functional logic programming
(see [6] for a survey).

2 Observations in Functional Programs

We review the idea of debugging by observation at the hand of a tiny program
written in the purely functional subset of Curry:

Example 1 (A first observation).

max x y | x > y = x maxList = foldl max 0

| x < y = y main = maxList [1,7,3,7,8]

Instead of the expected value 8, we get the message "No more solutions" from
the run-time system when evaluating main. Why has the computation failed?

First we may want to know what happened to the argument list of the func-
tion maxList. Using COOSy (i.e., importing the COOSy library), we can obtain
this information by putting an observe expression around the list. The first ar-
gument of observe is an expression built from combinators provided by COOSy
that describes the type of the observed expression. The second argument is a
label to help matching observed values with observed expressions. The third
argument is the expression to be observed.

import COOSy

...

main = maxList (observe (oList oInt) "ArgList" [1,7,3,7,8])

We execute the program. The function observe behaves like an identity on its
third argument and thus does not change the program behaviour, except that
the value of the third argument is also recorded in a trace file. We then view
the information contained in the trace file with a separate COOSy tool shown
in Figure 1.

Fig. 1. Screenshot of the COOSy GUI

When we press the “Show” button, the GUI shows the human-readable rep-
resentation, called protocol, of our first example observation. Note that observa-
tions are recorded even though the program execution fails. This is crucial for
debugging purposes. In Figure 1 we can see that the argument list was evaluated
to 1:7:3:7:_:[]. The underscore means that the last number in the list has not
been evaluated. Why is that? Trusting good old foldl, we turn to examine the
call to max:

maxList = foldl (observe (oInt ~> oInt ~> oInt) "max" max) 0

The symbol ~> denotes the observation of functions, here of type Int->Int->Int.
{ \ ! _ -> !

, \ 7 7 -> !

, \ 7 3 -> 7

, \ 1 7 -> 7

, \ 0 1 -> 1}

The result of the observation is presented on the left. The
observable value of a function is a set of mappings from
arguments to results. Each single mapping is written as a
pseudo-lambda expression. The symbol ! denotes a failed
computation.

Now the error can be clearly located: Whereas many calls to max give satis-
factorily results, the call “max 7 7” fails. Our definition of max does not handle
equal arguments! Note that the first mapping, “\ ! _ -> !”, is perfectly sen-
sible: with a fail in the first argument max fails as well without evaluating the
second argument.

We can use the type descriptor oOpaque in the first argument of observe to
blend out (large) data structure components:

Example 2 (oOpaque — blending out information).

main = map maxList (observe (oList oOpaque) "xs" [[1..n]| n <-[1..10]])

The corresponding observation is

#:#:#:#:#:#:#:#:#:#:[]

The type descriptor oOpaque becomes vital when we observe polymorphic values
so that the types of components are statically unknown at the observation point:

Example 3 (oOpaque — observing polymorphic values).

myLength = observe (oList oOpaque ~> oInt) "length" length

main = myLength [1..10] + myLength "Hello"

We still observe the structure of the argument lists:

{ \ (_:_:_:_:_:_:_:_:_:_:[]) -> 10 }

{ \ (_:_:_:_:_:[]) -> 5 }

Curry provides type descriptors for all pre-defined types. For new data types
or for the purpose of displaying values in our own way we can define our own
type descriptors; see Section 4.2. Alternatively, we can use the derive function
provided by COOSy that takes a Curry program and adds type descriptors for
all user-defined algebraic data types.

3 Observations in Functional Logic Programs

In addition to the functional features of Haskell, Curry provides also features
for logic programming. In particular, a function can be non-deterministic, i.e.,
have more than one result for a given argument, because it can be defined by
a set of non-confluent rules. Furthermore, Curry expressions can contain logical
(existentially quantified) variables. Both features give rise to new observations.

3.1 Observing Non-deterministic Functions

Consider the following program which uses a non-deterministic function to com-
pute all permutations of a given list:

Example 4 (Observing non-determinism).

perm [] = [] insert x [] = [x]

perm (x:xs) = insert x (perm xs) insert x (y:ys) = y:insert x ys

main = perm [1,2,3] insert x xs = x:xs

Naturally, we implanted a little bug you will have spotted already. The effect
of this bug is not a wrong result but too many of the right ones. Correctly the
program computes the lists [1,2,3], [1,3,2], [2,1,3], [2,3,1], [3,1,2], and
[3,2,1], but these lists are computed twice, thrice, twice, thrice, four, and eight
times, respectively. To isolate the bug, we set an observation point at the call of
the non-deterministic function of our program:

perm (x:xs) = observe oInsert "insert" insert x (perm xs)

where oInsert = oInt ~> oList oInt ~> oList oInt

Now, we can make use of another nice feature of COOSy: observations can be
viewed before the end of the whole computation. To debug Example 4, we view
the observation only when a few solutions are computed. For the first result
[3,2,1] we get the following protocol for the label insert:

{\ 3 [] -> 3:[]}

{\ 2 (3:[]) -> 3:2:[]}

{\ 1 (3:2:[]) -> 3:2:1:[]}

The blank lines show that all three entries belong
to different observations (one for each recursive
call to perm). Of course, this protocol yields no
hint to the bug, as we have only seen a single
solution so far. We prompt the system for the
next solution, which is again [3,2,1]. This could
give us a hint towards the error.

The resulting protocol is:

{\ 3 [] -> 3:[]}

{\ 2 (3:[]) -> 3:2:[]}

{\ 2 (3:[]) -> 3:2:[]}

{\ 1 (3:2:[]) -> 3:2:1:[]}

{\ 1 (3:2:[]) -> 3:2:1:[]}

The observations of insert are ordered in three
packages of calls belonging together. The lines
within one package are non-deterministic alter-
natives of a single call to insert. The colouring
provides the information about what was already
computed for the previous solution and what is
newly constructed. For instance, in the second

package the alternative solution only constructed a new end of the list. This is
a very good hint towards finding the error, but it can get even more obvious if
we look at the protocol for the first three solutions. The third solution is again
[3,2,1] and the protocol starts like this:

{\ 3 [] -> 3:[]}

{\ 3 [] -> 3:[]}

Now in these first two lines it is clear that insert

yields two results for the very same arguments 3

and []. The source of this is easy to spot in the
program and we conclude that the two rules “insert x xs = x:xs” and
“insert x [] = [x]” overlap more than they should. Deleting the latter yields
the correct program which computes all and only the desired solutions.

3.2 Observing Logical Variables

Curry features another extension of functional programming: the use of logical
variables. We first demonstrate how COOSy represents logical variables.

Example 5 (Representation of logical variables).

main = observe oInt "Logical Variable" x where x free

The clause “where x free” declares the variable x as a logical (existentially
Logical Variable

?

quantified, free) variable. Running the program, we ob-
tain the observation on the left in which we can see that
COOSy represents unbound logical variables as “?”.

Let us observe a logical variable which is bound in the course of the computation:

f 1 = 1

main = f (observe oInt "Variable + Binding" x) where x free

Now the result is (?/1). Changing f in this example to f 1 = 1 and f 2 = 2

(?/1)

(?/2)

we get the result on the left (after computing all possible
solutions). Note that the colouring indicates that the same
logical variable was bound to different values.

The next example includes a new little bug:

Example 6 (Searching a bug in a function defined with logical features).

last xs | append ys [y] =:= xs = y append [] ys = ys

where y,ys free append (x:xs) ys = x:append xs xs

The function last is intended to compute the last element of a list by solving
the equation append ys [y] =:= xs. When considering the call last [1,2,3], this
equation is (or rather should be) only solvable if ys is bound to [1,2] and y is
bound to 3, as “append [1,2] [3]” should equal [1,2,3].

However, testing our little program, the result of last [1,2,3] is not the
expected 3 but rather a logical variable. Where should we begin to find the bug?
Let us be cautious about this error and start at the top, slowly advancing down
the program. First we shall look at the whole list computed in the guard of last:
last xs | observe oInts "as" (append ys [y]) =:= xs = y where y,ys free

?/1:[]

?/1:[]

?/1:?/2:[]

?/1:?/2:?/3:[]

?/1:?/2:?/3:_:_

With oInts = oList oInt. The result of the observation is
on the left. This result is peculiar. Knowing how the pro-
gram should work, it is okay that there are three states of
evaluation where the system guesses that 1, 2 and 3 might be
the last element of the list. But why are there two versions

of “?/1:[]”? We should find out more about the arguments of append:
last xs | append (observe oInts "ys" ys) [y] =:= xs = y where y,ys free

This yields the observation:
(?/[])

(?/(?/1:(?/[])))

(?/(?/1:(?/(?/2:(?/[])))))

(?/(?/1:(?/(?/2:(?/(?/3:(?/[])))))))

(?/(?/1:(?/(?/2:(?/(?/3:(?/(?:?))))))))

We see immediately why COOSy has the option to turn off the representation
of bound variables as the result after selecting it is so much more readable.

[]

1:[]

1:2:[]

1:2:3:[]

1:2:3:?:?

This looks quite correct, with the small exception that ys

should not be bound to the whole list [1,2,3] but maximally
to [1,2]. A similar observation of the second argument y re-
sulting in (?/1) is also wrong of course, but we already know
that y is not bound correctly, or the final result could never be
a logical variable.

Seeing all this, we cannot help but search for our error in append:
last xs | observe oApp "App" append ys [y] =:= xs = y where y,ys free

where oApp = oList oInt ~> oList oInt ~> oList oInt. The observation yields
(with representation of bound logical variables turned off again):

{\[] (1:[]) -> 1:[]}
{\(1:[]) _ -> 1:[]}
{\(1:2:[]) _ -> 1:2:[]}
{\(1:2:3:[]) _ -> 1:2:3:[]}
{\(1:2:3:?:?) _ -> 1:2:3:_:_}

We can clearly see that whenever the
first argument of append is a non-
empty list, the second argument is
not evaluated. Looking into the rule
append (x:xs) ys = x:append xs xs, we
now easily spot the bug where our eyes
were clouded only seconds ago.

For the purpose of this paper, we have only presented very small buggy
programs. Similarly to other language implementations, Curry implementations
[9] provide warnings for some of these bugs (e.g., single occurrences of a variable
in a defining rule), but it should be clear that there are also many larger wrong
programs where such compiler warnings are not produced.

4 Implementation for Functional Programs

Now we delve into the depths of our first implementation for purely functional
Curry programs, before we consider non-determinism and logical variables in the
next section. Our implementation roughly follows Gill’s HOOD implementation,
outlined in [5]. We start with the format of our protocol files and then describe
how these files are written.

4.1 Format of the Trace Files

Each time the computation makes progress with the evaluation of an observed
expression an event is recorded in the trace file. To distinguish unevaluated
expressions from failed or non-terminating computations, we need to trace two
types of events:

Demand The incident that a value is needed for a computation and conse-
quently its evaluation is started is called a Demand Event.

Value The incident that the computation of a value (to head normal form) has
succeeded is called a Value Event.

From the nature of evaluation in Curry we can conclude:
– No Value without Demand: If a value was computed, there must have been

a corresponding Demand Event for the data.
– A Demand Event without a corresponding Value Event indicates a failed or

non-terminated computation.
– The correspondence between Value and Demand Events has to be recorded

in the protocol.
Keeping these facts in mind, we can now turn to the format of the trace files.
A trace is a list of events, each of which is either a Demand or a Value Event.
To model the correspondence between Demands and Values, we construct an
identification of the events by numbering them: type EventID = Int. For each
Value one of its arguments has to be its own ID and another one is the ID of
the corresponding Demand, which we will call its parent. There are two more
important things we have to know about a Value Event: (1) Because a value
is built from constructor symbols, we need the arity of the constructor. (2) We
need a string indicating what the value should be printed like in the GUI.

Recording the arity of a value is important for another task of the COOSy
system: The traced data structures have to be reconstructed correctly. In order
to achieve this, more than the arity has to be recorded. A Demand has to be
tagged with the information which argument of which value it demands. This
means that two numbers have to be added: (1) the EventID of the Value Event,
which is the parent of the Demand and (2) a number between 1 and the arity
of that Value. The first Demand of an observation is tagged with a parent ID of
-1 and argument number of 0 to indicate that it has no parent and denotes the
root of the data structure. Putting it all together we have:

data Event = Value Int String EventID EventID

-- arity value representation own ID parent ID

| Demand Int EventID EventID

-- number of argument own ID parent ID

(:)

Demand

Demand

(:)

Demand

Demand

(:)

...

1

7

Demand

Fig. 2. Graphical representation of COOSy trace of Example 7

Example 7 (Trace representation). The trace of Example 1 begins like this:
[Demand 0 0 -1, Value 2 "(:)" 1 0,Demand 2 2 1, Value 2 "(:)" 3 2,

Demand 2 4 3, Value 2 "(:)" 5 4,...

Demand 1 16 1, Value 0 "1" 17 16,Demand 1 18 3, Value 0 "7" 19 18,...]

Note that the pattern of alternating Demands and Values is not necessary in
general.

To make traces more comprehensible, we use a graphical representation,
where ellipses denote Demands and Values are denoted by rectangular records
which contain a field for each argument. The parent and structural information
is visualised by arrows, see Figure 2.

Functions are treated in the same way as data structures: A functional value
is built like any binary constructor, connecting its argument with its result. To
represent a function with more than one argument, the result is a functional
value as well (curryfied representation of functions). The only special treatment
of functions is in the pretty printer.

4.2 Writing the Trace

When the function observe is initially called, it
1. gets a new EventID from a global state (to make sure that the ID is unam-

biguous),
2. writes a Demand Event into the trace file as a side effect (by unsafePerformIO),
3. evaluates the observed value to head normal form,
4. deconstructs the result, if it is not a constant (constructor with arity 0),
5. constructs a new term with the same head symbol where observe is called

for each argument of the result constructor together with the information
which of the arguments it observes.

Example 8 (Observing user-defined data structures). We want to formulate an
observer for the data type data Nat = O | S Nat for which an observation might
be “main = observe oNat "Nat" (S (S O))”.

The function observe calls the actual observing function observer with the
initial values for parent and argument number -1 and 0, respectively. Both func-
tions are independent of the observed type.

observe oType label x = observer oType label x (-1) 0

observer oType label x parent argNr = unsafePerformIO $

do eventID <- recordEvent label (Demand argNr) parent

return (seq x (oType x label eventID))

The function seq evaluates x to head normal form and then returns its second
argument. When this evaluation of x succeeds, the function oType is responsible
for recording the value in the trace file. The function recordEvent first obtains
a new EventID and then writes the Event to a trace file. There is a separate
trace file for each user-defined label, to simplify filtering events from different
observations directly when they occur.

recordEvent label event parent =

do eventID <- getNewID

writeToTraceFile label (event eventID parent)

return eventID

As an example for a function oType, observing the type Nat could be implemented
as follows:

oNat O label parent = unsafePerformIO $

do recordEvent label (Value 0 "O") parent

return O

This is the code for the constant O. For the unary constructor S we need to call the
function observer again, recursively starting the observation of the arguments
by means of the observer oNat:

oNat (S x) label parent = unsafePerformIO $

do eventID <- recordEvent label (Value 1 "S") parent

return (S (observer x oNat eventID 1))

These functions are fairly schematic for each type, depending only on the ar-
ity of the constructors. Therefore, COOSy provides functions o0, o1, o2... for
constructors of arity 0,1,2. . . Using these, the definition of oNat simply looks like
this:

oNat O = o0 "O" O

oNat (S x) = o1 oNat "S" S x

The function oNat is the standard observer for the type Nat. Standard observers
are automatically derivable as mentioned at the end of Section 2.

5 Extending COOSy for Logical Language Features

To handle the full language Curry, we have to extend our implementation

– to put together information from observations of non-deterministic compu-
tations correctly

– and to observe logical variables.

5.1 Non-Deterministic Functions

In the extended setting, the number of values corresponding to a single Demand
Event is not limited. The problem is that we need some kind of separation;
which values belong to which part of the computation? The following program
demonstrates the problem:

Example 9 (Showing the need of predecessors).

coin = O plus O x = x main = plus O coin

coin = S O plus (S x) y = S (plus x y)

Observing plus in main using observe (oNat ~> oNat ~> oNat) " + " plus,

{\ O O -> O}
{\ O (S O) -> S O}

we would like to obtain the observation on the left. How-
ever, looking at the trace of Example 9 (Figure 3), we spot
a problem. The function plus has two arguments and

therefore is represented as argument1 -> (argument2 -> result). We see in Fig-
ure 3 that the first argument of plus was simply evaluated to O. Because the
second argument is the non-deterministic function coin, its demand yields two
values! In consequence, there are two results. The problem is: Which argument
belongs to which result? There is simply not enough information in the trace of

->

 Demand

Demand

->

Demand

Demand

O
O

O

O

O

S

 Demand

S

 Demand

Demand

Fig. 3. COOSy trace of Example 9

Figure 3 to answer this question. So we have to store more information in the
COOSy trace. In addition to the reference chain denoting the structural informa-
tion (the parents), we also have to trace a reference chain denoting which event
belongs to which branch of the computation. Therefore, each Demand and each
Value Event is extended by a further EventID: the ID of the event which occurred
just before in the same branch of the computation, called the predecessor. We
have extended Figure 3 with this new reference chain, denoted by dotted ar-
rows, and the result is shown in Figure 4. The extended output can be separated
correctly into the non-deterministic computations by following the predecessor
chain starting at each result. The predecessor chain comprises exactly the parts
of the trace that correspond to the computation yielding the result.

5.2 Writing the Predecessor Chain

The predecessor in a given computation is a matter of the rewrite or narrowing
strategy. Consequently, it is clear that we can only obtain this information by
exploiting non-declarative features.

It is also clear that the observer functions introduced in Section 4.2 have to
be extended by a further argument providing the information about the prede-
cessors:

observer oType l x parent argNr preds = unsafePerformIO $

do eventID <- recordEvent l (Demand argNr) parent preds

return (seq x (oType x l eventID preds))

 ->

DemandDemand

 ->

DemandDemand

O

O O

O O

S S

Demand Demand

Demand

=

 ->

DemandDemand

 ->

DemandDemand

O

O O

Demand

+

 ->

DemandDemand

 ->

DemandDemand

O

O O

S S

Demand Demand

Demand

Fig. 4. Separating the extended COOSy trace of Example 9

The functions oType for observing the different types of data have to be extended
analogously. Still unclear is the type of this new argument preds. As it is impossi-
ble to know beforehand which part of a given term will be evaluated next without
implementing the whole search strategy, we need some means of propagating in-
formation across the term structure. Fortunately, logical variables provide such
a tool. If the new argument of the function observer is a logical variable, its
binding will be visible throughout the whole observation. Thus, whenever a new
event is written to the trace file, the variable can be bound to the corresponding
EventID. However, because the order of evaluation is unknown, we need instead
of a single EventID a list of IDs terminated by a logical variable to be bound to
the next event in line.

This is where we have to use a non-declarative feature. Whenever we want to
write a new event to the trace file, we need to go through the list of predecessors
until we find the logical variable which marks its end. This variable is then
bound to the new EventID followed by a new logical variable. In order to find the
variable marking the end of the list, we need a test function isVar which returns
True whenever its argument is a logical variable and False otherwise. While this
function can easily be implemented in any Curry implementation, this test is
clearly non-declarative.5

The extended function recordEvent can now be defined as

recordEvent label event parent preds

= do eventID <- getNewID

let (pred,logVar) = getPred parent preds

5 Consider the definition rightFirst | x=:=0 & y=:=isVar x = y where x,y free

The function rightFirst returns True whenever the right constraint y=:=isVar x

was evaluated before the left one. This should not be possible because & denotes the
concurrent conjunction of constraints, i.e., the combined constraint c1 & c2 is solved
by solving the constraints c1 and c2 in any order.

newLogVar free

doSolve (logVar =:= (eventID:newLogVar))

writeToTraceFile label (event eventID parent pred)

return eventID

where doSolve solves the given constraint and getPred is defined as

getPred p xs = if isVar xs then (p,xs) else getPred (head xs) (tail xs)

5.3 Information Concerning Logical Variables

As Section 3.2 demonstrated, COOSy also allows observation of logical variables.
This task is more complex than it sounds.

Whenever a value is computed, we have to test if it is a logical variable.
Otherwise, we would get into the unfortunate situation that the observing func-
tions would either begin to guess solutions for the variable or suspend until it
is bound. Influencing the computation in this way would of course be disastrous
for COOSy as a debugging tool. Hence the function observer has to test the
observed expression with isVar (Section 5.2) before proceeding. However, what
to do if this test yields true? First of all, we need to write an event of a new kind
to the trace file and, consequently, we have to extend the type of events:

data Event = Demand ... | Value ... | LogVar EventID EventID EventID

-- ownID parent predecessor

Thus, for each logical variable we store its own ID as well as the ones of its parent
and its predecessor. There is one serious problem left, though. What we would
like to observe is not only the fact that a logical variable has been computed
but also the values it will be bound to, see Examples 5 and 6. How are we going
to do this? The values to which the variable will be bound are guessed by the
search strategy or directly in the code of other parts of the program. Therefore
we introduce one last unsafe feature: a special kind of constraint which suspends
on the observed logical variable, while the rest of the computation continues
unchanged. As soon as the variable is bound, the constraint is woken up and the
new value can be recorded in the trace file. The “as soon as” is crucial because
otherwise information about the binding might not be written at all in the case
of a failed computation. The complete code is:

observer x oType parent argNr preds = unsafePerformIO $ do

eventID <- recordEvent (Demand argNr) parent preds

if isVar x

then do idLogVar <- recordEvent LogVar eventID preds

spawnConstraint (seq x (x =:= oType x label idLogVar preds))

(return x)

else return (oType x label eventID preds)

Note that isVar already evaluates x to head normal form, so we do not need
seq in the else-branch. However, we need seq to make sure that the spawned
constraint suspends as long as x is not bound to a value. spawnConstraint is the
last non-standard feature of the PAKCS [9] implementation of Curry we have to
explain. It can be thought of as a normal guarded rule like isZero x | x=:=0 = x

which could be written using spawnConstraint as

isZero x = spawnConstraint (x=:=0) x.

However, there are two important differences: (1) the right-hand side is evaluated
even if the evaluation of the guard suspends and (2) the spawned constraint gets
a higher priority than any normal constraint.

The Curry environment PAKCS prints a warning when suspended constraints
are left at the end of an evaluation. This warning will occur in COOSy whenever
an observed logical variable is never bound to a value. However, as the constraints
spawned by COOSy are essentially identities (with the side effect of writing into
the trace file), this warning does not restrict the soundness of the evaluation.

6 Related Work

COOSy extends Gill’s idea of observing values in lazy functional languages to
functional logic languages. COOSy also differs in that the function observe
takes a type description as first argument whereas in HOOD there is no such
argument because the function observe is overloaded, using the Haskell class
system which is not yet provided by Curry. While overloading is convenient for
simple examples, a type descriptor is more flexible as Example 3 demonstrates. It
is a serious limitation of HOOD that it cannot observe polymorphic expressions.
The version of HOOD integrated in Hugs overcomes this problem through a
polymorphic observe. Its implementation, however, requires reflective features
from the runtime system, which would be hard to provide for most compilers.

The most influential approach to debugging declarative programs is declara-
tive (or algorithmic) debugging. It was originally introduced by Shapiro for logic
programming languages [16]. The system asks questions about part of the com-
putation such as “Should factorial 3 yield 17?” which the user has to answer
with “yes” or “no”. After a series of questions and answers, the system can give
the location of the bug in the program. There exist numerous implementations
and the approach has been extended to constraint logic programming [18], asser-
tions [4], functional programming [11, 12, 14] and functional logic programming
[2]. Declarative debugging relies on a simple big-step semantics for the program-
ming language. Hence the approach is less suited for imperative languages, side
effects in general and even the search strategies of logic languages.

A large number of methods for debugging lazy functional languages have
been proposed [12, Chapter 11]. Most of these rely on following the sequence of
actual reductions of the computation. However, for a human user the evaluation
order of a lazy functional program is confusing. It is far easier—and also goal-
oriented for debugging—to navigate backwards through a computation trace
from an erroneous result to the cause of the bug [1, 17].

Each approach to debugging has its strengths and weaknesses, as already a
comparison of three systems shows [3]. Hence later versions of the Haskell tracing
system Hat6 enable the generation of a single trace from a computation which
can be viewed in several different ways. Hat includes viewing tools for redex
trailing, declarative debugging and observations [19].
6 http://www.haskell.org/hat

Like HOOD, COOSy differs in a number of ways from most other debugging
tools for declarative languages. First of all it is implemented by a small portable
library, whereas most other tools are either implemented as full program trans-
formations or even modifications of several phases of a compiler. In return, obser-
vations are limited to values and information about demand and logical variables.
Further information via a library would require extensive reflective features in
the programming language. Like most debugging tools, COOSy records a trace
as a separate data structure. In this trace only information about expressions
under observation are recorded. In contrast, most tools record information about
the full computation. While full recording enables the user to inspect the full
computation after a single run, it poses serious space problems. Observation
with COOSy does slow down computation considerably but only proportionally
to the size of the observed data and not to the length of the full computation.
COOSy requires the user to annotate his program with applications of observe.
While any program modification poses the danger of introducing additional bugs
and substantial modifications would be tiresome, this does provide a simple and
intuitive interface to using the system.

7 Conclusion

We presented a new lightweight method for detecting bugs in functional logic
programs. The user of the Curry Object Observation System (COOSy) annotates
expressions of interest in his program. During program execution information
about the values of observed expressions are recorded in a trace file. A separate
viewing tool displays this information in the form of mostly familiar expressions.

In this paper we extended the debugging-by-observation method as intro-
duced and implemented by HOOD [5] for functional languages to functional
logic languages. The challenge was the support of non-deterministic computa-
tions and logical variables. The implementation method of HOOD would record
confusing information on values obtained in non-deterministic computations and
no information on any parts of values whose computation involved logical vari-
ables. Our implementation even records additional information in the trace on
non-determinism and logical variables which are displayed by the viewing tool
in an easy-to-read way and which give the user vital clues for debugging.

It is essential for debugging that observations do not change the semantics
of the program and work for computations that fail with run-time errors or have
to be interrupted because of non-termination. The separation of faulty program
and viewing tool, afforded by the trace files, enables debugging of programs that
create dynamic web pages and which are run on a web server in batch mode [8].

A number of examples demonstrated how COOSy helps locating bugs in
faulty programs. Through gaining more experience in using COOSy—especially
on larger programs with real bugs—we hope to distill general strategies for de-
bugging with COOSy. Furthermore, we intend to extend the viewing tool in
the future. Currently, it gives only a static snapshot of the observed values. In-
stead, observed values could be shown and constantly updated concurrently to
the computation. We could also take advantage of the sequential recording of

events in the trace. The viewing tool could allow the user to step forwards and
backwards through an animation, similar to GHood [15]. Animations would give
the programmer further insights into the workings of his program and might be
particularly useful for educational purposes.

COOSy is written in Curry, requiring only a few non-declarative extensions
that are easy to implement. COOSy is freely available for the Curry system
PAKCS [9]7 and will be distributed with future versions of PAKCS.

References
1. Simon P. Booth and Simon B. Jones. Walk backwards to happiness - debugging

by time travel. In Automated and Algorithmic Debugging, pages 171–183, 1997.
2. R. Caballero, F.J. López-Fraguas, and M. Rodŕıguez-Artalejo. Theoretical foun-

dations for the declarative debugging of lazy functional logic programs. In FLOPS
2001, pages 170–184. Springer LNCS 2024, 2001.

3. O. Chitil, C. Runciman, and M. Wallace. Freja, Hat and Hood – a comparative
evaluation of three systems for tracing and debugging lazy functional programs.
In IFL 2000, pp. 176–193. Springer LNCS 2011, 2001.

4. W. Drabent, S. Nadjm-Tehrani, and J. Maluszynski. The use of assertions in
algorithmic debugging. In Proc. FGCS’88, pages 573–581, 1988.

5. Andy Gill. Debugging Haskell by observing intermediate data structures. In Gra-
ham Hutton, editor, ENTCS, volume 41. Elsevier, 2001.

6. M. Hanus. The integration of functions into logic programming: From theory to
practice. Journal of Logic Programming, 19&20:583–628, 1994.

7. M. Hanus. A unified computation model for functional and logic programming. In
POPL ’97, pages 80–93, 1997.

8. M. Hanus. High-level server side web scripting in Curry. In PADL’01, pages 76–92.
Springer LNCS 1990, 2001.

9. M. Hanus, S. Antoy, M. Engelke, K. Höppner, J. Koj, P. Niederau, R. Sadre,
and F. Steiner. PAKCS: The Portland Aachen Kiel Curry System. Available at
http://www.informatik.uni-kiel.de/~pakcs/, 2003.

10. M. Hanus (ed.). Curry: An integrated functional logic language (vers. 0.7.2). Avail-
able at http://www.informatik.uni-kiel.de/~curry, 2002.

11. H. Nilsson and P. Fritzson. Algorithmic debugging for lazy functional languages.
Journal of Functional Programming, 4(3):337–370, 1994.

12. Henrik Nilsson. Declarative Debugging for Lazy Functional Languages. PhD thesis,
Linköping, Sweden, 1998.

13. Simon Peyton Jones et al. Haskell 98 language and libraries: the revised report.
Journal of Functional Programming, 13(1), 2003.

14. B. Pope and Lee Naish. Practical aspects of declarative debugging in Haskell-98.
In ACM PPDP ’03, pages 230–240, 2003.

15. Claus Reinke. GHood – graphical visualisation and animation of Haskell object
observations. In Proceedings of the 2001 ACM SIGPLAN Haskell Workshop, 2001.

16. E. Shapiro. Algorithmic Program Debugging. MIT Press, 1983.
17. J. Sparud and C. Runciman. Tracing lazy functional computations using redex

trails. LNCS, 1292:291–308, 1997.
18. A. Tessier. Declarative debugging in constraint logic programming. LNCS,

1179:64–73, 1996.
19. M. Wallace, O. Chitil, T. Brehm, and C. Runciman. Multiple-view tracing for

Haskell. In Proceedings of the 2001 ACM SIGPLAN Haskell Workshop, 2001.

7 http://www.informatik.uni-kiel.de/~pakcs/COOSy

