

Computer Science at Kent

Validating BPEL Specifications
using OCL

D.H.Akehurst

Technical Report No. 15-04
August 2004

Copyright © 2004 University of Kent at Canterbury
Published by the Computing Laboratory,
University of Kent, Canterbury, Kent CT2 7NF, UK

 1

Contents

1 Introduction 3
2 BPEL 1.1 Metamodel 4
3 Constraints 9

3.1 Business Process 9
3.2 Partner definitions must not overlap 9
3.3 getLinkStatus Function 10
3.4 Variable Options 10
3.5 Assignment from-spec and to-specs 10
3.6 Binding first Activities in Correlation Sets 11
3.7 Source and Target of Activities 12
3.8 Instantiation of a Process 12
3.9 Pick 13
3.10 Flows and Links 14

4 Defined Properties and Operations 17
4.1 Define Property - allSubActivities : Set 18
4.2 Define Property - subActivities : Set 17
4.3 Definition of Property - initialActivities : Set 18

5 Generating the BPEL Validation Code 23
6 The generated Code 24
7 A BPEL Validation Application 25
8 Files and Resources 27
9 Testing 28
Bibliography 29

 2

1 Introduction
The Business Process Execution Language for Web Services (BPEL) is a specification language for

modelling executable business processes. The BPEL standard [1] defines the structure an XML
document should take in order to represent a BPEL specification. This document contains a number of
constraints written in informal text and it is a time consuming and error prone task to check that all of
these textual constraints have been met each time a BPEL specification is written.

This report gives a UML model of the structure for a BPEL document and provides a formal version
of each informal constraint using the Object Constraint Language (OCL) [2]. Given this formalisation
of the constraints, it is possible, using tools developed at Kent along with IBM’s Eclipse Modelling
Framework (EMF) [3] to convert the OCL constraints into Java code that forms an automatic validation
tool for BPEL documents.

 3

2 BPEL 1.1 Metamodel
The model of the BPEL language defined here is in accordance with the version 1.1 of the BPEL
standard.

All yes/no options from the specification are mapped to Booleans; with ‘true’ representing ‘yes’.
ExtensibleElement

(from wsdl)
Scope

Role
name : string

PartnerLinkType
name : QName

Partner
name : String

getServiceLinkType()

PartnerLink
name : String

1..*

0..*

1..*

0..*

0..*

0..1

0..*

+myRole

0..1

0..*

0..1

0..*
+partnerRole0..1

11

Import

namespaceURI : String
locationURI : String

(from wsdl)

BusinessProcess
targetNamespace : String
queryLanguage : String
expressionLanguage : String
enableInstanceCompensation : Boolean = false
abstractProcess : Boolean = false

1 0..*1 0..*

0..*0..*

0..*0..*

Figure 1 Business Process

The BusinessProcess class extends the class Scope. There is a large overlap between the two classes
(partly due to changes from version 1.0 to 1.1), and the extension simplifies the model. The
BusinessProcess class now contains PartnerLinks, these were not part of the BPEL 1.0 specification.
The notion of ‘imports’ to a business process have been added (for the purpose of this work) in order to
aid the reading of BPEL specifications and their reference to other documents.

Receive

StructuredActivity

OnMessage OnAlarm

Activity

Catch
faultName : String

CorrelationSet FaultHandler

0..*0..*

EventHandler

11

Activity

0..1
+catchAll

0..111

Variable

0..1 +faultVariable0..1

Scope
variableAccessSerializable : Boolean

0..*0..*
0..10..1

1..*1..*

+eventScope

11 0..1
+compensationHandler
0..10..*0..*

must name this end as OnMessage
inherits from both Activity and
EventHadler, thus having two navigations
to Scope.

Figure 2 Scope

As of BPEL version 1.1, the Scope construct contains a collection of Variables (replacement
construct for Containers), a collection of CorrelationSets and an optional EventHandler.

 4

Message
(from wsdl)

XSDSimpleTypeDefinition
(from xsd)

XSDElementDeclaration
(from xsd)

Variable
name : String

0..1
+messageType

0..1 0..1
+type
0..1 0..1

+element
0..1

Scope

0..*0..*

CorrelationSet
name : String

0..*0..*

Property

1..*1..*

Figure 3 Variable and CorrelationSet

A Variable refers to one of the three optional parts, Message, SimpleType, Element. An OCL
constraint restricts the reference to one of these. It might be better to model them as subtypes rather
than exclusive-or optional references.

PartnerActivity

Invoke

Receive

Wait

Reply

Terminate

Assign

Empty

Throw

While

ActivitySequence

Switch

Scope

Expression

exprBody : String

BooleanExpression

Compensate

Flow

StructuredActivity

TargetSource
Activity

name : String
joinCondition : BooleanExpression
suppressJoinFailure : Boolean = false

0..1

+parent

0..1

0..*

1 +targetOf

0..*

10..* 1

+sourceOf

0..* 1

OnMessage

Pick

Figure 4 Activity Hierarchy and Standard Parts

An additional Layer has been added to the activity hierarchy. The StructuredActivity and
BasicActivity classer partitions the activities into those that contain sub-activities and those that don’t.
This helps with defining constraints to model the restrictions on links and the boundary crossing
conditions.

 5

EndPointReference
myRole
partnerRole

<<enumeration>>

Assign

ToSpec

Copy

1..*1..*

11

FromSpec

11

FromLiteral
value : String

FromVariable

FromPartnerLink
endPointReference : EndPointReference

PartnerLink

1

0..*

1

0..*
ToPartnerLink

1

0..*

1

0..*
ToVariable

PropertyVariablePart
(from wsdl)

VariableSpec

0..10..10..10..1
0..10..1

Expression

FromExpression

11

Figure 5 Assign Activity

The alternative options for From and To specs in the Copy construct are modelled as sub-types.

Empty Terminate

DurationKind
FOR : DurationKind
UNTIL : DurationKind

<<enumeration>>Expression

Wait

1111

Throw
faultName : String

Variable

0..1
+faultVariable
0..1

Figure 6 Basic Activities

 6

CorrelationPattern
in
out
inout

<<enumeration>>

Receive
createInstance : Boolean = false

Reply
faultName : String

FaultHandlerVariable
name : String11

11

Activity

Invoke

11
0..1
+outputVariable
0..1

0..1
+inputVariable

0..1

0..1
+compensationHandler

0..1
OnMessage

PortType
(f rom wsdl)

PartnerLink

Operation
(f rom wsdl)

PartnerActivity

11

0..*
1

0..*
1

11

Correlation
initiate : Boolean = false
pattern : CorrelationPattern 0..*0..*

CorrelationSet

0..*

1

0..*

+set1

Figure 7 Partner Activities

StructuredActivity

ActivitySequence
While

condition : BooleanExpression
Switch

Activity
1..*1..*

{ordered}

11

1

0..1

1

+otherwise
0..1

BooleanExpression

Case

1

1..*

1

1..*
{ordered}

11

1
+condition

1

Figure 8 Structured Activities 1

The class modelling the construct for a sequence of activities is renamed ActivitySequence
(originally Sequence) as the original name clashes with the OCL type Sequence.

 7

StructuredActivity

DurationKind
<<enumeration>> BooleanExpression

OnAlarm

11
11

Pick
createInstance : Boolean = false

0..*0..*

OnMessage

1..*1..*

Flow

Source
transitionCondition : BooleanExpression

Link
name : String

0..*0..*

11

Activity

1

1..*

1

1..*

1

0..*

1

+sourceOf0..*

Target
11

1

0..*

1

+targetOf0..*

Figure 9 Structured Activities 2

The OnAlarm construct is modelled with a single expression and an enumeration to indicate whether
it is an ‘until’ or ‘for’ expression; rather than two exclusive-or expression attributes.

ExtensibilityElement

required : boolean
elementType : QName

initializeBean()
initializeFromBean()

(from wsdl)

PartnerLinkType
name : QName

Role
name : string

1..*1..*

PortType
(from wsdl)

11

XSDTypeDefinition
(from xsd)

Property
name : String

1+type 1

Part
(from wsdl)

Message
(from wsdl)

PropertyAlias
query : String

11

111
+messageType

1

Figure 10 WSDL Extensions

PartnerLink is the version 1.1 replacement for the version 1.0 ServiceLinkType.

 8

3 Constraints
The following subsections contain quotations from the BPEL specification document [1]. Each
quotation is a piece of descriptive text that places constraints on to a BPEL specification that are not
captured by the XML structure of a BPEL document.

The quoted textual constraints are translated into OCL constraints placed in the context of classes
from the BPEL metamodel.

Each subsection corresponds to a set of constraints taken from one subsection of the standard
document.

3.1 Business Process

“6.2. The Structure of a Business Process
…
 <partnerLinks>?
 <!-- Note: At least one role must be specified. -->”

context bpel::PartnerLink
 inv atLeastOneRoleMustBeDefined :
 not (self.myRole.oclIsUndefined() and
 self.partnerRole.oclIsUndefined())

“…
 <faultHandlers>?
 <!-- Note: There must be at least one fault handler or default. -->”

context bpel::FaultHandler
 inv atLeastOneFaultHandlerOrDefault :
 self.catchAll.oclIsUndefined() implies self.catch->notEmpty()

“…
 <eventHandlers>?
 <!-- Note: There must be at least one onMessage or onAlarm handler. -->”

context bpel_11::Scope
 inv atLeastOneOnMessageOrOnAlarmHandler :
 self.eventHandler.oclIsUndefined() implies
 self.eventHandler->notEmpty()

The BPEL metamodel defines a Business Process to be a subtype of Scope in order to reuse the
structure of the Scope element. However, a Business Process is not mentioned in the BPEL
specification as being a sub Activity of any other activity, thus we place an additional constraint as
follows:

context bpel::BusinessProcess
 inv processIsNotASubActivity :
 self.parent.oclIsUndefined()

3.2 Partner definitions must not overlap

“7.3 Business Partners
… Partner definitions MUST NOT overlap, that is, a partner link MUST NOT appear in more than
one partner definition.”

context bpel::Process
 inv partnerDefinitionsMustNotOverlap :
 let
 x=self.partner.partnerLink
 in
 x->asSet()->asBag() = x->asBag()

The union of partnerLink objects from each partner in a process is a Set; i.e. each partnerLink in that
union is unique.

NB. This constraint could be forced by the model, however, the model would then not represent the XML
structure and the constraint could not be checked. I.e. If we model the relationship between Partner and
PartnerLink as an [0..1] – to – [0..*] association, an EMF implementation of this model would enforce the
[0..1] multiplicity when a partnerLink is added to a partner by changing the partner referred to by the
partnerLink; no notification is given when this occurs. Hence the model defines a [0..*] – to – [0..*]
association, and an OCL constraint is given.

 9

3.3 getLinkStatus Function

“9.1 Expressions
… [bpws:getLinkStatus ('linkName')] function MUST NOT be used anywhere except in a join
condition. The linkName argument MUST refer to the name of an incoming link for the activity
associated with the join condition. These restrictions MUST be statically enforced.”

To statically check this constraint it would be necessary to parse the body of an Expression
construct; it would be in appropriate to attempt this using OCL.

3.4 Variable Options

“9.2 Variables
… The messageType, type or element attributes are used to specify the type of a variable.
Exactly one of these attributes must be used.”

context bpel::Variable
 inv variableRefersToOneItem :
 Bag{ not self.messageType.oclIsUndefind(),
 not self.type.oclIsUndefind(),
 not self.element.oclIsUndefind() }->count(true) = 1

NB. It might be better to model this as separate subtypes of Variable.

3.5 Assignment from-spec and to-specs

“9.3 Assignment
… The assign activity copies a type-compatible value from the source ("from-spec") to the
destination ("to-spec"). The from-spec MUST be one of the following forms except for the
opaque form available in abstract processes:

<from variable="ncname" part="ncname"?/>
<from partnerLink="ncname" endpointReference="myRole|partnerRole"/>
<from variable="ncname" property="qname"/>
<from expression="general-expr"/>
<from> ... literal value ... </from>”

This is captured in the model by the four sub-types of the FromSpec class.
“… The to-spec MUST be one of the following forms:

<to variable="ncname" part="ncname"?/>
<to partnerLink="ncname"/>
<to variable="ncname" property="qname"/>”

This is captured in the model by the two sub-types of the ToSpec class.
“… In the first from-spec and to-spec variants the variable attribute provides the name of a
variable. If the type of the variable is a WSDL messge type the optional part attribute MAY be used
to provide the name of a part within that variable. When the variable is defined using XML Schema
simple type or element, the part attribute MUST NOT be used.”

context bpel::VariableSpec
 inv useOfVariableSpecPartProperty :
 self.variable.message.oclIsUndefined() implies
 self.part.oclIsUndefined()

“…In the case of from-specs, the role must also be specified”
context bpel::FromPartnerLink
 inv specificatinOfFromSpecRole :
 not self.endPointReference.oclIsUndefined()

 “… The fifth from-spec variant allows a literal value to be given as the source value to assign to
a destination. The type of the literal value MUST be the type of the destination (to-spec).”

This constraint is covered by the Type Compatibility constraints below.
“…
9.3.1. Type Compatibility in Assignment

 10

For an assignment to be valid, the data referred to by the from and to specifications MUST be of
compatible types. The following points make this precise:
• The from-spec is a variable of a WSDL message type and the to-spec is a variable of a

WSDL message type. In this case both variables MUST be of the same message type,
where two message types are said to be equal if their qualified names are the same.

• The from-spec is a variable of a WSDL message type and the to-spec is not, or vice versa.
This is not legal because parts of variables, selections of variable parts, or endpoint
references cannot be assigned to/from variables of WSDL message types directly.

• In all other cases, the types of the source and destination are XML Schema types or
elements, and the constraint is that the source value MUST possess the element or type
associated with the destination. Note that this does not require the types associated with the
source and destination to be the same. In particular, the source type MAY be a subtype of
the destination type. In the case of variables defined by reference to an element, moreover,
both the source and the target MUST be the same element.”

The type of from and to specs is given by a property ‘type’. This property may be set or calculated
when populating the model. There does not appear to be a mechanism within the BPEL spec that
covers the concept of a Type.

For the classes FromVariable and ToVariable, the BPEL spec defines the notion of type, used to
define the type property of the classes as follows:

context bpel_11::FromSpec
 def: type : OclAny = 'undefinedType'

context bpel_11::ToSpec
 def: type : OclAny = 'undefinedType'

context bpel_11::FromVariable
 def: type : wsdl::QName = self.variable.messageType.qName

context bpel_11::ToVariable
 def: type : wsdl::QName = self.variable.messageType.qName

The notion of type for the other constructs is not defined. We assume that there will be a mechanism
for setting the type property for from and to specs in these other cases. The OCL for checking type
compatibility is as follows:

context bpel::Copy
 inv typeCompatibilityInAssignment :
 self.fromSpec.type = self.toSpec.type

3.6 Binding first Activities in Correlation Sets

“10.1 Message Correlation
Both initiator and followers must mark the first activity in their respective groups as the activity that
binds the correlation set.”

context Scope
 inv firstActivityToUseACorrelationSetMustBindIt :
 let
 partnerActs : Sequence(bpel_11::PartnerActivity) =
 self.allOrderedSubActivities->flatten()->select(act |
 act.oclIsKindOf(bpel_11::PartnerActivity)
)->oclAsType(Sequence(bpel_11::PartnerActivity))
 in
 self.correlationSet->forAll(corSet |
 let
 firstUse = partnerActs->select(act |
 act.correlation.set->includes(corSet)
)->first()
 in
 firstUse.correlation->any(c|c.set=corSet).initiate
)

 inv followingActivitiesToUseACorrelationSetMustNotBindIt :
 let
 partnerActs : Sequence(bpel_11::PartnerActivity)
 = self.allOrderedSubActivities->flatten()->select(act |
 act.oclIsKindOf(bpel_11::PartnerActivity)
)->oclAsType(Sequence(bpel_11::PartnerActivity))
 in

 11

 self.correlationSet->forAll(corSet |
 let
 useage = partnerActs->select(act |
 act.correlation.set->includes(corSet)),
 followingUse = useage->subSequence(2,useage->size())
 in
 followingUse->forAll(a |
 not a.correlation->any(c|c.set=corSet).initiate)
)

3.7 Source and Target of Activities

“11.2. Standard Elements for Each Activity
… An activity MAY declare itself to be the source of one or more links by including one or more
<source> elements. Each <source> element MUST use a distinct link name. Similarly, an activity
MAY declare itself to be the target of one or more links by including one or more <target>
elements. Each <source> element associated with a given activity MUST use a link name distinct
from all other <source> elements at that activity. Each <target> element associated with a given
activity MUST use a link name distinct from all other <target> elements at that activity.”

context bpel::Activity
 inv eachSourceElementMustUseDistinctLinkName :
 self.sourceOf.link->isUnique(s|s.name)

 inv eachTargetElementMustUseDistinctLinkName :
 self.targetOf.link->isUnique(s|s.name)

3.8 Instantiation of a Process

“11.4. Providing Web Service Operations
… The only way to instantiate a business process in BPEL4WS is to annotate a receive activity
with the createInstance attribute set to "yes" (see 12.4. Pick for a variant). The default value
of this attribute is "no". A receive activity annotated in this way MUST be an initial activity in the
process, that is, the only other basic activities may potentially be performed prior to or
simultaneously with such a receive activity MUST be similarly annotated receive activities.”

context bpel_11::Receive
 inv allReceivesMarkedAsCreateInstanceMustBeInitialActivities :
 self.createInstance
 implies
 self.process.initialActivities->includes(self)

context bpel_11::BusinessProcess
 inv allInstantiationActivitiesAreMarkedCreateInstanceAsYes :
 self.instantiationActivities->forAll(act |
 act.oclIsTypeOf(bpel_11::Receive)
 and
 act.oclAsType(bpel_11::Receive).createInstance
)

NB. There is an issue here regarding ‘empty’ initial activities, or structured activities that resolve to ‘empty’. It
also does not handle the ‘Pick variant’.
 “… It is permissible to have the createInstance attribute set to "yes" for a set of concurrent
initial activities. In this case the intent is to express the possibility that any one of a set of
required inbound messages can create the process instance because the order in which these
messages arrive cannot be predicted. All such receive activities MUST use the same
correlation sets (see 10. Correlation). Compliant implementations MUST ensure that only one of
the inbound messages carrying the same correlation set tokens actually instantiates the business
process (usually the first one to arrive, but this is implementation dependent). The other incoming
messages in the concurrent initial set MUST be delivered to the corresponding receive activities in
the already created instance.”

context bpel_11::Flow
 inv AllConcurrentInstantiationActivitiesUseTheSameCorrelationSets :
 let
 instantiations: Set(bpel_11::Activity) = self.allSubActivities
 ->intersection(self.process.instantiationActivities)
 in
 instantiations->oclAsType(Set(bpel_11::Receive))
 .correlation.set->asSet()->size() <= 1

 12

 “… A business process instance MUST NOT simultaneously enable two or more receive
activities for the same partnerLink, portType, operation and correlation set(s). Note that receive
is a blocking activity in the sense that it will not complete until a matching message is received by
the process instance. The semantics of a process in which two or more receive actions for the
same partnerLink, portType, operation and correlation set(s) may be simultaneously enabled is
undefined. For the purposes of this constraint, an onMessage clause in a pick and an
onMessage event handler are equivalent to a receive (see 12.4. Pick and 13.5.1. Message
Events).”

context bpel_11::Flow
 def : noSimilarReceives(set : Set(bpel_11::Activity)) : Boolean =
 set->select(a|a.oclIsTypeOf(bpel_11::Receive))
 .oclAsType(Set(bpel_11::Receive))
 ->isUnique(rec |
 Tuple { partnerLink = rec.partnerLink,
 portType = rec.portType,
 operation = rec.operation,
 correlationSet = rec.correlation.set }
)

 inv no_simultaneous_similar_receive_activities :
 self.nextGroups->forAll(ngs |
 self.noSimilarReceives(ngs)
)

Note: This constraint makes use of the defined property ‘nextGroups’ which requires the use of a
‘transitiveClosure’ operation that is not part of the standard OCL.

“… The correlation between a request and the corresponding reply is based on the constraint that
more than one outstanding synchronous request from a specific partner link for a particular
portType, operation and correlation set(s) MUST NOT be outstanding simultaneously. The
semantics of a process in which this constraint is violated is undefined. For the purposes of this
constraint, an onMessage clause in a pick is equivalent to a receive (see 12.4. Pick).”

context bpel_11::Receive
 inv noSimultaneousOutstandingSynchronousRequests :
 let
 request = self,
 actionSeq = self.allNext->flatten(),
 replySeq = actionSeq->select(a | a.oclIsTypeOf(bpel_11::Reply))
 .oclAsType(Sequence(bpel_11::Reply)),
 reply = replySeq->select(r |
 r.portType= request.portType and
 r.operation = request.operation and
 r.correlation = request.correlation
)->first(),
 replyIndex = actionSeq->indexOf(reply)
 in
 not actionSeq->subsequence(0,replyIndex)
 ->select(a|a.oclIsTypeOf(bpel_11::Receive))
 .oclAsType(Sequence(bpel_11::Receive))
 ->exists(rec |
 rec.portType= request.portType and
 rec.operation = request.operation and
 rec.correlation = request.correlation
)

Note: This constraint makes use of the defined property ‘allNext’ which requires the use of a
‘transitiveClosure’ operation that is not part of the standard OCL.

“… Moreover, a reply activity must always be preceded by a receive activity for the same
partner link, portType and (request/response) operation, such that no reply has been sent for that
receive activity. The semantics of a process in which this constraint is violated is undefined.”

context bpel_11::Reply
 inv noExtraReplies :
 let
 reply = self,
 actionSeq = self.allPrev->flatten(),
 requestSeq = actionSeq->select(a|a.oclIsTypeOf(bpel_11::Receive))
 .oclAsType(Sequence(bpel_11::Receive)),
 request = requestSeq->select(r |
 r.portType= reply.portType and
 r.operation = reply.operation and
 r.correlation = reply.correlation

 13

)->first(),
 requestIndex = actionSeq->indexOf(request)
 in
 not actionSeq->subsequence(0,requestIndex)
 ->select(a|a.oclIsTypeOf(bpel_11::Reply))
 .oclAsType(Sequence(bpel_11::Reply))
 ->exists(rep |
 rep.portType= request.portType and
 rep.operation = request.operation and
 rep.correlation = request.correlation
)

Note: This constraint makes use of the defined property ‘allPrev’ which requires the use of a
‘transitiveClosure’ operation that is not part of the standard OCL.

3.9 Pick

“12.4 Pick
… A special form of pick is used when the creation of an instance of the business process could
occur as a result of receiving one of a set of possible messages. In this case, the pick itself has a
createInstance attribute with a value of yes (the default value of the attribute is no). In such
a case, the events in the pick must all be inbound messages and each of those is equivalent to a
receive with the attribute "createInstance=yes". No alarms are permitted for this special
case.“

context bpel::Pick
 inv createInstancePickImpliesAllEventsAreCreateInstanceReceives :
 self.createInstance
 implies
 self.onMessage->forAll(act | act.createInstance)
 and
 self.onAlarm->isEmpty()

 “… Each pick activity MUST include at least one onMessage event.”
This constraint is imposed by the 1..* multiplicity on the Pick-OnMessage association. However as

EMF does not generate code that enforces this we add an invariant to check it.
context bpel::Pick
 inv pick_onMessage_MultiplicityAtLeastOne :
 self.onMessage->size() >= 1

3.10 Flows and Links

“12.5 Flow
… A link has a name and all the links of a flow activity MUST be defined separately within the flow
activity.”

This constraint is imposed by the Model. Links are contained by a Flow (and can’t be included
anywhere else). Links only have two ends, therefore each link is separate.

“…The source of the link MUST specify a source element specifying the link's name and the
target of the link MUST specify a target element specifying the link's name.”

This constraint is imposed by the Model. Within a Link, Source and Target elements are not
optional.

“… Every link declared within a flow activity MUST have exactly one activity within the flow as its
source and exactly one activity within the flow as its target. The source and target of a link MAY be
nested arbitrarily deeply within the (structured) activities that are directly nested within the flow,
except for the boundary-crossing restrictions.
…
In general, a link is said to cross the boundary of a syntactic construct if the source activity for
the link is nested within the construct but the target activity is not, or vice versa, if the target
activity for the link is nested within the construct but the source activity is not.”

To express this constraint in OCL, we require the method subActivities to be defined for each
subtype of Activity. The method returns a set containing all activities directly nested within that
Activity. Also required is a method allSubActivities which returns all nested and sub-nested
activities. For basic Activities this set will typically be empty. These operations are defined in section
4.

 14

The constraint requiring the source and target activity for each link of a flow to be contained with
the flow is expressed as follows:

context bpel_11::Flow
 inv sourceAndTargetActivitiesAreContainedWithinTheFlow :
 self.link->forAll(lnk |
 self.allSubActivities->includes(lnk.source.activity)
 and
 self.allSubActivities->includes(lnk.target.activity)
)

 “… A link MUST NOT cross the boundary of a while activity, a serializable scope, an event
handler or a compensation handler (see 13. Scopes for the specification of event, fault and
compensation handlers).”

context bpel::While
 inv boundryCrossing :
 allSubActivities->includesAll(self.allSubActivities.sourceOf.activity)
 and
 allSubActivities->includesAll(self.allSubActivities.targetOf.activity)

context bpel::Scope
 inv boundryCrossing :
 not self.variableAccessSerializable.oclIsUndefined()
 implies (
 self.variableAccessSerializable
 implies
 self.allSubActivities->includesAll(
 self.allSubActivities.sourceOf.activity)
 and
 self.allSubActivities->includesAll(
 self.allSubActivities.targetOf.activity)
)

context bpel::EventHandler
 inv boundryCrossing :
 self.activity.allSubActivities->includesAll(
 self.activity.allSubActivities().sourceOf.activity)
 and
 self.activity.allSubActivities->includesAll(
 self.activity.allSubActivities().targetOf.activity)

“… In addition, a link that crosses a fault-handler boundary MUST be outbound, that is, it MUST
have its source activity within the fault handler and its target activity within a scope that encloses
the scope associated with the fault handler.”

context bpel_11::FaultHandler
 inv boundryCrossing :
 let allSubActivities =
 Set { self.catchAll }
 ->union(self.catch.activity->asSet()).allSubActivities
 in
 allSubActivities->includesAll(allSubActivities.sourceOf.activity)
 and
 allSubActivities.sourceOf.link.target.activity->forAll(tgtAct |
 self.scope.allParents->exists(act |
 act.allSubActivities->includes(tgtAct)
)
)

“… Finally, a link MUST NOT create a control cycle, that is, the source activity must not have the
target activity as a logically preceding activity, where an activity A logically precedes an activity B if
the initiation of B semantically requires the completion of A. Therefore, directed graphs created by
links are always acyclic.”

context bpel_11::Link
 inv noControlCycles :
 self.source.allPrev->flatten()->excludes(self.target)

Note: This constraint makes use of the defined property ‘allPrev’ which requires the use of a
‘transitiveClosure’ operation that is not part of the standard OCL.

 “12.5.1. Link Semantics
… The expression for a join condition for an activity MUST be constructed using only Boolean
operators and the bpws:getLinkStatus function (see 9.1. Expressions) applied to incoming
links at the activity.”

 15

To statically check this constraint it would be necessary to parse the body of an Expression
construct; it would be in appropriate to attempt this using OCL.

 16

4 Defined Properties and Operations
To construct the constraints defined in the previous section a number of additional operations and

properties have been defined on classes within the BPEL package. These definitions are given using
OCL in the following subsections. Figure 11 gives a class diagram overview of the additional
operations and properties.

Activity
/ subActivities : Set(Activity)
/ allSubActivities : Set(Activity)
/ allBasicActivities : Set(Activity)
/ initialActivities : Set(Activity)
/ next : Set(Activity)
/ allNext : Set(Activity)
/ orderedSubActivities : Sequence(Activity)
/ allOrderedSubActivities : Sequence(Activity)
/ allParents : Set(Activity)
/ process : BusinessProcess

PartnerActivity
/ initialActivities : Set(Activity)

StructuredActivity

/ next(prev:Activity) : Set(Activity)

BusinessProcess
/ instantiationActivities : Set(Activity)
/ nextGroups : Sequence(Set(Activity))

/ nextGroups(ngs : Sequence(Set(Activity))) : Sequence(Set(Activity))

Flow
/ causalGroups : Sequence(Set(Activity))

/ causalGroups (ngs : Sequence(Set(Activity))) : Sequence(Set(Activity))

Figure 11

4.1 Define Property - subActivities : Set
context bpel_11::Activity
 def: subActivities : Set(bpel_11::Activity) = Set {}

This property is defined as returning an empty Set for the class Activity. Each subtype that contains
sub activities redefines the property as follows:

Note: activities in compensation, fault and event handlers are treated as subActivities.
context bpel_11::OnMessage
 def: subActivities : Set(bpel_11::Activity) = Set { self.activity }

context bpel_11::Invoke
 def: subActivities : Set(bpel_11::Activity) =
 let
 -- undefined's are not put into sets, so these are empty
 -- if navigations are undefined
 compHndlr : Set(bpel_11::Activity) = Set{self.compensationHandler},
 fltHndlr : Set(bpel_11::Activity) =
 Set { self.faultHandler.catchAll }
 ->union(self.faultHandler.catch.activity->asSet())
 in
 fltHndlr->union(compHndlr)

context bpel_11::While
 def: subActivities : Set(bpel_11::Activity) = Set { self.activity }

context bpel_11::Flow
 def: subActivities : Set(bpel_11::Activity) = self.activity->asSet()

context bpel_11::ActivitySequence
 def: subActivities : Set(bpel_11::Activity) = self.activity->asSet()

context bpel_11::Pick
 def: subActivities : Set(bpel_11::Activity) =
 self.onAlarm.activity->union(self.onMessage)->asSet()

context bpel_11::Switch
 def: subActivities : Set(bpel_11::Activity) =
 self.case.activity->asSet()->union(Set{self.otherwise})

 17

context bpel_11::Scope
 def: subActivities : Set(bpel_11::Activity) =
 let
 -- undefined's are not put into sets, so these are empty
 -- if navigations are undefined
 compHndlr : Set(bpel_11::Activity) = Set{self.compensationHandler},
 fltHndlr : Set(bpel_11::Activity) =
 Set { self.faultHandler.catchAll }
 ->union(self.faultHandler.catch.activity->asSet()),
 evntHndlr : Set(bpel_11::Activity) =
 Set { self.eventHandler.activity }->flatten()
 in
 Set{self.activity}
 ->union(compHndlr)
 ->union(fltHndlr)
 ->union(evntHndlr)

4.2 Define Property - allSubActivities : Set

context bpel_11::Activity
 def: allSubActivities : Set(bpel_11::Activity) =
 self.subActivities
 ->union(self.subActivities.allSubActivities->asSet())

4.3 Definition of Property - initialActivities : Set

This property is intended to return a Set containing all possible activities that could occur if this activity
is expected to occur. For basic activities this typically returns a set containing itself. In addition
structured activities do not typically included themselves; rather they include the initial activities of
those that are contained within.

4.3.1 Basic Activities
context bpel_11::Activity
 def: initialActivities : Set(bpel_11::Activity) = Set{self}

4.3.2 Partner Activities
context bpel_11::Receive
 def: initialActivities : Set(bpel_11::Activity) = Set{self}

context bpel_11::Reply
 def: initialActivities : Set(bpel_11::Activity) = Set{self}

context bpel_11::Invoke
 def: initialActivities : Set(bpel_11::Activity) = Set{self}

4.3.3 Structured Activities
context bpel_11::While
 def: initialActivities : Set(bpel_11::Activity) =
 self.activity.initialActivities

context bpel_11::Flow

 def: initialActivities : Set(bpel_11::Activity) =
 self.activity->select(a |
 a.targetOf->isEmpty()
).initialActivities->asSet()

context bpel_11::ActivitySequence
 def: initialActivities : Set(bpel_11::Activity) =
 self.activity->first().initialActivities

context bpel_11::Pick
 def: initialActivities : Set(bpel_11::Activity) =
 self.onAlarm.activity.initialActivities
 ->union(self.onMessage.initialActivities)
 ->asSet()

context bpel_11::Switch
 def: initialActivities : Set(bpel_11::Activity) =
 let otherW = if self.otherwise.oclIsUndefined() then
 Set{}
 else
 self.otherwise.initialActivities
 endif
 in

 18

 self.case.activity.initialActivities->asset()
 ->union(otherW)->asSet()

context bpel_11::Scope
 def: initialActivities : Set(bpel_11::Activity) =
 self.activity.initialActivities

4.4 Definition of Property -allBasicActivities : Set

4.4.1 Basic Activities
context bpel_11::Activity
 def: allBasicActivities : Set(bpel_11::Activity) = Set{self}

4.4.2 Partner Activities
-- OnMessage is a subtype of Recieve

context bpel_11::Receive
 def: allBasicActivities : Set(bpel_11::Activity) = Set{self}

context bpel_11::Reply
 def: allBasicActivities : Set(bpel_11::Activity) = Set{self}

context bpel_11::Invoke
 def: allBasicActivities : Set(bpel_11::Activity) = Set{self}

4.4.3 Structured Activities
context bpel_11::While
 def: allBasicActivities : Set(bpel_11::Activity) =
 self.activity.allBasicActivities->asSet()

context bpel_11::Flow
 def: allBasicActivities : Set(bpel_11::Activity) =
 self.activity.allBasicActivities->asSet()

context bpel_11::ActivitySequence
 def: allBasicActivities : Set(bpel_11::Activity) =
 self.activity.allBasicActivities->asSet()

context bpel_11::Pick
 def: allBasicActivities : Set(bpel_11::Activity) =
 self.onAlarm.activity.allBasicActivities
 ->union(self.onMessage.allBasicActivities)->asSet()

context bpel_11::Switch
 def: allBasicActivities : Set(bpel_11::Activity) =
 let otherW = if self.otherwise.oclIsUndefined() then
 Set{}
 else
 self.otherwise.allBasicActivities
 endif
 in
 self.case.activity.allBasicActivities->asSet()
 ->union(otherW)->asSet()

context bpel_11::Scope
 def: allBasicActivities : Set(bpel_11::Activity) =
 self.activity.allBasicActivities

4.5 Definition of Property - next : Set

Property ‘prev’ is similarly defined; however the definition is not explicitly given.

4.5.1 Basic and Partner Activities
context bpel_11::Activity
 def: next : Set(bpel_11::Activity) =
 self.parent.next(self)->collect(n |
 if n.oclIsTypeOf(bpel_11::StructuredActivity) then
 n.initialActivities
 else
 Set{n}
 endif
)->flatten()->asSet()

 19

4.5.2 Structured Activities
context bpel_11::StructuredActivity
 def: next(prev:bpel_11::Activity) : Set(Activity) = Set{}

context bpel_11::While
 def: next(prev:bpel_11::Activity) : Set(Activity) =
 self.activity.initialActivities->union(self.parent.next(self))

context bpel_11::Pick
 def: next(prev:bpel_11::Activity) : Set(Activity) =
 Set { self.parent.next(self) }->flatten()

context bpel_11::Flow
 def: next(prev:bpel_11::Activity) : Set(Activity) =
 self.activity->reject(a |
 a.allBasicActivities->includes(prev)
).allBasicActivities->asSet()

context bpel_11::ActivitySequence
 def: next(prev:bpel_11::Activity) : Set(Activity) =
 let
 i = self.activity->indexOf(prev)
 in
 Set{ self.activity->at(i+1) }.initialActivities->asSet()

context bpel_11::Switch
 def: next(prev:bpel_11::Activity) : Set(Activity) =
 Set { self.parent.next(self) }->flatten()

context bpel_11::Scope
 def: next(prev:bpel_11::Activity) : Set(Activity) =
 Set { self.parent.next(self) }->flatten()

4.6 Definition of Property - allNext : Set

context bpel_11::Activity
 def: allNext : Sequence(Set(bpel_11::Activity)) =
 Sequence{Set{self}}->transitiveClosure(x|x.next->asset())

4.7 Definition of Property - orderedSubActivities : Set

Note: activities in compensation, fault and event handlers are treated as subActivities.

4.7.1 Basic Activities
context bpel_11::Activity
 def: orderedSubActivities : Sequence(bpel_11::Activity) = Sequence {}

4.7.2 Partner Activities
context bpel_11::OnMessage
 def: orderedSubActivities : Sequence(bpel_11::Activity) =
 Sequence { self.activity }

context bpel_11::Invoke
 def: orderedSubActivities : Sequence(bpel_11::Activity) =
 let
 -- undefined's are not put into sets, so these are empty
 -- if navigations are undefined
 compHndlr : Sequence(bpel_11::Activity) =
 Sequence { self.compensationHandler },
 fltHndlr : Sequence(bpel_11::Activity) =
 Sequence { self.faultHandler.catchAll }
 ->union(self.faultHandler.catch.activity->asSequence())
 in
 fltHndlr->union(compHndlr)

4.7.3 Structured Activities
context bpel_11::While
 def: orderedSubActivities : Sequence(bpel_11::Activity) =
 Sequence { self.activity }

context bpel_11::Flow
 def: orderedSubActivities : Sequence(bpel_11::Activity) =
 self.activity->asSequence()

 20

context bpel_11::ActivitySequence
 def: orderedSubActivities : Sequence(bpel_11::Activity) =
 self.activity

context bpel_11::Pick
 def: orderedSubActivities : Sequence(bpel_11::Activity) =
 self.onAlarm.activity->asSequence()
 ->union(self.onMessage->asSequence())

context bpel_11::Switch
 def: orderedSubActivities : Sequence(bpel_11::Activity) =
 self.case->collectNested(c|c.activity)->including(self.otherwise)

context bpel_11::Scope
 def: orderedSubActivities : Sequence(bpel_11::Activity) =
 let
 -- undefined's are not put into sets, so these are empty
 -- if navigations are undefined
 compHndlr : Sequence(bpel_11::Activity) =
 Sequence { self.compensationHandler },
 fltHndlr : Sequence(bpel_11::Activity) =
 Sequence { self.faultHandler.catchAll }
 ->union(self.faultHandler.catch.activity->asSequence()),
 evntHndlr : Sequence(bpel_11::Activity) =
 self.eventHandler.activity->asSequence()
 in
 Sequence{self.activity}
 ->union(compHndlr)
 ->union(fltHndlr)
 ->union(evntHndlr)

4.8 Definition of Property - allOrderedSubActivities : Set

context bpel_11::Activity
 def: allOrderedSubActivities : Sequence(OclAny) =
 if self.oclIsKindOf(bpel_11::StructuredActivity) then
 self.orderedSubActivities->collectNested(act |
 act.allOrderedSubActivities).oclAsType(Sequence(OclAny))
 else
 Sequence{self}->union(self.orderedSubActivities)
 endif

4.9 Definition of Property - allParents : Set

context bpel_11::Activity
 def: allParents : Set(bpel_11::Activity) =
 self.parent->union(self.parent.allParents->asSet())

4.10 Definition of Property - process : BusinessProcess

context bpel_11::Activity
 def: process : bpel_11::BusinessProcess =
 if self.parent.oclIsUndefined() then
 self.oclAsType(bpel_11::BusinessProcess)
 else
 self.parent.process
 endif

4.11 Definition of Property - instantiationActivities : Set

Note: The Pick Variant is not handled.
context bpel_11::BusinessProcess
 def : instantiationActivities : Set(bpel_11::Activity) =
 self.allBasicActivities->select(a |
 a.oclIsKindOf(bpel_11::Receive)
 and
 a.oclAsType(bpel_11::Receive).createInstance
)

4.12 Definition of Property - causalGroups : Set

context bpel_11::Flow
 def : causalGroups(cgs : Sequence(Set(bpel_11::Activity)))
 : Sequence(Set(bpel_11::Activity)) =

 21

 let
 ng : Set(bpel_11::Activity) = cgs->last().next->asSet()
 in
 if ng->isEmpty() then
 cgs
 else
 self.causalGroups(cgs->append(ng))
 endif

 def : causalGroups : Sequence(Set(bpel_11::Activity)) =
 self.causalGroups(Sequence{ self.initialActivities })

 22

5 Generating the BPEL Validation Code
To create the Java Code for the OCL constraints defined in sections 3 and 4 above we use the OCL
library developed at the University of Kent. The following code defines a command line application
that will create appropriate java code for a set of OCL constraints.

package uk.ac.kent.cs.bpel;

import org.eclipse.xsd.XSDPackage;
import com.ibm.mda.bpel_11.BPELPackage;
import com.ibm.mda.wsdl.WSDLPackage;
import uk.ac.kent.cs.kmf.util.ILog;
import uk.ac.kent.cs.kmf.util.OutputStreamLog;
import uk.ac.kent.cs.ocl20.OclProcessor;
import uk.ac.kent.cs.ocl20.bridge4emf.CodeGenerator;
import uk.ac.kent.cs.ocl20.bridge4emf.EmfOclProcessorImpl;

public class CreateCodeFromOclFile {

 public static void main(String[] args) {
 // Initialize the model and log
 ILog log = new OutputStreamLog(System.out);
 OclProcessor processor = new EmfOclProcessorImpl(log);
 processor.addModel(XSDPackage.eINSTANCE);
 processor.addModel(WSDLPackage.eINSTANCE);
 processor.addModel(BPELPackage.eINSTANCE);

 // Generate code
 CodeGenerator codeGen =
 new CodeGenerator(processor, args[0],args[1],args[2],args[3], log);
 codeGen.generate();

 // Print the compilation report
 log.printMessage("Done.\n");
 log.finalReport();
 }

}

The parameters required by the CodeGenerator class, and hence by this command line application
are as follows:

processor – an instance of the OclProcessor class (not a command line parameter).
inputFileName – a string denoting the file containing OCL expressions to generate code from.
outputDir – the directory into which the generated Java class files should be put.
pkgName – the name of the package into which the generated Java classes should be put.
outputClassName – the name of the primary generated java class containing code for the constraints.
log – an instance of the ILog class for output from the OCL library (not a command line parameter).

For example:
 java CreateCodeFromOclFile ocl/bpel.ocl src bpel_11 Invariants

Will generate code for the OCL constraints contained in the file ‘ocl/bpel.ocl’. It will generate a
class ‘bpel_11.Invariants’ and place it in the directory ‘src’.

 23

6 The generated Code
The code generated for the OCL constraints is structured into a number of static methods contained in
sub classes of a main containing class. In the context of the example shown in the previous section, the
main class was named ‘Invariants’. The generated code is placed in a class with this name in a package
named ‘bpel_11’.

Each invariant specified on a class is placed in a nested sub class of Invariants in a method with the
name of the invariant (or a default name if no invariant name was specified). The name of the nested
sub class matches that of the context class for the invariant; e.g. the invariant:

context bpel::BusinessProcess
 inv processIsNotASubActivity :
 self.parent.oclIsUndefined()

generates the following code:
package bpel_11;
public class Invariants

 public static class BusinessProcess {

 public static java.lang.Boolean processIsNotASubActivity(
 com.ibm.mda.bpel_11.BusinessProcess self) {
 /* self.parent.oclIsUndefined() */
 try {
 return new Boolean((self.getParent() == null));
 } catch (Exception e) {
 return null;
 }
 }

 }

}

and to evaluate this invariant for a particular object we could use the code snipet:
BusinessProcess busProc;

... // some code to assign busProc a value

Boolean b = Invariants.BusinessProcess.processIsNotASubActivity(busProc);

In addition there is a method generated for each nested sub class named ‘evaluateAll’ which will
evaluate all invariants defined for a particular object and return a java.util.Map containing the result of
evaluating each invariant along side a key with the name of that invariant. E.g.

BusinessProcess busProc;

... // some code to assign busProc a value

Map m = Invariants.BusinessProcess.evaluateAll(busProc);

 24

7 A BPEL Validation Application
Using the generated code for the defined OCL constraints along with:

• code generated by EMF for the BPEL 1.1 metamodel and
• a bespoke reader that imports a BPEL XML into instances of the EMF generated code

we can write a small application that will validate any BPEL document.
The following code is just such an application:
package uk.ac.kent.cs.bpel;

import java.lang.reflect.Method;
import java.util.Arrays;
import java.util.HashMap;
import java.util.HashSet;
import java.util.Iterator;
import java.util.Map;
import java.util.Set;

import org.eclipse.emf.common.util.TreeIterator;
import org.eclipse.emf.common.util.URI;
import org.eclipse.emf.ecore.EClass;
import org.eclipse.emf.ecore.EObject;
import org.eclipse.emf.ecore.resource.Resource;
import org.eclipse.emf.ecore.resource.ResourceSet;
import org.eclipse.emf.ecore.resource.impl.ResourceSetImpl;

import com.ibm.mda.bpel.resource.BPELResource;
import com.ibm.mda.bpel.resource.BPELResourceFactoryImpl;
import com.ibm.mda.bpel_11.impl.BPELPackageImpl;

public class Validator {

 public static void main(String[] args) {
 String bpelFileName = args[0];
 BPELPackageImpl.init();
 Resource.Factory.Registry reg = Resource.Factory.Registry.INSTANCE;
 Map m = reg.getExtensionToFactoryMap();
 m.put("bpel", new BPELResourceFactoryImpl());
 ResourceSet resSet = new ResourceSetImpl();
 Resource res = resSet.getResource(URI.createURI(bpelFileName), true);

 System.out.println("\n---");
 System.out.println("\nValidating contents of resource "+res.getURI());
 System.out.println("\n---\n");
 Validator v = new Validator();
 TreeIterator te = res.getAllContents();
 while (te.hasNext()) {
 Object o = te.next();
 if (o instanceof EObject) {
 v.validate((EObject) o);
 }
 }
 System.out.println("Done.");
 }

 public void validate(EObject obj) {
 EClass objCls = obj.eClass();
 Set allClasses = new HashSet(objCls.getEAllSuperTypes());
 allClasses.add(objCls);
 Iterator i = allClasses.iterator();
 while (i.hasNext()) {
 EClass cls = (EClass)i.next();
 String clsName = cls.getName();
 try {
 Class invCls = getInvClass(clsName);
 if (invCls != null) {
 Method evalAll = invCls.getMethod("evaluateAll",
 new Class[] { cls.getInstanceClass()});
 Map m = (Map) evalAll.invoke(null, new Object[] { obj });
 print(m, obj, clsName);
 }
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
 }

 25

 Map invClasses = new HashMap();
 public Class getInvClass(String clsName) {
 if (!invClasses.containsKey(clsName)) {
 String invClsName = "bpel_11.Invariants";
 try {
 Class ic = null;
 Class inv = Class.forName(invClsName);
 Iterator i = Arrays.asList(inv.getClasses()).iterator();
 while (i.hasNext()) {
 Class c = (Class) i.next();
 if (c.getName().equals(invClsName + "$" + clsName))
 ic = c;
 }
 if (ic == null) {
 invClasses.put(clsName, null);
 } else {
 invClasses.put(clsName, ic);
 }
 } catch (ClassNotFoundException e) {
 System.out.println("No " + invClsName + " Class found");
 }
 }
 return (Class) invClasses.get(clsName);
 }

 static public void print(Map m, Object self, String clsName) {
 String selfId = "";
 if(self instanceof EObject) {
 EObject obj = (EObject)self;
 BPELResource o = (BPELResource)obj.eResource();
 selfId = o.getURIFragment(obj);
 }

 Map notTrues = new HashMap();
 Iterator i = m.entrySet().iterator();
 while (i.hasNext()) {
 Map.Entry me = (Map.Entry) i.next();
 if (me.getValue() instanceof Boolean &&
 me.getValue().equals(Boolean.TRUE)) {
 } else {
 notTrues.put(me.getKey(), me.getValue());
 }
 }

 if (! notTrues.entrySet().isEmpty()) {
 System.out.println("\ncontext self = " + self + "\n[" +selfId+ "]");
 System.out.println(" : "+clsName);
 i = notTrues.entrySet().iterator();
 while (i.hasNext()) {
 Map.Entry me = (Map.Entry) i.next();
 System.out.println(me.getKey() + ":\n" + me.getValue());
 }
 }
 }

}

This application takes a single command line parameter which is the name of the BPEL document to
validate; e.g.

java Validator examples/ShippingService/process.bpel

 26

8 Files and Resources
To reproduce the production of the BPEL validator it is necessary to have the following resources:

• bpel.ocl - text file containing the specification OCL statements that constraint a BPEL
document.

• BPEL_1.1.cat – Rational Rose file containing the specification of the BPEL version 1.1
metamodel. This file make used of these additional files, all included in bpel_1.1.mdl.

o WSDL_1.0.2.cat
o org.eclipse.XSD.cat
o org.eclipse.emf.Ecore.cat

• The Eclipse Modelling framework, to generate code for the BPEL model. Code for the
WSDL and XSD models are found in the following jars

o wsdl.jar and wsdl4j.jar
o xsd.jar

• bpel_11.jar - Hand written BPEL reader and resource factory for reading BPEL XML files
into the EMF generated code for the BPEL metamodel. The jar includes the EMF generated
code for the BPEL 1.1 metamodel.

• OCLforEMF plugins, including the following jars
o OclCommon.jar – standard parts of the Kent OCL library.
o Ocl4EMF.jar – bridge for using the Kent OCL library with EMF code.
o KMFpatterns.jar, KMF_Util.jar – utilities used by the Kent OCL library.
o CUPRuntime.jar – code used by the Kent OCL parser, generated using the CUP

parser generator.

These jars are contained in the following list of plugins:

Supplier Name Version Id
University of Kent BPEL Validator 1.0.0 uk.ac.kent.cs.bpel.validator
University of Kent BPEL Model 1.1.0 uk.ac.kent.cs.bpel
IBM com.ibm.mda.wsdl 1.0.2 com.ibm.mda.wsdl
Eclipse.org XML Schema Infoset Model (XSD) 2.0.0 org.eclipse.xsd
… other eclipse and EMF plugins … …
University of Kent OCL for EMF 1.1.2 uk.ac.kent.cs.forEMF
University of Kent OCL Common 1.2.2 uk.ac.kent.cs.ocl.common
University of Kent OCL Utils 1.1.0 uk.ac.kent.cs.ocl.utils

 27

9 Testing
The validator and constraints have been tested on the following BPEL examples taken from the

BPEL standard:
• Initial example
• ShippingService example

and on the following examples supplied by IBM:
• SyncHelloWorld
• FlightService
• HotelService
• TripHandlingSimple
• TripHandlingConcurrent
• Philosopher[1..5]
• RandomHalting
• PhilosopherTableFixedLinkFive
• PhilosopherTableSimpleLinkFive
• PhilosopherTableSimpleLinkThree

 28

Bibliography

[1] IBM, "Business Process Execution Language for Web Services," 2003.
[2] OMG, "Response to the UML 2.0 OCL Rfp (ad/2000-09-03), Revised Submission, Version 1.6," Object

Management Group ad/2003-01-07, January 2003 2002.
[3] IBM, "Eclipse Modeling Framework," http://www.eclipse.org/emf/, 2003.

 29

http://www.eclipse.org/emf/

	Introduction
	BPEL 1.1 Metamodel
	Constraints
	Business Process
	Partner definitions must not overlap
	getLinkStatus Function
	Variable Options
	Assignment from-spec and to-specs
	Binding first Activities in Correlation Sets
	Source and Target of Activities
	Instantiation of a Process
	Pick
	Flows and Links

	Defined Properties and Operations
	Define Property - subActivities : Set
	Define Property - allSubActivities : Set
	Definition of Property - initialActivities : Set
	Basic Activities
	Partner Activities
	Structured Activities

	Definition of Property -allBasicActivities : Set
	Basic Activities
	Partner Activities
	Structured Activities

	Definition of Property - next : Set
	Basic and Partner Activities
	Structured Activities

	Definition of Property - allNext : Set
	Definition of Property - orderedSubActivities : Set
	Basic Activities
	Partner Activities
	Structured Activities

	Definition of Property - allOrderedSubActivities : Set
	Definition of Property - allParents : Set
	Definition of Property - process : BusinessProcess
	Definition of Property - instantiationActivities : Set
	Definition of Property - causalGroups : Set

	Generating the BPEL Validation Code
	The generated Code
	A BPEL Validation Application
	Files and Resources
	Testing
	Bibliography

