
Review

Simulating complex intracellular processes

using object-oriented computational

modelling

Colin G. Johnson a,∗ Jacki P. Goldman a,b William J. Gullick b

aComputing Laboratory, University of Kent, Canterbury, Kent, CT2 7NF,
England

bDepartment of Biosciences, University of Kent, Canterbury, Kent, CT2 7NJ,
England

Keywords: computational modelling; object-oriented methods;
intracellular processes; protein-protein interactions.

Abstract

The aim of this paper is to give an overview of computer modelling and simulation in
cellular biology, in particular as applied to complex biochemical processes within the
cell. This is illustrated by the use of the techniques of object-oriented modelling,
where the computer is used to construct abstractions of objects in the domain
being modelled, and these objects then interact within the computer to simulate
the system and allow emergent properties to be observed. The paper also discusses
the role of computer simulation in understanding complexity in biological systems,
and the kinds of information which can be obtained about biology via simulation.

Contents

1 Introduction 3

2 Varieties of complexity 3

2.1 Complexity as density of information 4

∗ Author for correspondence
Email address: C.G.Johnson@kent.ac.uk (Colin G. Johnson).

1

2.2 Structure of information and levels of description 4

2.3 Phase transitions, the “edge of chaos” and small worlds 5

2.4 Non-linearity, hysteresis, catastrophe 7

3 Motivation for using computer modelling 10

3.1 Modelling as a pre-experimental step 11

3.2 Looking inside models 11

3.3 Combining models and emergent phenomena 12

3.4 Modelling and sufficiency 13

3.5 Bringing theory and experiment closer together 13

4 Examples of computer modelling of intracellular processes 14

5 The modelling and simulation process 15

6 An introduction to object-oriented methods 18

6.1 Implementation complexity and problem decomposition 18

6.2 Classes and objects 19

6.3 The OO analysis and design process 21

6.4 Relationships between classes 22

6.5 Implementing object orientation. 24

6.6 Design and implementation techniques: patterns, structures,
algorithms 26

6.7 Summary 27

6.8 Object-oriented methods for science 27

7 Simulating intracellular processes 27

8 Conclusions and prospects 33

8.1 On object-oriented methods in general 33

8.2 On OO programming languages 33

8.3 On notations to support OO design 33

2

8.4 On OO methods in science 34

9 Acknowledgements 34

1 Introduction

Biochemical activity within cells exhibits many kinds of complexity. One way
of understanding these forms of complexity is by the use of computer mod-
elling and simulation. The aim of this paper is to outline these different kinds
of complexity and give an overview of computer modelling and simulation
methods which help us to understand these complexities. The focus is on
the techniques of object-oriented modelling. These techniques are particularly
well suited to scientific modelling, as they allow the creation of computational
models of the individual components in a system, and facilitate the interaction
between those models to produce an overall simulation of the system.

The paper begins with a discussion of the notion of complexity, considering
the varieties of complexity, how these various complexities are exhibited in in-
tracellular systems, and how computational methods can help to understand
these complexities. The following section discusses ways in which computa-
tional modelling fits into the scientific process, and this is illustrated in the
next section, which discusses a number of systems which model reality at vari-
ous levels of detail. The next two sections focus on the details of the computa-
tional modelling process, firstly looking at the modelling process, and secondly
the tools and techniques required for such modelling using the object-oriented
methodology. This is supported by a number of examples. The paper concludes
with some pointers to future work in this area.

2 Varieties of complexity

It is commonly suggested the the processes within cells are complex. In par-
ticular signal transduction, metabolic pathways and gene expression provide
examples of complex biochemical processes. However the notion of complexity
contains a number of facets. This section considers these notions of complex-
ity, with particular reference to intracellular processes, and how computer
modelling can assist in understanding the various kinds of complexity.

3

2.1 Complexity as density of information

One notion of complexity is that of density of information. For example if we
consider the epidermal growth-factor system and related systems in several
organisms we observe such complexity. In C. elegans there is a single ligand
type and a single receptor type; in D. melanogaster there are five types of
ligands but only one type of receptor; however in H. sapiens there are 10
ligand types and (effectively) 7 types of receptors (including splice variants).

These increases in the amount of information are typically well handled in
computer simulation. This contrasts to experimental techniques, where differ-
ent molecule-types can require different experimental techniques. In particu-
lar the techniques of inheritance and prototyping in object-oriented modelling
(discussed below) provide mechanisms for specifying the general behaviour of
a large number of different types of entities, whilst the specific details of a
particular entity-type can be specified just for that one.

2.2 Structure of information and levels of description

Another kind of complexity arises from the structure of information within a
system. To continue with the discussion from the previous section, consider
the relationship between the growth factors and pairs of receptors in the EGF
system (Yarden and Sliwkowski, 2001; Gullick, 2001). In this system certain
receptor will bind to certain ligands, and some of these will form stable pairs.

One way in which this system is complex is that the matching between lig-
ands and receptor-pairs is (effectively) arbitrary. Clearly at one level of de-
scription (the binding between the various 3-dimensional structures involved)
this mapping is not arbitrary, and can be explained and (in principle) pre-
dicted. However at the level at which the system behaves, the mapping acts in
an arbitrary fashion. This understanding has come to be known only by ex-
haustive experimental work. It is possible that a behaviour-level explanation
of why some bindings occur and some do not may be discovered; a similar
change of perspective with regard to the DNA → amino-acid triplet coding
has occurred. An early understanding of this mapping suggested that it was a
“frozen accident”, i.e. that the first working code had been fixed because vari-
ations in the code would be unable to get an evolutionary foothold. However
more recent work (Liebovitch et al., 1996; Hornos and Hornos, 1993; Freeland
and Hurst, 1998a,b; Freeland et al., 2000) suggests that evolutionary pressures
have shaped the code used, e.g. that the code is optimized so that genotypic
errors have minimal effect on phenotype. Nonetheless the possibility for regu-
larities on one level of description to lead to arbitrary irregularities at another

4

remains possible, and is a potential source of biochemical complexity.

This difference in the amount of structure when a system is viewed at differ-
ent levels is characteristic of this type of complexity; whilst there clearly are
consistencies at one level (in this case the atomic interactions level), these do
not follow through to give consistencies at another level (in this case the level
of protein-protein interactions).

A related kind of complexity is given by the constraints that molecular struc-
ture places on the kinds of phenomena which can be produced. In an artificial
system it is common for the possible properties of the system to be distributed
uniformly through the space of possible structures; it is usually possible to
make a small, continuous change to achieve a desired result. However molec-
ular structure places constraints on what can be achieved in biochemical sys-
tems; for example a small number of phosphorylation sites may be accessible,
putting constraints on the kinds of interaction which can be achieved without
a larger-scale change in the system.

2.3 Phase transitions, the “edge of chaos” and small worlds

A variety of complexity of particular relevance to cellular biology due to its
influence on network structure is that exhibited by phase transition and “edge
of chaos” phenomena. In many systems the effective complexity (i.e. the com-
plexity at the level at which the system is acting) reaches a peak and then
tails away with increasing complexity of the underlying system. This is il-
lustrated in cartoon form in figure 1. The simple drawings to the left of the
picture have low structural complexity in terms of the information required
to describe them, and the impact they make on our eyes has low complexity.
The central figure is complex both from the point of view of the structure and
in terms of impact. However the right-hand figures are effectively identical in
terms of impact, despite the details being very different; similar pictures could
be substituted without changing the impact of the image. Things such as the
central pictures are often described as being on the “edge of chaos”. If you
make them more simple, the description becomes very similar at all levels,
but if you make them more complex, then it becomes difficult to distinguish
between different examples (the effect is the same despite the details being
different).

An example of this is phase transition behaviour. Physical phase transitions
are a well-known phenomenon. However the underlying dynamic process can
be found in a number of situations. In general a phase transition occurs when
small changes in a parameter typically make little change to the observed
macroscopic behaviour of the system, but where for a certain small parameter

5

Fig. 1. “Edge of chaos” phenomena illustrated in cartoon form.

6

region there is a large behaviour change for small parameter change. Bio-
chemical examples of this are the accumulation of influences which give rise
to a sudden apoptotic event and the axon firing process in neurons. A some-
what abstract example comes from considering random networks. Consider a
set of points, and a probability of linking those points. For low values of the
probability the overall connectivity of the network (measured by the largest
connected component) remains small as the probability is increased. However
at a certain point the network changes from being a collection of sparsely con-
nected clusters into a structure where most of the points are connected into
a single component (figure 2). This change occurs for a very small increase in
the probability.

A network phenomenon of similar flavour is the “small worlds” phenomenon
(Watts, 1999). This is informally known as the “six degrees of separation”
phenomenon, as all people on Earth are alleged to be connected by at most
six intermediate acquaintances. Watts has pointed out that many complex
communication systems exhibit a structure where the number of links is small
(i.e. when compared to all other possible ways of organizing the network) com-
pared to the average path-length between randomly chosen points. A canonical
example is the organization of human society; it has been suggested that any
pair of people in the world are linked by a small number of intermediate ac-
quaintances, despite each person only being acquainted with a small number
of others (relative to the whole population). An example of a structure which
exhibits this tradeoff is the “connected caveman” structure (figure 3) where
small groups of tightly connected nodes are connected via a small number
of connections to other such groups. This provides a short path between any
pair of nodes in the network at the cost of only a small number of links. It is
perhaps unsurprising that evolution has found a use for efficient systems such
as these; it has been demonstrated by Wagner and Fell (2001) that certain
kinds of metabolic pathways demonstrate this small-world behaviour.

2.4 Non-linearity, hysteresis, catastrophe

An additional source of complexity in biochemical systems is offered by vari-
ous kinds of non-linear behaviour. Broadly non-linearity is where the result of
some process varies in a way which is not directly proportional to the action
which causes it. There are many different types of such non-linearity: sys-
tems where the amount of output increases as a smooth but non-proportional
amount of the original signal, critical points where the behaviour changes
radically for a small change in some parameter which otherwise causes a near-
proportional change, hysteresis effects where a different response is caused by
an increase in some parameter and a decrease in the same parameter across
the same range.

7

c)b)a)

Increasing probability of pairs of nodes being joined

Fig. 2. Phase transitions in random networks.

8

Fig. 3. An example of a network with small-world behaviour—the connected cave-
man network (after Watts (1999))
.

9

A simple example of how micro-level behaviour can give rise to simple nonlin-
earities is given by Alberts et al. (2002, p. 849). This contrasts the behaviour
of two receptor types involved in gene regulation. The receptors for the first
target gene, conalbumin, increases the activity by an equal amount for each
receptor which has bound ligand. The second target gene, ovalbumin, requires
a pair of receptors to bind before there is an increase in activity. This leads to
a non-linear increase in the response per number of activated receptors.

The following (theoretical) system illustrates hysteresis. As with the ovalbu-
min, a pair of ligand-bound receptors are required to activate signal at a certain
level; however if the receptor remains active until both ligand molecules have
become unbound, then there is a different behaviour when the system is losing
ligand contrasted to when it is gaining.

An interesting consequence of this is given by Ricard (1999), who notes that
in such systems it is possible to ascertain whether the concentration of such a
protein is increasing or decreasing by taking a sample at a single time point.
Its position on the hysteresis curve at that point can indicate whether the
concentration is increasing or decreasing.

Another example is given by Bray et al. (1998); Bray (1998, 2002). This is
concerned with systems of biochemical receptors which must adjust their sen-
sitivity, i.e. the system needs to respond to changes in concentration, however
it needs to respond to these changes at various levels of ambient receptor
concentration. One model explored to explain this is a notion of “cross-talk”
between receptors; in addition to reacting to environmental stimulus, the re-
ceptors are able to signal each other, and the amount of this inter-receptor
stimulation adjusts on a medium-term timescale to the ambient level of recep-
tor in the environment.

3 Motivation for using computer modelling

There are a number of applications of computers in cellular biology. This pa-
per is concerned with the use of computers (and computational techniques) as
tools for modelling and simulations of complex behaviour within the cell. Ex-
amples of the kind of phenomena of interest are signal transduction, metabolic
pathways and gene expression. Other applications to computers in cellular
biology (e.g. the processing of microscope images, the statistical processing
of experimental data) and computations which are concerned primarily con-
cerned with the details of interactions between pairs of proteins in the cell at
the micro-level (see e.g. Alonso et al. (2002); Smith and Sternberg (2002)) are
not considered. Also the vast amount of work in this area within the specialized
domain of neuroscience is also outside the scope of this review.

10

There are a number of motivations for the application of computing in cellular
biology, and a number of different types of results which can be extracted
from such application. This section explores these various roles for computer
simulation.

3.1 Modelling as a pre-experimental step

One reason for using computer models is as a method of experimental de-
sign and choice of experiments. Laboratory work is time-consuming and often
expensive, and a simplified computer model can be used prior to laboratory
work for a number of reasons. Firstly it allows a basic testing of the feasi-
bility of a particular hypothesis to see whether it produces results which are
roughly as expected. A second, related, motivation is in deciding what needs
to be measured in an experiment. A computer simulation can be created based
on hypotheses about how the system works. This simulation can be repeated
many times, slowed down, et cetera, so that the right type of observation can
be made when the real experiment is done.

One currently underexplored application is the use of computers to search
for interesting, unknown phenomena worthy of investigation. Recent work in
the data-mining area (Freitas, 1999) has been concerned with computer-based
studies of data for patterns which are likely to be surprising to observers.
These ideas have been applied to science, in particular in pure mathematics
(Colton et al., 2000a,b).

3.2 Looking inside models

One advantage of computer models is that it is possible to “look inside” the
model at any stage during the simulation. Experimental work suffers from
the problem that it is often problematic to observe certain aspects of a sys-
tem whilst a process is taking place, and often methods of observing cellular
phenomena can interfere with the phenomenon itself.

Such methods can be used for estimating parameters within real systems which
are unobservable due to experimental constraints. In many situations a phe-
nomenon is understood at the qualitative level, but the precise numerical
value of rates, probabilities, et cetera is not known. An example of this is in
protein/protein interactions in membranes, where the overall distribution of
transmembrane proteins can often be observed using microscopy and tagging
techniques (Hayes et al., 2003). Simulation can help to find feasible values for
such parameters via the creation of a parameterized space of models, i.e. an ab-
stract model is created which can be converted into a model of a hypothetical

11

situation via the specification of values for a set of free parameters.

The parameters of a model are the various choices which need to be made to
realize a particular version of the model, e.g. the probability of certain events
occurring, the affinity between proteins in a system, the initial distribution
of entities in a system, functions describing the relationships between pro-
teins when they interact, et cetera. These parameters can be considered to
be variables which define a parameter space; any point in that space specifies
a particular value for all the parameters and therefore provides a particular
model. Some mathematical techniques can be used to analyse this space, e.g.
breaking it down into regions with similar behaviour.

Experiments using the real system can then be carried out and data gathered.
Then an optimization algorithm, such as hillclimbing (Reeves, 1993), tabu
search (Glover and Laguna, 1993) or evolutionary algorithms (Mitchell, 1996),
can be applied to search for a set or sets of parameters where the output
from the situation matches the experimental observations. Whilst this provides
only a sufficient set of parameters for realizing the experimentally observed
phenomena, it provides a starting point for future experimental work.

An example of this is given in the work described in section 7 below and (Gold-
man et al., 2002, 2003). One of the motivations for developing this simulation
is to be able to estimate probabilities of pairs of receptor proteins binding
from large-scale time-series data about the size of clusters containing many
such proteins.

3.3 Combining models and emergent phenomena

Another role of computer modelling is in synthesizing known facts about a
system into a coherent model. For practical purposes experimental methods
focus on a small part of a system at a time, and provide detailed results about
particular parts of a system. However understanding the global behaviour of
that system can be difficult. A computer simulation can allow these various
results to be brought together into a single model. This can then be used,
e.g. to check which of the individual parts of the system contribute to the
various global behaviours observed, by removing or making changes to various
components in the system and observing the effect on the behaviour which
emerges as a result of the interactions.

Similarly, computational methods can be used to bring many items of data
together into a coherent description. An example is given by Keedwell et al.
(2002) and Keedwell and Narayanan (2003), where machine learning methods
such as neural networks and genetic algorithms are used to synthesize many
items of data about individual gene expression experiments into a network

12

summarizing the connections between the various proteins involved.

3.4 Modelling and sufficiency

The ability to simulate a particular observable phenomenon using some process
does not demonstrate that that phenomenon must be produced by that pro-
cess. Nonetheless it demonstrates that the process is sufficient. This demon-
stration of sufficiency can guide the research process in a number of ways.
Firstly it can demonstrate that showing that the process in question is a valid
option for a complete explanation for the phenomenon, which can suggest a
line of experimental work leading towards demonstrating that the process is
the explanation; similarly demonstrating that a process is insufficient (not
something which can be done with simulation) can guide research towards
the discovery of new components in the system. Also an understanding of the
“minimal models” required to produce a particular phenomenon can be valu-
able because of evolutionary pressures towards simpler, more energy-efficient
processes.

3.5 Bringing theory and experiment closer together

Another role of simulation is in helping to distinguish between various hy-
potheses to explain a particular set of experimental data. In some situations
it is possible to fix many details of the system, however a number of different
possibilities are available as to how the system works. Different models can
be created to represent each of these possibilities, and simulations run based
on these models. The results of these simulations can then provide a set of
observational criteria for distinguishing between the various hypotheses. An
example of this is given in (Whalley et al., 2002), where the computer is used
to simulate two hypotheses for the behaviour of a certain protein, viz. whether
it moves freely within the cell or remains bound to the cellular matrix. The
simulation provides differing measures of cell lifespan according to which hy-
pothesis is chosen. This suggests an experimental test to see which (if either)
of the two hypotheses is satisfied.

The previous section provides specific examples of a general process through
which simulation can be used. Traditionally theory has had to explain ex-
perimental results directly, by providing direct predictable phenomena for ex-
periment to verify. Simulation can be used to “amplify” theory; in particular
models can be built which are based on alternative theories, and the alterna-
tive outcomes provided by the simulation of these components compared with
experimental data.

13

4 Examples of computer modelling of intracellular processes

A number of studies have been carried out applying computational techniques
in the modelling and simulation of intracellular processes. One way to catego-
rize these models is by the level of detail modelled by the system. Models at
various levels of detail have a place in the scientific process, and it is naive to
conclude that a more detailed model is “better” than a less detailed one. This
section gives a number of examples of models and simulations of intracellular
processes.

An example of the most detailed kind of model is given by the E-CELL system
(Tomita et al., 1999). This is designed to reproduce the molecular interactions
within the cell, for those cells where a complete DNA sequence is available,
and for which a “complete” set of metabolic reaction rules can be written.
The aim of a system such as E-CELL is to go beyond systems such as those
described by Mendes (1993, 1997); Sauro and Fell (1991); Sauro (1993) which
simulate single metabolic pathways, and to allow the computational study of
the behaviour which emerges when these pathways are allowed to interact.

To specify a cell in the E-CELL system the user draws upon a library of ex-
isting objects, to describe both components within the system (an example
of this is the BindingSite object) and the kinds of interactions between the
objects which represent system components (e.g. the MassActionReactor ob-
ject). These can be used “as is” or they can be specialized to a particular
system by the use of inheritance (as discussed in section 6.4).

This provides a very powerful system for simulating the effects of interventions
within the cell. However the cost of this is that a very detailed description
of the cellular components and the reactions between these components is
needed; for many such systems the details of the reactions in the cell, the
genomic and proteomic data underlying these reactions and the pathways
which arise from the interactions are currently only partially known.

A number of similar systems have been developed for more specialized appli-
cations. Two examples are the Walk system (Lamb, 1996; Lamb and Wischik,
1996) for the simulation of the G-protein cascade and the StochSim system
(Morton-Firth and Bray, 1998) for understanding bacterial chemotaxis.

It is important to note that level of detail is a problem dependent choice, not
a measure of model quality. The kinds of very detailed models surveyed in the
previous section are very useful, if the detailed information about the system is
available (e.g. for the E-CELL system a complete set of genomic and reaction
data). However for many systems such data is not available, and indeed the
role of the computer model is to help to fill in lack of information about the
details of the system by working back from observed behaviour.

14

There would seem to be much scope for modelling which sits in the middle
grounds between very detailed systems and broad conceptual models. Such
models need to allow both for the incorporation of experimentally understood
information where that information is available, but also for the incorporation
of free parameters. The space of parameters defining this model-set can then
be explored and matched against experimental data.

An example of this can be found in our own work on simulating the clustering
behaviour of epidermal growth factor receptors in response to growth factor
binding (Goldman et al., 2003). Existing experimental work with this system
has determined which proteins interact; however these interaction affinities
are unknown. We have developed a model which is parameterized by these
affinities, and plan to estimate the rates by optimizing the model against
observable phenomena from experimental work.

A final set of models are qualitative models. Many of these are based on the
idea of grouping together parameter regions in which the behaviour of the
system is (either exactly or broadly) the same. For example boolean models
of gene expression (Narayanan et al., 2002), where a gene is regarded as be-
ing “active” or “inactive”. Within the modelling of networks of biochemical
reactions, methods which group together all qualitatively similar parameters
and process the parameter set rather than an individual parameter have been
devised (Reddy et al., 1996). Related work has also been carried out in the
gene expression field (de Jong and Page, 2000; de Jong et al., 2001, 2002).

5 The modelling and simulation process

The creation of a computer simulation consists of a number of stages. There are
many ways in which this breakdown can be achieved, depending on the type of
problem being tackled, the preferences and experiences of the model-builders,
and the level of formality required (e.g. in some industries a “paper-trail” is
needed to understand which decisions have been made when in the develop-
ment process). One problem with applying these methods is that many of
them have been developed mostly with business applications in mind, and so
the kinds of complexity that they are designed to deal with are perhaps differ-
ent from the kinds of complexity dealt with in scientific simulation. However
the features of the process are broadly similar in all domains.

A division can be made between a development phase where the software is
created, and an application phase where it is used. For commercial software
there is a clear distinction between these two phases and between the people
involved in the phases. However in scientific software, where the developers
of the software are sometimes the sole users, the distinction is less clear cut.

15

However a distinction can be made between the modelling phase where the
real system is analysed and the software created, and the simulation phase
where the software is applied and the results analysed.

The modelling phase can be broken down into three main activities. The first
is analysis of the system at hand. In object-oriented methods this consists of
identifying the various entities which play a role in achieving the phenomena
of interest. At this stage large scale modelling decisions need to be made, e.g.
outlining the scope of the system and its limitations. For example in a model
of a signal transduction system will the model start from the assumption
that ligands are being supplied to the cell at a particular rate, or will the
ligand-producing system itself be incorporated into the model? Will the model
incorporate the changing size/shape of the cell as it grows and divides, or will
this be kept constant? How much detail is it necessary to include in the model:
is it important to keep track of individual molecules, or are just the quantities
of each required?

The next stage is a design phase, in which computational structures represent-
ing the entities identified in the analysis phase, and the relationships between
these entities, are designed. In the object-oriented method which is discussed
further below, this consists of identifying the information which is required
to represent an abstraction of each entity, and a description of the possible
actions which such an entity is capable of carrying out. At this stage the de-
signs are written descriptions in natural language (e.g. English), supported
perhaps by diagrams (particularly to explain the relationship between parts
of the design).

The final part of the modelling stage is the implementation. This is where
the design is formalized into a computer language such as Java (Arnold and
Gosling, 1997) or C++ (Stroustrup, 1991). This consists of taking each part
of the design, deciding how the information required to specify that part of
the design is to be represented on the computer, and how that information
changes as each of the possible actions is carried out. Some examples of what
a computer language model looks like are given in table 1 and figure 7.

Once this process has been carried out the model is ready to be applied.
However it is likely that the various stages above will need to be revisited. For
example the application of the model may point to an aspect of the system
which was not incorporated into the original model, or the scope of the system
may need to expand to cope with additional research questions thrown up by
the use of the model. This requires working back to the analysis stage, deciding
how these new features are going to be incorporated into the original design
(which may involve changing the original design (Fowler, 1999)), and then
implementing these changes. Alternatively the change to be made may occur
later on in the process. For example some important part of the simulation may

16

take too much time to carry out its calculations; in this case it is not necessary
to reanalyse the original system, but to replace the existing implementation of
that part of the simulation with a more efficient one (if one can be devised).

A transitional stage between the development of the model and its application
is testing. A number of basic tests need to be carried out to check whether
the individual parts of the simulation work in isolation. Typically this is car-
ried out by writing an additional program (sometimes called a test harness
by analogy with the structures built to test engineering components) which
supplies that part of the simulation with a sequence of input data for which
the expected response is known, then checking that the state of that part of
the simulation after this input is as expected. For example consider testing a
part of a simulation which responds for collisions between particles. In such
a case the test harness might create pairs of particles, some which are on a
collision course and some of which are not, and check that (1) those which are
expected to collide are flagged as having collided, and vice versa, and (2) that
the final trajectory of the particles is as would be expected from the mechanics
of a two-particle collision.

However this testing of individual components is only the first part of the
testing strategy. In addition the components must be tested together on some
predictable scenarios to provide a check that the behaviour which emerges
from the interactions between the components is as expected. For example
in our work on receptor clustering (Goldman et al., 2002, 2003) the diffusion
behaviour emerging from a large number of particle interactions was measured
and compared against theoretical predictions from brownian motion theory
(Berg, 1993).

Clearly all such testing is limited in scope. The main purpose of testing is
to enable software developers to discover errors in the implementation of the
design, rather than to show that the system works correctly. More formal
structures for verifying properties of systems are available; however, formulat-
ing a precise specification of the desired system can be a difficult task in its
own right. An analogy can be drawn here with the process in wet experiments
of checking that the experimental processes being used do not interfere with
the processes which the experiment is designed to study.

Once the system has been tested it can be applied to simulating various ex-
perimental situations. The process is not dissimilar to laboratory experiment:
typically the simulation is run many times, with differing initial conditions and
random fluctuations in the background conditions to ensure that the observed
phenomena are stable and are not merely the result of a particular finely-
chosen parameter set. These virtual experiments are “observed” by storing
various values as the simulation progresses: this can involve both looking in-
side the model to measure certain characteristics, and making “observations”

17

(i.e. doing calculations) of emergent features of the model.

At present most simulations are carried out in this way. However there is con-
siderable scope for exploiting the features of the simulations qua programs,
which have not been heavily used in research in this area to date. One ex-
ample is potentially being able to reverse the process, and work backwards
from observed final results to the initial conditions which led to those results.
In particular recent work on “backward analysis” of programs (King and Lu,
2002) has been concerned with calculating the space of inputs to a program
given a final state. Another aspect of treating models as programs to be anal-
ysed rather than just executed on particular data sets is the application of
qualitative models. A number of techniques (e.g. abstract interpretation of
programs (Nielson et al., 1999) and qualitative reasoning systems (Lee, 1999;
Kuipers, 1994)) allow a program to process a whole set of inputs rather than a
single input. This allows users to ask more general questions like “how will the
model respond when a parameter is above a particular critical value” rather
than simulating for a small number of fixed values. There are limitations on
what kind of information can be obtained using such methods; nonetheless,
there is considerable scope for the application of such ideas. This kind of work
is commonly found in differential-equation type models; once such a model
has been created it is sometimes possible to solve simple versions analytically,
techniques can be applied to analyse the qualitative behaviour of the system,
and numerical analysis can be used to ascertain the behaviour of the system
under a particular choice of parameters and initial conditions. Program analy-
sis techniques have the potential to expand this range of analysis to a broader
range of models.

6 An introduction to object-oriented methods

The aim of this section is to describe a method of software creation which is
known as the object-oriented method. This provides ways of analysing prob-
lems/systems, designing solutions to those problems and models of those sys-
tems, and implementing those solutions/models on the computer using an
object-oriented programming language (C++ and Java are heavily-used exam-
ples).

6.1 Implementation complexity and problem decomposition

A different kind of complexity to the types discussed in section 2 is the com-
plexity created by implementing systems on the computer. Simple systems
can be easily understood and held in the mind of the programmer whilst

18

the program is being created. However problems do not need to be too so-
phisticated before a single person cannot hold all aspects of the problem in
their mind simultaneously. This necessitates a breakdown of the problem into
subcomponents, each small enough to be understood and implemented by a
single programmer in a reasonable amount of time. Such subcomponents can
be worked on sequentially by a single programmer, or they can be farmed out
between a number (in some cases, several hundred) of programmers (Booch,
1994).

This decomposition of the system should spilt the problem down into a small
number of manageable units which can be worked on without knowing the fine
detail about the other units. Ideally the only information a programmer should
need to know about the other units in the system is how to pass information
to them, and what sort of information it might receive from them.

There are two main ways in which this problem decomposition can be carried
out. The first (functional decomposition) consists of looking at the process be-
ing simulated and considering the various processes which occur as the process
happens, and the effect that these processes have on the data representing the
aspects in the model. The second form of problem decomposition is object-
oriented decomposition. In this the process being simulated is broken down by
considering what entities within the model are important to the process, and
creating computer models of the state and behaviour of those entities.

In recent years a mixture of theoretical arguments and practical experience has
favoured the object-oriented decomposition as the method of problem break-
down which is most suited to dealing with the various types of complexity
outlined above. An extended exegesis of this can be found in (Booch, 1994).

6.2 Classes and objects

The basic process of object-oriented modelling consists firstly of identifying
the types of entity which are involved in a particular system. For example,
in modelling a cellular system the following might be examples of such types:
the cell itself, the receptors on the cell surface (both in general and the spe-
cific receptor types), the proteins within the cell, et cetera. These are called
classes, and are defined by a state (the type of information required to give
a “snapshot” of an example of that entity at a particular moment; each piece
of information is called an attribute) and potential behaviours (the types of
actions which are permitted for entities of that type, and possibly some con-
straints and conditions under which these behaviours will occur) which entities
of that type can carry out. An individual behaviour is called a method.

As an example consider a particular type of protein within a cell which is

19

specified by a class as follows. The state at a particular point of time is given by
a position within the cell, a current velocity and a specification of whether the
protein is phosphorylated or not. This could be represented by eight attributes:
three decimal numbers to represent position, three to represent a direction
vector, a true/false value to say whether or not it is phosphorylated, and a
reference to the region in which it is found. The protein exhibits a number of
behaviours, each of which has a method associated with it to tell the computer
how to change the information within the cell when that behaviour occurs:
e.g. a move method which changes its position by its current velocity, and
a phosphorylate method which changes the state of the true/false attribute
phosphorylated to true.

These classes form templates for the creation of objects in the simulation.
These objects are particular realizations of the classes. As an example a par-
ticular kind of molecule might be a class; within a simulation it would be
possible to create thousands of instances of that molecule, each of which is
described by the same type of information (position, velocity, . . .) but where
the particular value of those pieces of information differs from molecule-to-
molecule (these are referred to as the attributes of the class). It can be seen
from this discussion that the creation of an object of a particular class consists
of the specification of an initial value for each of the attributes in the class. In
addition to this the object is given a particular unique (in its context) name.
This act of creating an object of a particular class is achieved by a specific
method within the class called a constructor, which is always the first method
to be called when a new object of that class is created.

Once these classes have been created, a model can be built by creating an ap-
propriate number of objects of appropriate types to match the system in ques-
tion, and manipulating these objects via their behaviours. These behaviours
can be triggered by a central controlling program, which dictates the order in
which the behaviours are carried out. However good practice delegates much
of this behaviour to the objects themselves. For example instead of a cen-
tral program calculating the probability of two proteins binding when they
are near to each other in the cell, this is carried out by methods within the
objects representing the proteins themselves. Under this principle the main
control program is relegated to a simple role of setting up the objects in the
system, setting in chain the initial interactions between those objects, and
(possibly) coordinating the various objects by providing a notion of time in
the simulation. An example of such a simulation structure is given in section 7
below.

20

6.3 The OO analysis and design process

To create an object oriented simulation the programmer needs to analyse the
real world situation then design a set of classes and relationships between
those classes which reflect the situation being studied.

The first stage of the analysis is to identify the classes which the simulation
will need to take into account. A number of techniques can be used to assist
with this. One technique is to find one class and then work outwards from that
by considering which other kinds of things in the system objects of that class
need to interact with. So for example the class receptor might be identified.
Then working out from this we observe that receptors receive information in
the form of ligand and pass on information to second messenger proteins, thus
suggesting two other classes (these can then be further refined, by the use of
inheritance, into specific types of ligands and second messengers). Also the
receptor needs a membrane in which to exist; this provides another class.

Another technique is to take texts about the process in question, and to iden-
tify the nouns and noun-phrases in that text. Here is an example, which could
be the starting point for the development of a (fairly abstract) model of gene
expression.

Gene regulatory proteins must recognise specific nucleotide sequences embedded
within this structure. [...] It is now clear, however, that the outside of the double helix
is studded with DNA sequence information that the gene regulatory proteins can
recognize without having to open up the double helix. The edge of each base pair
is exposed at the surface of the double helix, presenting a distinctive pattern
of hydrogen bond donors, hydrogen bond acceptors, and hydrophobic patches for
proteins to recognize (Alberts et al., 2002).

The underlined phrases represent an initial list of potential classes. The next
stage is to refine this list. One aspect of this is removing or modifying words
which are at the wrong level of description for the problem at hand. In the
above example is it unlikely that the “double helix” will need to be repre-
sented explicitly, all that is needed is the “DNA sequence information”. Thus
the two can be conflated into a single class. Also we note that “proteins” in
the last sentence is being used as shorthand for “gene regulatory proteins”,
so we can conflate the two. Some details will also be left out. For example
there is unlikely to be any need to explicitly represent geometrical features
of the DNA such as the “edge” and “surface”. Another part of this process
is to recognise that some aspects of the description form parts or specialized
variants of others. In the above example the “distinctive pattern” is made up
of three components: “hydrogen bond donors”, “hydrogen bond acceptors”,
and “hydrophobic patches”.

21

The next stage in the analysis process is to map out the relationships between
the identified classes. Again this can be supported by the analysis of relevant
texts, looking this time for verbs which link concepts together. For example
in the text above the last sentence discusses the idea that protein objects
will need to “recognize” the distinctive patterns in the DNA sequence. This
network of interactions can often be best notated using a diagram. In recent
years a standard known as the Unified Modelling Language (UML) has been
designed to represent the various kinds of relationships within object oriented
systems (Fowler, 1997; Stevens, 2000). The most commonly used diagram from
this notation is the class diagram, which shows classes and their interrelation-
ships. An example of such a diagram for the system discussed above is given
in figure 4 and a more detailed example in figure 6. The notation at the end
of each line indicates how many objects of each class can exist. For example
a given feature set can contain from 0 to any number (0..∗) of hydrophobic
patches.

Once this set of classes and their interrelationships has been created, the design
phase of the process begins, which is concerned with converting the ideas from
their real world domain to a computational description. The key aspect of this
is deciding which information about the real world objects need to be stored
in their class description, and how these are to be structured so that the
computer can act on them in an efficient fashion. The information required
will depend on the use to which the classes are being put. For example in the
model of gene expression discussed in above, it is unlikely that the detailed
three-dimensional structure of the proteins will need to be represented within
the gene expression protein class; in a protein class being used for studies of
the detailed molecular dynamics of the binding between two proteins (Alonso
et al., 2001), this information is essential.

6.4 Relationships between classes

Many classes have some similarity. For example the computer representation
of any protein in the cell will need a certain set of basic information and
behaviours, such as its position. However some proteins will have specific fea-
tures, for example a receptor protein will have the scope for being liganded or
not, a prion protein can exist in both a normal and abnormal configuration.

Clearly it does not make sense to rewrite the entire class each time a new
protein type is introduced. Even if the original were copied and modified, there
are potential problems; e.g. if an error is discovered in the implementation of
one of the basic behaviours, or a more efficient way of implementing that
behaviour is discovered, then this behaviour needs to be modified in all places
where it occurs. One way to do this is via careful record-keeping; however this

22

1 1

1 1..*

Hydrophobic
 patches

Hydrogen bond
 donors

0..*

Consists of Consists of Consists of

Recognizes

0..*0..*

0..*

Gene expression protein

0..*

Is made up of

DNA Sequence

Sequence Data

Hydrogen bond
 acceptors

Set of features

Can be annotated with

Fig. 4. An example of a UML class diagram.

23

process is automated in object-oriented computer languages by the notion of
a class hierarchy.

The basic idea behind this is that some classes can inherit their behaviour
from others. The class doing the inheriting is called a subclass, and the one it
is inheriting from called the superclass (note that these labels are relative; the
same class can play the role of a subclass relative to one class and a superclass
relative to another). The core idea of inheritance is that a subclass has all
of the attributes and methods of its superclass (and, recursively, the super-
class of that superclass, . . .), unless specifically overridden. So for example a
class might be created to represent the general concept of protein. “Receptor
protein” is a subclass of this (it has all the characteristics of a protein, but
in addition it has certain aspects of state and behaviour which are specific
to its role as a receptor, e.g. the ability to bind ligand). Carrying on further
through the hierarchy, “human type III epidermal growth factor receptor” is
an example of a subclass of receptor protein; it is a receptor protein (and, re-
cursively, a protein), but it has certain characteristics which are not shared by
other receptor proteins, such as a certain set of ligands to which it is allowed
to bind.

Different OO computer languages allow differing levels of sophistication in
this inheritance hierarchy. For example C++ allows multiple inheritance, e.g. a
receptor protein could inherit characteristics both from the protein class and
from a class of “transmembrane objects”. However this provides a number of
technical problems (in particular relating to the same piece of real-world infor-
mation accidentally being represented twice or more within the same class), so
other languages are more restrictive. For example in the Java language classes
are only allowed to inherit from one class, but they are allowed to bring in
a large number of abilities (called interfaces). In a biochemical context such
abilities might be a feature of some molecules such as being able to be methy-
lated or phosphorylated. These can be freely added in a consistent fashion to
the classes using the interface mechanism, whilst keeping all of the information
about e.g. methylation in a single place in the program.

These various forms of hierarchy are summarized in figure 5.

6.5 Implementing object orientation.

Once this design has been created, the final stage in producing a model is
to implement the model in a computer language. In order to do this the
programmer takes each of the classes described in the design and translates
the design into a computer language. The attributes of each class become
computer-friendly representations of the information required to describe the

24

EGFR−I

protein
Receptor

Protein

EGFR−II

EGFR−II

EGFR−II

c)

Methylatable

Phosphorylatable

superclassing

b)

a)

Second

protein
messenger

Protein

protein
Transport

superclassing

subclassing

superclassing

subclassing

subclassing

EGFR−I

protein
Receptor

structure
Transmembrane

Protein

EGFR−I

protein
Receptor

Fig. 5. Inheritance structures. (a) a basic example of single inheritance (b) multiple
inheritance, as found in the C++ language (c) interfaces, as found in the Java
language.

25

attributes, whilst the methods become descriptions of how that information
changes when that particular piece of behaviour is carried out.

6.6 Design and implementation techniques: patterns, structures, algorithms

An experienced programmer does not tackle each new design and implemen-
tation from scratch. They approach new problems with a repertoire of well-
known techniques which can be applied to a number of situations. Rather
than learning these through experience, a number of them have been semi-
formalized so that they can be learned as part of learning to create software.

At the analysis and design stages of software creation, patterns (Gamma et al.,
1994) provide abstractions of common situations which are found when trans-
lating real-world systems into computer models. Two examples of such pat-
terns are the notion of a Prototype, where a template example object of a
class is created and new objects generated by copying and modifying that
class, and an Iterator, where the items in a collection are retrieved and acted
upon sequentially. These are two examples of patterns which are used at the
design stage of creating a simulation(Gamma et al., 1994) Patterns can also
be used at the analysis stage (Fowler, 1996). The aim of all such applications
is to provide standardized ways of going about common processes, abstract
enough that they can be applied to many different problems, but with enough
detail so that they provide a useful guide as to how to tackle problems of that
type.

Much work on patterns is about programming in general; however some (par-
ticularly the analysis patterns) are more specific to application domains. Given
that (teaching of) programming is dominated by programming for business ap-
plications, some of these are less relevant for scientific applications. Providing
sets of patterns appropriate for scientific programming is an interesting future
challenge.

At the implementation level data structures and standard algorithms play a
similar role (Knuth, 1981, 1997, 1998; Skiena, 1997). Examples of common
data structures are lists, tables, tree-like structures. Examples of algorithms
are searching for a particular value, putting a list into order. These appear
in many different problem types, so a small effort in improving how these are
implemented can redound to an improvement in many different application
areas. Modern computer languages (Java being a particularly notable exam-
ple) have efficient implementations of many such structures as a part of the
language.

26

6.7 Summary

Table 2 summarizes the core concepts explained in this section.

6.8 Object-oriented methods for science

One potential problem with the application of object-oriented methods is that
they have been designed principally with business applications in mind rather
than scientific applications. Therefore it is interesting (and an important and
neglected research area) to consider ways in which the methods described
above might be adapted specifically for the creation of scientific software.
In particular OO methods have been designed with the kind of complexity
in mind which arises from many people working in a complex information
environment, with conflicting needs and differing ontologies (i.e. different uses
of language and different ways of classifying the same information) about the
information they share.

One example of where this difference can be found is in the calling of meth-
ods (i.e. the performance of the behaviour described in that method). In OO
languages such as Java, there is little ability to constrain when a particular
method can be activated. This is natural in a business context; e.g. in a sys-
tem concerned with managing airline bookings, the method bookFlight can be
called freely, whenever someone wants to attempt a flight booking. However in
a molecular simulation, the method “moveMolecule” is constrained to occur
once in each timestep. At present the responsibility to ensure that this hap-
pens once-and-only-once per timestep is the responsibility of the programmer
at the implementation stage, and if another programmer working to improve
the program at a later stage violates this constraint, it is not automatically
flagged up when the program is compiled or run. Adding in the ability to di-
rectly enforce such constraints between objects of two different classes would
be a useful further development of the OO model with particular relevance for
scientific modelling.

7 Simulating intracellular processes

The previous section has focused on generic issues of object-oriented pro-
gramming, with examples of details being given from cellular systems. In this
section more details about an overall framework for simulating intracellular
phenomena will be given.

27

Most simulations of cells can be split down into three stages. The first of these
is an initialization stage in which the main object to be used in the simulation
are created. For example a object will be created to represent the cell itself,
and examples of the various kinds of proteins which will be important in that
cell.

Typically object-oriented models are used when there is a reason to have an
independent representation for each of the interacting objects in the process
being studied. A common reason for this in cellular biology is because of spa-
tial heterogeneity within the cell, e.g. structures such as signalling complexes
(Bray, 1998) or lipid rafts (Carpenter, 2000). By contrast some processes can
be well represented simply by keeping track of the relative concentrations of
objects in the simulation, under assumptions that they are in a well-mixed
spatially homogeneous environment (examples of simulations of this type are
the SCAMP (Sauro and Fell, 1991; Sauro, 1993) and Gepasi (Mendes, 1993,
1997) systems).

The main, central part of the program is concerned with running the simu-
lation. Most simulations are based around the idea of discrete timesteps, i.e.
very short simulated time intervals. An alternative is to use event-driven sim-
ulation, where instead of a sequence to timesteps driving the events in the
system, the program calculates ahead to the next event and calculates the
state of the system at the event and the consequences of the event on that
state (Sigurgeirsson et al., 2001). For the purposes of this paper the idea of
timesteps is used.

In order to construct the model the programmer needs to specify what occurs
in each timestep, and how the program should deal with any events which
occur within that timestep. Usually the detailed calculations will be encapsu-
lated within the objects involved, the sequence of events within the timestep
being concerned mainly with triggering methods within the objects as appro-
priate.

For example a timestep within some model of proteins within a cell which can
associate to form pairs and where these pairs can dissociate might consist of
the following steps:

• Calculate where the proteins will move during the current timestep.
• Check which of those proteins will come close enough so that they might

associate during that timestep.
• For those which do come close enough, check whether they will associate by

making a randomized choice based on the affinity of interaction.
• For each pair that bind, replace the two protein objects with a single object

representing the bound pair.
• For each pair which do not bind, calculate their new trajectories based on

28

their collision.
• Check whether each current pair will dissociate, by making a randomized

choice based on the probability of dissociation.
• Store information about the current state of the system.

This process is repeated many times, e.g. for a fixed number of cycles or until
some equilibrium condition is met.

The third and final stage is summarizing and processing the data gathered.
This can be in the form of summary statistics, graphs and charts, animations
of the process, statistical hypothesis testing, et cetera. These different outputs
play differing roles: a formal statistical comparison with experimental data
may be needed to provide evidence for some hypothesis; by contrast, a graph-
ical animation of the system might be used to provide an informal comparison
with what the scientist is accustomed to viewing via microscopy.

As an example of this process consider the system we have developed to model
the clustering behaviour of epidermal growth factor receptors on the surface
of cells. Further details of this can be found in Goldman et al. (2002, 2003).

The system being modelled consists of receptors which move around freely
(under the influence of brownian motion) on the surface of the cell. In their
unliganded state they have few interactions; occasionally pairs will associate,
however these pairs are unstable and dissociate soon after formation. Once
they have bound ligand, however, the association between pairs becomes very
strong, and the pairs themselves can associate to form larger clusters. The
system is explained in detail in (Salomon and Gullick, 2001; Schlessinger, 2000;
Yarden and Sliwkowski, 2001; Carpenter, 2000; Gullick, 2001). The number
and size of these clusters can be measured experimentally by tagging the
receptors (or associated second-messenger proteins) with fluorescent proteins
and tracking the movements by light microscopy (Gillham et al., 1999; Monks
et al., 1998; Hayes et al., 2003). The size of these clusters is important in
determining the strength of the downstream signal.

The analysis of the system identified the following classes:

• Receptor molecules
• The cell surface
• Multimers, consisting of a number of molecules
• A table giving the probability of association between receptors and multi-

mers.

As the system way developed a number of additional classes were added, not
to represent entities found in the system itself, but to represent aspects of the
user interface to the program and the data which needs to be gathered as the
program runs:

29

• The accumulated data about cluster size and structure with time
• A graphical user interface to the system
• A system to produce graphs of the data

The relationship between these is shown in a class diagram in figure 6. In
particular this shows how many objects of each class are allowed/obliged to
be associated with each other class, and the nature of these associations. So
for example each CellSurface object can be associated with one or more
receptor Molecules (1 . . . ∗), whereas each receptor Molecule is associated
with one and only one CellSurface.

During the design phase of the process a number of decisions were made about
the level of detail required in the simulation. For example it was considered
unnecessary to model any of the cellular molecules which are not involved in
the interactions, but instead to implement a brownian motion algorithm to
represent interactions between receptors and other transmembrane and near-
membrane molecules. Another example of a decision taken at this stage was
to model the association and disassociation between molecules by a simple
probabilistic process rather than by e.g. making a more accurate model of the
three-dimensional shape of the various components. These decisions reflect a
choice of a certain level of detail in modelling, appropriate to (1) the level of
knowledge we have about the system (2) the desired level of abstraction the
model and (3) the amount of computation time available.

Much of the above was time-consuming to implement but comparatively straight-
forward. Figure 7 gives the first few lines of the Java code for the Molecule

class, demonstrating how the class is structured and introducing the attributes
and some examples of methods.

An important challenge in implementation was getting the system to detect
collisions efficiently. Checking each potential pair of receptors for collision
rapidly becomes impractical, even on fast computers, as the number of recep-
tors increases. As a result various methods of breaking down the cell surface
into manageable substructures were experimented with; see Goldman et al.
(2003) and Johnson and Whalley (2002) for details.

Currently this system is being applied in a number of ways. Firstly it is being
used to investigate the contribution of the various parameters in the system
to the overall behaviour, e.g. by looking at the behaviour of the system for
different values of association and dissociation constants. The aim of this is
to investigate which of these processes have most influence on the global phe-
nomena observed. Ongoing work is focused on using the system to estimate
parameters, in particular using optimization techniques to adjust the param-
eters in the model so that time series of cluster sizes match respective data
from real experiments, so that feasible values of experimentally-inaccessible

30

Fig. 6. A UML diagram summarizing the relationships between the classes in the
receptor clustering model.

31

import java.awt.*;
import java.util.*;
import java.awt.geom.*;
import java.io.*;

/** A class to represent a generic cell surface receptor monomer
*/

public class Molecule implements Serializable, Cloneable {

// attributes

protected double x, y, dx, dy;
protected int type;
protected double diameter;
protected transient Grid grid;
protected transient Vector gridPoints = new Vector();

// constants

/** A constant for the diameter of the circle representing
a receptor monomer */

public static final double DIAM = 1.0;

public Molecule() {
}

/** Constructor to create Molecule in a random position within
* the area whose size is given by the Dimension parameter.
* @param d Dimension within which Molecules position is set
*/

public Molecule(Dimension d) {
x = Math.random()*d.width;
y = Math.random()*d.height;
calculate_direction(CellSurface.SPEED);
type = AffinityTable.MONOMER_NOLIG;
diameter = DIAM;

}

/** Constructor for Molecule whose starting position is known
*/

public Molecule(double x, double y, double dx, double dy) {
this.x = x;
this.y = y;
this.dx = dx;
this.dy = dy;
type = AffinityTable.MONOMER_NOLIG;
diameter = DIAM;

}

/** Moves the Molecule in a random direction to a new position.
* The distance travelled is constant based on the size of the Molecule.
*/

public void move() {

calculate_direction(CellSurface.SPEED);

x+=dx;
y+=dy;

updateGridPoints();

}

/** Deals with a non-productive collision with another Molecule
* (i.e. when no binding occurs).
* @param m the colliding Molecule
*/

public void bouncesOff(Molecule m) {
// this should reset the position of the Molecule
// so that it is just outside the limits
// of the one it’s bouncing off

Molecule bouncer = this;
if (bouncer instanceof Multimer) {

bouncer = (Multimer)bouncer;
}

// make a triangle from 3 points, the current location,
// the previous location, and the location of m.

double x_now = bouncer.getX();
double y_now = bouncer.getY();
double x_m = m.getX();
double y_m = m.getY();
bouncer.reverse();

double x_then = bouncer.getX();
double y_then = bouncer.getY();

double a = Math.sqrt((x_now - x_then)*(x_now - x_then) +
(y_now - y_then)*(y_now - y_then));

...

Fig. 7. The beginning of the Java language definition of the Molecule class.

32

parameters can be found.

8 Conclusions and prospects

This paper has given an outline of object oriented modelling for modelling
intracellular processes. To finish a number of suggestions for further reading
are given.

8.1 On object-oriented methods in general

• Grady Booch, Object Oriented Analysis and Design. A fairly old book now,
but strong on justifying why the OO methodology is important. A good
discussion of complexity in science and in human endeavour, and an attempt
to classify different types of complexity. A new edition has been promised
for several years now (Booch, 1994).
• Iain Craig, The Interpretation of Object-Oriented Programming Languages.

Good for details on why OO languages are structured as they are. Rather
technical (Craig, 2002).

8.2 On OO programming languages

• Java is a good all-round programming language suited to beginners, though
still not trivial to learn. There are many good books on the Java language,
e.g. (Barnes, 2000; Winder and Roberts, 2000; Arnold and Gosling, 1997).
• C++ is heavily used in commercial applications. The standard reference is

(Stroustrup, 1991), but this is not an introductory book for non-programmers.
• Python is an increasingly popular object-oriented language which is both

easy to learn and good for beginners. See http://www.python.org/ and
(Lutz and Ascher, 1999).

8.3 On notations to support OO design

• Martin Fowler, UML Distilled. Short and to the point with reasonable exam-
ples (though, as with all the books on this topic, the examples are uniformly
business-related rather than science related (Fowler, 1997).
• Perdita Stevens, Using UML. Lots of detailed examples, again drawn from

business applications and similar “people processes” (Stevens, 2000).

33

8.4 On OO methods in science

There are a small number of case studies and analyses which specifically ad-
dress OO methods in science: some examples are (Norton et al., 1996, 1995;
Nemirovsky, 1994).

9 Acknowledgements

Many thanks to Dennis Bray and Jacqueline Whalley for discussions on this
subject.

References

Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P., 2002.
Molecular Biology of the Cell, 4th Edition. Garland Science.

Alonso, D. O., DeArmond, S. J., Cohen, F. E., Daggett, V., 2001. Mapping
the early steps in the pH-induced conformational conversion of the prion
protein. Proceedings of the National Academy of Sciences 98 (5), 2985–
2989.

Alonso, D. O. V., An, C., Daggett, V., 2002. Simulations of biomolecules: char-
acterization of the early steps in the ph-induced conformational conversion
of the hamster, bovine and human forms of the prion protein. Philosophical
Transactions of the Royal Society of London A 360 (1795), 1165–1178.

Arnold, J., Gosling, K., 1997. The Java Programming Language. Addison-
Wesley, second edition.

Barnes, D., 2000. Object-Oriented Programming with Java. Prentice Hall.
Berg, H. C., 1993. Random Walks in Biology. Princeton University Press,

expanded second edition.
Booch, G., 1994. Object-oriented design with applications, 2nd Edition. Ben-

jamin/Cummings.
Bray, D., 1998. Signalling complexes: Biophysical constraints on intracellular

communication. Annual Review of Biophysics and Biomolecular Structure
27, 59–75.

Bray, D., 2002. Bacterial chemotaxis and the question of gain. Proceedings of
the National Academy of Sciences of the United States of America 99 (1),
7–9.

Bray, D., Levin, M. D., Morton-Firth, C. J., 1998. Receptor clustering as a
cellular mechanism to control sensitivity. Nature 393, 85–88.

Carpenter, G., 2000. The EGF receptor: a nexus for trafficking and signalling.
Bioessays 22 (8), 697–707.

34

Colton, S., Bundy, A., Walsh, T., 2000a. Automatic invention of integer se-
quences. In: Proceedings of AAAI-2000.

Colton, S., Bundy, A., Walsh, T., 2000b. On the notion of interestingness in
automated mathematical discovery. International Journal of Human Com-
puter Studies 53 (3), 351–375.

Craig, I., 2002. The Interpretation of Object-Oriented Programming Lan-
guages, 2nd Edition. Springer.

de Jong, H., Geiselmann, J., Batt, G., Hernandez, C., Page, M., 2002. Qual-
itative simulation of the initiation of sporulation in B. subtilis. Tech. Rep.
4407, INRIA.

de Jong, H., Page, M., 2000. Qualitative simulation of large and complex
genetic regulatory systems. In: Horn, W. (Ed.), Proceedings of the 14th
European Conference on Artificial Intelligence. IOS Press, pp. 141–145.

de Jong, H., Page, M., Hernandez, C., Geiselmann, J., 2001. Qualitative simu-
lation of genetic regulatory networks: Method and application. In: Nebel, B.
(Ed.), Proceedings of the 17th International Joint Conference on Artificial
Intelligence.

Fowler, M., 1996. Analysis Patterns. Addison Wesley.
Fowler, M., 1997. UML Distilled. Addison-Wesley.
Fowler, M., 1999. Refactoring: Improving the Design of Existing Code.

Addison-Wesley.
Freeland, S., Hurst, L., 1998a. The genetic code is one in a million. Journal of

Molecular Evolution 47 (3), 238–248.
Freeland, S., Hurst, L., 1998b. Load minimization of the genetic code: history

does not explain the pattern. Proceedings of the Royal Society of London
B 265, 2111–2119.

Freeland, S., Knight, R., Landweber, L., Hurst, L., 2000. Early fixation of an
optimal genetic code. Molecular Biology and Evolution 17, 511–518.

Freitas, A. A., 1999. On rule interestingness measures. Knowledge-Based Sys-
tems Journal 12 (5–6), 309–315.

Gamma, E., Helm, R., Johnson, R., Vlissides, J., 1994. Design Patterns.
Addison-Wesley.

Gillham, H., Golding, M. C., Pepperkok, R., Gullick, W. J., 1999. Intracellular
movement of green fluorescent protein-tagged phosphatidylinositol 3-kinase
in response to growth factor receptor signalling. Journal of Cell Biology
146 (4), 869–880.

Glover, F., Laguna, M., 1993. Tabu search. In: Reeves (1993), pp. 70–150.
Goldman, J. P., Gullick, W. J., Bray, D., Johnson, C. G., 2002. Individual-

based simulation of the clustering behaviour of epidermal growth factor
receptors. In: Lamont, G. (Ed.), 2002 ACM Symposium on Applied Com-
puting. ACM Press.

Goldman, J. P., Gullick, W. J., Johnson, C. G., 2003. Individual-based sim-
ulation of the clustering behaviour of epidermal growth factor receptors.
Scientific Programming In press.

Gullick, W., 2001. The type 1 growth factor receptors and their ligands con-

35

sidered as a complex system. Endocrine-Related Cancer 8, 75–82.
Hayes, N., Howard-Cofield, E., Gullick, W., 2003. Green fluorescent protein as

a tool to study epidermal growth factor receptor function. Cancer Letters
In press.

Hornos, J., Hornos, Y., 1993. Algebraic model for the evolution of the genetic
code. Physical Review Letters 71 (26), 4401–4404.

Johnson, C. G., Whalley, J. L., 2002. Detecting collisions in sets of moving
particles: a survey and some experiments. Tech. Rep. 8-02, University of
Kent.

Keedwell, E., Narayanan, A., 2003. Genetic algorithms for gene expression
analysis. In: Raidl, G., Cagnoni, S., Cardalda, J. R., Corne, D., Gottlieb, J.,
Guillot, A., Hart, E., Johnson, C., Marchiori, E., Meyer, J.-A., Middendorf,
M. (Eds.), Applications of Evolutionary Computing: Evoworkshops 2003.
Springer.

Keedwell, E., Narayanan, A., Savic, D., 2002. Constructing gene regulatory
networks using artificial neural networks. In: Proceedings of the 2002 Inter-
national Joint Conference on Neural Networks.

King, A., Lu, L., July 2002. A backward analysis for constraint logic programs.
Theory and Practice of Logic Programming 2 (4), 517–547.

Knuth, D. E., 1981. The Art of Computer Programming: Volume Two,
Seminumerical Algorithms, 2nd Edition. Addison-Wesley.

Knuth, D. E., 1997. The Art of Computer Programming: Volume One, Fun-
damental Algorithms, 3rd Edition. Addison-Wesley.

Knuth, D. E., 1998. The Art of Computer Programming : Volume Three,
Sorting and Searching, 2nd Edition. Addison-Wesley.

Kuipers, B., 1994. Qualitative Reasoning: Modeling and Simulation with In-
complete Knowledge. MIT Press.

Lamb, T., Wischik, L., 1996. Walk: A stochastic simulation of the G-
protein cascade of phototransduction, available on the WWW at http://

www.physiol.cam.ac.uk/staff/lamb/Walk/index.html (visited Septem-
ber 2000).

Lamb, T. D., 1996. Stochastic simulation of activation in the G-protein cas-
cade. Biophysical Journal 67, 1439–1454.

Lee, M., 1999. On models, modelling and the distinctive nature of model-based
reasoning. AI Communications 12, 127–137.

Liebovitch, L., Tao, Y., Todorov, A., Levine, L., 1996. Is there an error-
correcting code in the base-pair sequence of DNA? Biophysical Journal
70 (2), MP017.

Lutz, M., Ascher, D., 1999. Learning Python. O’Reilly.
Mendes, P., 1993. Gepasi: A software package for modelling the dynamics,

steady states and control of biochemical and other systems. Computer Ap-
plications in Biosciences 9, 563–571.

Mendes, P., 1997. Biochemistry by numbers: simulation of biochemical path-
ways with Gepasi. Trends in Biochemical Sciences 22, 361–363.

Mitchell, M., 1996. An Introduction to Genetic Algorithms. Series in Complex

36

Adaptive Systems. Bradford Books/MIT Press.
Monks, C. R., Freiberg, B. A., Kupfer, H., Sciaky, N., Kupfer, A., September

1998. Three-dimensional segregation of supramolecular activation clusters
in T-cells. Nature 395, 82–86.

Morton-Firth, C., Bray, D., 1998. Predicting temporal fluctuations in an in-
tracellular signalling pathway. Journal of Theoretical Biology 192, 117–128.

Narayanan, A., Keedwell, E. C., Olsson, B., 2002. Artificial intelligence tech-
niques for bioinformatics. Applied Bioinformatics 1 (4), 191–222.

Nemirovsky, A. M., 1994. Is Schrödinger’s cat object-oriented, IBM Report.
Nielson, F., Nielson, H. R., Hankin, C., 1999. Principles of Program Analysis.

Springer.
Norton, C. D., Decyk, V. K., Szymanski, B. K., 1996. On parallel object

oriented programming in Fortran 90. ACM SIGAPP Applied Computing
Review 4 (1), 27–31.

Norton, C. D., Szymanski, B. K., Decyk, V. K., 1995. Object-oriented parallel
computation for plasma simulation. Communications of the ACM 38 (10),
88–100.

Reddy, V., Liebman, M., Mavrovouniotis, M., 1996. Qualitative analysis of
biochemical reaction systems. Computers in Biology and Medicine 26 (1),
9–24.

Reeves, C. R. (Ed.), 1993. Modern Heuristic Techniques for Combinatorial
Problems. Blackwells.

Ricard, J., 1999. Biological Complexity and the Dynamics of Life Processes.
Elsevier.

Salomon, D., Gullick, W., 2001. The erbB family of receptors and their ligands:
multiple targets for therapy. Signal 2 (3), 4–11.

Sauro, H., 1993. SCAMP: a general-purpose simulator and metabolic control
analysis program. Computer Applications in Biosciences 9 (4), 441–450.

Sauro, H., Fell, D., 1991. SCAMP: A metabolic simulator and control analysis
program. Mathematical and Computational Modelling 15 (12), 15–28.

Schlessinger, J., 2000. Cell signaling by receptor tyrosine kinases. Cell 103,
211–225.

Sigurgeirsson, H., Stuart, A. M., Wan, W.-L., 2001. Collision detection for
particles in a flow. Journal of Computational Physics 172, 766–807.

Skiena, S., 1997. The Algorithm Design Manual. Springer.
Smith, G., Sternberg, M., 2002. Prediction of protein-protein interactions by

docking methods. Current Opinion in Structural Biology 12, 28–35.
Stevens, P., 2000. Using UML. Addison-Wesley, original edition 1999.
Stroustrup, B., 1991. The C++ Programming Language, 2nd Edition. Addison-

Wesley.
Tomita, M., Hashimoto, K., Takahashi, K., Shimizu, T., Matsuzaki, Y.,

Miyoshi, F., Saito, K., Yugi, K., Venter, J., Hutchinson, C., 1999. E-CELL:
software environment for whole cell simulation. Bioinformatics 15 (1), 72–
84.

Wagner, A., Fell, D. A., 2001. The small world inside large metabolic networks.

37

Proceedings of the Royal Society of London B 268 (1478), 1803–1810.
Watts, D. J., 1999. Small Worlds: The Dynamics of Networks between Order

and Randomness. Princeton University Press.
Whalley, J. L., Tuite, M. F., Johnson, C. G., 2002. A virtual lab for explor-

ing the [psi]+ yeast prion. In: Valafar, F. (Ed.), Proceedings of the 2002
International Conference on Mathematics and Engineering Techniques in
Medicine and Biological Sciences. CSREA Press.

Winder, R., Roberts, G., 2000. Developing Java Software, 2nd Edition. Wiley.
Yarden, Y., Sliwkowski, M. X., February 2001. Untangling the ErbB signalling

network. Nature Reviews: Molecular Cell Biology 2, 127–137.

38

Analysis Design Implementation

A receptor
protein

At a particular time a
receptor protein is at
a particular position
in the cell and has
a particular velocity.
It is either phospho-
rylated or not. It is
able to move at its
current velocity, change
velocity, or become
(de)phosphorylated.

class receptorProtein:

decimal x,y;
decimal dx,dy;
trueOrFalse phosphorylated;

behaviour: createNewProtein
x = 0.0; y = 0.0;
dx = 0.0; dy = 0.0;
phosphorylated = false;

behaviour: moveProtein
x = x + dx;
y = y + dy;

behaviour: changeVelocity(newDX, newDY)
dx = newDX;
dy = newDY;

behaviour: phosphorylate
phosphorylated = true;

behaviour: dephosphorylate
phosphorylated = false;

Table 1
An example of the end result of the three parts of the modelling stage: analysis,
design and implementation.

39

Concept Description

Class
A class is the representation in the computer model of a
type of thing found in the real system being modelled.

Object

An object is a representation of a particular object being
simulated. Each object belongs to a class, which says what
kind of thing it is. There can (usually) be as many objects
of a particular class as are needed by the simulation, limited
only by memory constraints in the computer.

Attributes
The attributes of a class is the set of data needed to describe
an object of that class.

Methods

The methods of a class are the descriptions of how objects of
that class can behave: how they can change, how they can
modify other objects, the kinds of information that they can
communicate, et cetera.

Analysis
The phase in the construction of a computer program where
the real world problem is studied and broken down into a
number of interacting classes.

Design

The phase in the construction of a computer program where
the classes and interactions developed in the analysis stage
are converted into computational data structures and ways
of modifying those structures.

Implementation
The phase in the construction of a computer program where
the structures and interactions developed during the design
phase are translated into a computer language.

State
The state of an object is the current values of the attributes
in the object.

Inheritance

One class (the subclass) is said to inherit from another (the
superclass) when it takes the methods and attributes from
the superclass and modifies them to form a new class. This
is important for a number of reasons: e.g. it is possible to
rapidly develop new classes by modifying existing ones, and
it is possible to substitute any of the more specialized sub-
classes for the superclass.

Table 2
Summary of core concepts in object-oriented modelling.

40

