

Generic Environment for Full Automation of
Benchmarking

Tomáš Kalibera1, Lubomír Bulej1,2, Petr Tůma1

1Distributed Systems Research Group, Department of Software Engineering
Faculty of Mathematics and Physics, Charles University
Malostranské nám. 25, 118 00 Prague, Czech Republic

phone +420-221914267, fax +420-221914323

2Institute of Computer Science, Czech Academy of Sciences
Pod Vodárenskou věží 2, 182 07 Prague, Czech Republic

phone +420-266053831

{tomas.kalibera, lubomir.bulej, petr.tuma}@mff.cuni.cz

Abstract. Regression testing is an important part of software quality assurance.
We work to extend regression testing to include regression benchmarking,
which applies benchmarking to detect regressions in performance. Given the
specific requirements of regression benchmarking, many contemporary bench-
marks are not directly usable in regression benchmarking. To overcome this, we
present a case for designing a generic benchmarking environment that will fa-
cilitate the use of contemporary benchmarks in regression benchmarking, ana-
lyze the requirements and propose architecture of such an environment.

1 Introduction

The growing complexity of software and the need for distributed development has
brought an increased demand for quality control in the software development process.
As witnessed in numerous open source projects, automated regression testing of the
software under development plays an important role in the quality assurance process.
Regression testing, however, mostly covers only the correct functionality of the tested
implementation. Regression benchmarking [1,2] extends regression testing by also
covering the performance of the tested implementation.

Regression benchmarking uses benchmarks to evaluate various performance attrib-
utes of the software under development in consecutive snapshots, and analyzes the
differences in these snapshots to detect performance regressions. The performance
regressions can have many forms, from a slow degradation of performance, to various
scalability issues, or inevitable decrease of performance through added functionality.

To provide useful results, the entire regression benchmarking process must be auto-
matic, so that human attention is needed only when a suspect performance regression
has been detected. The requirement of full automation means that a machine, rather
than a human, has to deal with obtaining, compiling and deploying both the software
under development and the benchmarks, executing the benchmarks on the software
under development, monitoring of the execution, and storing and analyzing the results.

Most contemporary benchmarks are not suitable for regression benchmarking simply
because they do not meet some of these requirements.

As a remedy to the above issues related to full automation, we propose a generic
benchmarking environment that supports automated deployment, execution and moni-
toring of benchmarks and related software, and a repository for storing data in com-
mon format that will serve as a data source for analysis and visualization tools. Al-
though some of the contemporary benchmarks will need to be modified or augmented
to support the benchmarking environment, we take care to keep the modifications
small and typically not intrusive.

In previous work [1,2] we have focused on issues of automatic data acquisition and
result analysis. The work presented in this paper complements our previous work by
elaborating on the issues of automation of the benchmarking process. The rest of the
paper is organized as follows: section 2 analyzes the requirements for designing a
generic benchmarking environment for regression benchmarking and points out where
this extends the related work, section 3 proposes the architecture of the environment
that meets the requirements set out in section 2, and section 4 concludes the paper.

2 Design Requirements for Generic Benchmarking Environment

Our design is primarily driven by generalization of requirements for regression
benchmarking, which can be divided intro three groups: installing and configuring the
environment, executing and monitoring of benchmarks, and storing of results. We
describe these requirements in detail and contrast our approach with related work in
other projects that deal with the concept of systematic benchmarking. These projects
include the TAO distributed scoreboard [5], the continuous performance metrics for
ACE+TAO+CIAO [6], the Skoll continuous distributed quality assurance [3], the
Lockheed Martin ATL benchmarking tools [7], and the NIST benchmarking tools [4].

2.1 Installation and Configuration

Speaking in broad terms, we require the benchmarking environment to be platform-
independent, self-contained, extensible, scalable and easy to install.

For reasonable platform-independence, the environment must run at least on recent
versions of the Linux, Solaris and Windows platforms. The benchmarking environ-
ment running on these platforms must interoperate as some benchmarks take place in a
heterogeneous distributed environment. Naturally, the benchmarking environment
should be open to platform-specific extensions such as monitoring.

The benchmarking environment must be self-contained and easy to install, enough
to support automated remote installation and configuration where possible. The auto-
mated installation must not require prior or additional installation or configuration of
third-party software that is not readily available on the installation platform. While
reasonably platform independent, neither of the related projects supports fully auto-
mated installation.

The benchmarking environment should support a wide scale of benchmarking sites,
ranging from a small developer or research site with few computers that are only occa-
sionally available for benchmarking, to a dedicated benchmarking cluster with hun-

dreds of computers. The scale of the benchmarking site should remain invisible to the
benchmarks. Neither of the related projects supports such a scale of benchmarking
sites. The target of [3,5,6] are mostly individual hosts provided by volunteers, while
[4] is more focused on clusters.

2.2 Executing and Monitoring

The requirements related to executing and monitoring benchmarks are concerned with
the robustness of the benchmarking environment in face of failures, which minimizes
the required amount of human attention.

Besides the obvious requirement of the benchmarking environment being resilient
to failures of any of its components, it must also cope with failures of the benchmarks
and related software it executes. Crashes and deadlocks are the most common failures
that occur during benchmarking and are easy to detect and resolve. More complicated
in that respect are benchmark-specific failures that do not cause the benchmark to
crash or deadlock. Regardless of the type of a failure, its impact should be limited to
the benchmark where the failure occurred. To our knowledge, neither of the related
projects has tackled this issue, except for [4], which allows setting of resource limits
on executed tasks.

A key requirement associated with regression benchmarking is that except for the
software under development, the setup of the benchmarks may not change. The
benchmarking environment should therefore support a flexible host scheduling and
assignment policy, and ideally detect changes in the setup of the benchmarks. Given
the nature of the related projects, this issue only needed attention in [4], which sup-
ports host assignment with respect to task requirements.

2.3 Storing of Results

The last group of requirements we consider stems from the need for common data
format for storing and processing of benchmark results. Most benchmarks produce
data in a proprietary format, which prevents using a common set of tools for analysis
and visualization.

The common data format must support storing raw benchmark results in the best
possible precision, along with a detailed description of the benchmark setup. Each
measured attribute should carry an annotation identifying its source and meaning, to
allow tracing the results back to their causes. In most projects, identification of the
results is responsibility of the user of a benchmark, except for [4], where a free-form
description of the experiment is associated with the results. In [6] the results come in
different formats from multiple benchmarks and are often pre-processed.

Along with the raw benchmark results, the data format should allow attaching sec-
ondary information that captures the conditions such as resource utilization under
which a benchmark was run, as well as its impact on the conditions. This information
helps ensure the validity of benchmark results in presence of constraints on the condi-
tions under which the benchmark should run.

The benchmark results should be kept in a repository that will allow for efficient
storage and retrieval. To conserve resources during analysis, the repository should

support attaching preprocessed or partially analyzed data to the benchmark results. A
result repository is only implemented in [4] using a relational database to store the
results. The fixed data model limits the flexibility of the repository.

3 Architecture of the Generic Benchmarking Environment

The requirements outlined in section 2 suggest splitting the architecture of the bench-
marking environment into well-defined components with simple and well-specified
interaction. The workflow nature of regression benchmarking, with repetitive cycles of
deployment, execution, monitoring and analysis, further suggests designing the
benchmarking environment as a task processing system. The task processing system
will run on each host of a benchmarking site and implement all the benchmarking
environment does as specific tasks.

3.1 Task Processing System

Running a benchmark in a heterogeneous distributed environment involves deploying,
executing and monitoring the benchmark and related software. These actions may
differ in implementation for a specific benchmark or platform, but often share com-
mon features such as the implementation of monitoring, the description of require-
ments, or the process of deployment. This allows encapsulating the common features
as simple tasks, used to construct gradually more complex tasks for the actions in-
volved in running the benchmark.

The benchmarking environment will distinguish two types of tasks. Jobs, which ac-
cept input, produce corresponding output and stop, and services, which are similar to
jobs, except they keep listening for next input. Both types of tasks will consist of their
description and implementation, the description defining requirements on the host to
launch the task and the conditions for launching and terminating the task.

The benchmarking environment will schedule the tasks and facilitate passing of in-
formation between the tasks. Depending on the failure resolution strategy of each task,
the benchmarking environment will handle task failures by ignoring the failed task,
restarting the failed task from a checkpoint, or restarting the failed task with a limited
number of retries, as appropriate.

3.2 Benchmarking Tasks

Benchmarking specific tasks will take care of downloading, compiling and executing
benchmarks and related software, as well as potential conversion of the results and
their storing in the result repository.

Most of these tasks will be common to various benchmarks and platforms, and only
tailored for a specific benchmark or platform in their configuration. Checking out
source code from CVS is an example of such a task, the configuration will specify the
URL of the CVS repository and the target directory. Some tasks, however, will be
tailored to a specific benchmark and or a platform, to make them fit the benchmarking
environment without having to modify them. An example of such a task is populating
a database used by a benchmark with data specific to the benchmark.

The benchmarking tasks will be scheduled by other tasks acting as task generators.
The task generators will rely on a configuration listing the benchmarks to run and the
platforms to use, as well as the tasks to schedule for a specific benchmark and a spe-
cific platform. Examples of such task generators include a generator that schedules
downloading source code of each configured benchmark.

4 Conclusion

The paper is a part of our work to extend regression testing to include regression
benchmarking, which applies benchmarking to detect regressions in performance. We
have illustrated that the requirement of full automation, inherent to regression bench-
marking, is difficult to meet, as it includes automation of tasks such as downloading
source code of the benchmarks and related software, compiling the source code, or
monitoring of the benchmarks and related software, all of which normally requires
human attention. We have pointed out the difficulties on the related work in other
projects that deal with the concept of systematic benchmarking, and proceeded by
proposing a generic benchmarking environment based on a task processing system.
We believe that our design of the benchmarking environment will allow us to over-
come the difficulties associated with regression benchmarking.

The paper has been styled more as an overview of the issues associated with full
automation, inherent to regression benchmarking, than as a description of the generic
benchmarking environment. This is partly because of space considerations, partly
because the environment is still a work in progress. For more details, please refer to
http://nenya.ms.mff.cuni.cz/been.

Acknowledgements. The work was partially supported by the Grant Agency of the
Czech Republic project number 201/03/0911.

References
1. Bulej L., Kalibera T., Tůma P.: Regression Benchmarking with Simple Middleware

Benchmarks. Proceedings of IPCCC 2004, Phoenix, USA, IEEE CS, 2004.
2. Bulej L., Kalibera T., Tůma P.: Repeated Results Analysis for Middleware Regres-

sion Benchmarking. Special Issue on Performance Modeling and Evaluation of High-
Performance Parallel and Distributed Systems, Performance Evaluation: An Interna-
tional Journal, Elsevier B.V., 2004.

3. Memon A., Porter A., Yilmaz C., Nagarajan A., Schmidt D.C., Natarajan B.: Skoll:
Distributed Continuous Quality Assurance. Proceedings of ICSE 2004, Edinburgh,
Scotland, IEEE CS, 2004.

4. Courson M., Mink A., Marçais G., Traverse B.: An Automated Benchmarking Tool-
set. Proceedings of HPCN 2000, Amsterdam, The Netherlands, LNCS 1823, Springer
Verlag, 2000.

5. ACE+TAO Distributed Scoreboard, http://www.dre.vanderbilt.edu/scoreboard
6. Continuous Metrics for ACE+TAO+CIAO, http://www.dre.vanderbilt.edu/Stats
7. Advanced Technology Labs, Lockheed Martin Corp.: Agent and Distributed Objects

Quality of Service, 2004, http://www.atl.external.lmco.com/projects/QoS

