
Applying Software Testing Metri
s to Lapa
k
David J. Barnes1 and Tim R. Hopkins1Computing LaboratoryUniversity of KentCanterbury, Kent, CT2 7NF, UKfd.j.barnes, t.r.hopkinsg�kent.a
.uk

Abstra
t. We look at how the appli
ation of software testing metri
sa�e
ts the way in whi
h we view the testing of the Lapa
k suite of soft-ware. We dis
uss how we may generate a test suite that is easily exten-sible and provides a high degree of 
on�den
e that the pa
kage has beenwell tested.
1 Introdu
tionGood software engineering pra
ti
e de
rees that testing be an integral a
tivityin the design, implementation and maintenan
e phases of the software life 
y
le.Software that exe
utes su

essfully on an extensive, well 
onstru
ted suite oftest 
ases provides in
reased 
on�den
e in the 
ode and allows 
hanges to andmaintenan
e of the 
ode to be 
losely monitored for unexpe
ted side e�e
ts.An important requirement is that the test suite evolves with the software; datasets that highlight the need for 
hanges to be made to the sour
e 
ode shouldautomati
ally be added to the suite and new tests generated to 
over newlyadded features.To gauge the quality of a test suite we require quantitative measures of howwell it performs. Su
h metri
s are useful to developers in a number of ways; �rst,they determine when we have a
hieved a well-de�ned, minimal level of testing;se
ond, they 
an redu
e the amount (and, thus, the 
ost) of testing by allowingtests that fail to improve the metri
 to be dis
arded and, third, they 
an providea starting point for a sear
h for new test 
ases.In this paper we dis
uss the strategy that has been used for testing the Lapa
ksuite of linear algebra routines and we quantify the level of testing a
hieved usingthree test metri
s. Lapa
k is unusual amongst numeri
al software pa
kages inthat it has been updated and extended over a substantial period of time andseveral publi
 releases have been made available in that time. It is thus possibleto obtain a 
hange history of the 
ode and thus identify maintenan
e �xes thathave been applied to the software either to remove errors or to improve thenumeri
al qualities of the implementation.In se
tion 2 we dis
uss the testing metri
s we are using and why we would
onsider using more than one of these measurements. In se
tion 3 we des
ribethe testing strategies used by the Lapa
k pa
kage and dis
uss how the use of



2 D.J. Barnes and T.R. Hopkinsthe proposed testing metri
s alters the way in whi
h we test some parts of thesoftware.Se
tion 4 presents our results and our 
on
lusions are given in se
tion 5.
2 Software Testing Metri
sAlthough some work has been done on the appli
ation of formal methods toprovide the basis for 
orre
tness proofs of linear algebra software and formalderivation of sour
e 
ode (see, for example, Gunnels [5℄) the vast majority of nu-meri
al software in day-to-day use has been produ
ed by more traditional stylesof software development te
hniques that require extensive testing to in
rease
on�den
e that it is fun
tioning 
orre
tly.One of the most potent and often underused tools available to assist withthis pro
ess is the 
ompiler. Most modern 
ompilers will perform a variety ofstati
 
he
ks on the sour
e 
ode for adheren
e to the 
urrent language standard(for example, ANSI Fortran [9℄ and ANSI C [8℄). Some (for example, Nag [14℄and Lahey [11℄) go further and provide feedba
k on su
h things as unde
laredvariables, variables de
lared but never used, variables set but never used, et
.Although these often only require 
osmeti
 
hanges to the software in some 
asesthese messages are 
agging genuine errors where, for example, variable nameshave been misspelt.Furthermore, with judi
ious use of 
ompilation options, 
ompilers will nowprodu
e exe
utable 
ode that performs extensive run-time 
he
ks that wouldbe ex
eedingly diÆ
ult to perform in any other way. Almost all will 
he
k thatarray indexes are within their de
lared bounds but many will go further and
he
k, for example, that variables and array elements have been assigned valuesbefore they are used. Su
h 
he
ks are useful even where 
orre
tness proofs areavailable, sin
e simple typographi
al errors are 
ommon wherever human editingis involved in the implementation or maintenan
e pro
esses.While it is true that su
h 
he
king imposes a run-time overhead that wouldmake the exe
utable 
ode produ
ed unusable for many appli
ations where high-performan
e is essential, it should be mandatory that these 
apabilities are usedduring the development, testing and maintenan
e stages of any software proje
t.Thus our �rst requirement is that all the software 
ompiles without anywarning messages and that no run-time errors are reported when running thetest suite and all the possible exe
ution-time 
he
ks have been enabled for the
ompilation system being used. For su
h a requirement to have teeth, we musthave 
on�den
e that the test suite thoroughly exer
ises the sour
e 
ode.In order to determine the e�e
tiveness of the testing phase, quantitative mea-surements are required. Most of the basi
 testing metri
s are white-box and aimto measure how well the test data exer
ises the 
ode. The simplest is to 
al
ulatethe per
entage of basi
 blo
ks (linear se
tions of 
ode) that are exe
uted. While100% basi
-blo
k 
overage is 
onsidered by many experts [10℄ to be the weakestof all 
overage 
riteria its a
hievement should always be regarded as an initial



Applying Software Testing Metri
s to Lapa
k 3goal by testers. After all how 
an we have 
on�den
e that software will performas required if blo
ks of statements are never exe
uted during the testing pro
ess?Con�den
e in the software 
an be further enhan
ed by extending the testingpro
ess to provide more stringent forms of 
ode 
overage, for example, bran
h
overage and linear 
ode sequen
es and jumps (LCSAJ).For bran
h 
overage we attempt to generate data sets that will ensure that allbran
hes within the 
ode are exe
uted. For example, in a simple if-then-endifblo
k we seek data that will 
ause the 
ondition to be both true and false. Wenote here that 100% bran
h 
overage implies 100% basi
-blo
k 
overage. Thusin the example above basi
-blo
k 
overage would only require the test to be truein order to exe
ute the statements within the if ; bran
h 
overage testing wouldrequire data to be found that 
auses the test to be false as well.The LCSAJ metri
 measures 
overage of 
ombinations of linear sequen
es ofbasi
 blo
ks, on the grounds that 
omputational e�e
ts in a single basi
 blo
kare likely to have impa
ts on the exe
ution behavior of immediately followingbasi
 blo
ks. Errors not evident from the analysis of a single basi
 blo
k maybe revealed when exe
uted in 
ombination with other basi
 blo
ks, in the sameway that module integration testing often reveals further errors beyond thoserevealed by individual module testing. However, sin
e some 
al
ulated LCSAJ
ombinations may be infeasible, for instan
e if they involve 
ontradi
tory 
ondi-tion values, a requirement of 100% LCSAJ 
overage is unreasonable and a moremodest �gure su
h as 60% would be more approa
hable.For the testing metri
s des
ribed above the amount and quality of test datarequired to obtain a determined per
entage of 
overage will generally grow as weprogress from basi
-blo
k 
overage, through bran
h 
overage to LCSAJ testing.Even more thorough testing pro
edures are available, for example, mutationtesting [15℄ and MC/DC [6℄. We do not 
onsider these in this paper.To be able to obtain metri
s data requires tool support. Some 
ompilersprovide the ability to pro�le 
ode exe
ution (for example Sun Fortran 95 Version7.1 [16℄ and the NagWare tool nag pro�le [13℄) although, typi
ally, this onlyprovides basi
-blo
k 
overage.Tools whi
h perform more sophisti
ated pro�ling tend to be 
ommer
ial; weare using the LDRA Fortran Testbed [12℄ to generate basi
-blo
k and bran
h
overage and LCSAJ metri
s.
3 Testing Lapa
kThe Lapa
k suite [1℄ 
onsists of well over a thousand routines whi
h solve a widerange of numeri
al linear algebra problems. In the work presented here we haverestri
ted our attention to the single pre
ision real routines thus redu
ing thetotal amount of 
ode to be inspe
ted to a little over 25% of the total.The �rst release of Lapa
k was in 1992. Part of the intention of the pa
kage'sdesigners was to provide a high quality and highly-portable library of numeri
alroutines. In this, they have been very su

essful. Sin
e its early releases, whi
hwere written in Fortran 77, the software has been modernized with the release



4 D.J. Barnes and T.R. Hopkinsof Lapa
k 95 [2℄. Lapa
k 95 took advantage of features of Fortran 95, su
has optional parameters and generi
 interfa
es, to provide wrapper routines tothe original Fortran 77 
ode. This exploited the fa
t that parameter lists ofsome existing routines were e�e
tively 
on�gured by the types of their a
tualparameters, and that 
alls to similar routines with di�erent pre
isions 
ouldbe 
on�gured using this type information. These wrappers provided the enduser with improved and more robust 
alling sequen
es whilst preserving theinvestment in the underlying, older 
ode. Finally, while the injudi
ious use ofwrapper routines may 
ause performan
e overheads, this is unlikely to be aproblem for the high level user 
allable routines in Lapa
k.Comprehensive test suites are available for both the Fortran 77 and Fortran95 versions of the pa
kage and these have provided an ex
ellent starting pointfor the fo
us of our work on the testing of the pa
kage. Indeed a 
ore 
ompo-nent of the Lapa
k pa
kage is its testing material. This has been an importantresour
e in assisting with the implementation of the library on a wide variety ofplatform/
ompiler 
ombinations. However, little, if any, measurement appearsto have been made of how well the testing material a
tually performs from asoftware engineering sense.Finally, a pa
kage of this size and longevity is potentially a valuable sour
e ofdata for the evaluation of software quality metri
s. Over the past 12 years therehave been eight releases of Lapa
k and this history has allowed us to tra
k the
hanges made to the software sin
e its initial release. This has provided us with,among other things, data on the number of faults 
orre
ted and this has enabledus to investigate whether software quality metri
s 
an be used to predi
t whi
hroutines are liable to require future maintenan
e (see [3℄ for further details). Ithas also been possible to determine whether the asso
iated test suites have beenin
uen
ed by the fault history.The main purpose of the supplied testing material is to support the portingpro
ess. An expe
tation of this pro
ess is that all of the supplied tests shouldpass without failures. Following on from the work by Hopkins [7℄, we were keento explore how safe this expe
tation was, by using state-of-the-art 
ompile-timeand run-time 
he
ks. We began by exe
uting all the supplied test software usinga variety of 
ompilers (in
luding NagWare Fortran 95, Lahey Fortran 95 andSun Fortran 95) that allowed a large number of internal 
onsisten
y 
he
ks to beperformed. This pro
ess dete
ted a number of faults in both the testing 
ode andthe numeri
al routines of the 
urrent release, in
luding a

essing array elementsoutside of their de
lared bounds, type mismat
hes between a
tual arguments andtheir de�nitions and the use of variables before they have been assigned values.Su
h faults are all non-standard Fortran and 
ould a�e
t the �nal 
omputedresults. In all, some 50 of the single pre
ision real and 
omplex routines werea�e
ted.The test-rigs provided are monolithi
 in that ea
h generates a large numberof datasets and routine 
alls. The number and size of the datasets used are
ontrolled by a user supplied 
on�guration �le with the majority of the databeing generated randomly and error exits tested separately (but still inside the



Applying Software Testing Metri
s to Lapa
k 5monolithi
 drivers and outside of user 
ontrol). We used the default 
on�guration�le in our analysis. Results obtained from ea
h 
all are 
he
ked automati
allyvia an ora
le rather than against prede�ned expe
ted results. This approa
h hasa number of disadvantages1. there is no quantitative feedba
k as to how thorough the a
tual testing pro-
ess is,2. running multiple datasets in a single run masks problems that 
ould bedete
ted easily (for example, via run-time 
he
king) if they were run one ata time,3. the use of a large number of randomly generated datasets is very ineÆ
ient inthat, from the tester's point of view, the vast majority are not 
ontributingto improving any of the test metri
s.Having removed all the run-time problems mentioned above our next goalwas to redu
e the number of tests being run (i.e., the number of 
alls being madeto Lapa
k routines) by ensuring that ea
h test made a positive 
ontribution tothe metri
s being used. In order to preserve the e�ort already invested in testingthe Lapa
k routines it was de
ided to extra
t as mu
h useful data as possiblefrom the distributed pa
kage. To do this we modi�ed nag pro�le [13℄ so thatit generated basi
-blo
k 
overage data (pro�les) for ea
h individual 
all to anLapa
k routine. We dis
overed that, for most of the routines, we 
ould obtain thesame basi
-blo
k 
overage using only a small fra
tion of the generated test sets;see Se
tion 4 for details. S
ripts were 
onstru
ted to extra
t relevant datasetsand to generate driver programs for testing ea
h routine. In order to keep thesedriver programs simple we only extra
ted legal data, preferring to run the errorexit tests separately; this ensured that su
h tests were generated for all theLapa
k routines.The routines within the Lapa
k pa
kage split into two distin
t subsets; thosethat are expe
ted to be 
alled dire
tly by the user of the pa
kage and thosethat are only envisioned as being 
alled internally and not des
ribed in the usermanual. The testing strategy 
urrently employed by the Lapa
k 77 test suitea
tually goes further and 
reates �rst and se
ond 
lass user 
allable routines.For example, the testing of the routine sgbbrd is piggy-ba
ked onto the dataused in the testing of a more general routine. This leads to 13 out of the 111basi
 blo
ks in sgbbrd being untested; of these 11 were 
on
erned with argument
he
king for whi
h no out-of-bounds data were provided as it was not treated asa �rst 
lass 
itizen | su
h data had already been �ltered out by its 
aller. Theother two were in the main body of 
ode. The data used by the test programwas generated from a standard data �le that de�nes the total bandwidth. Thisroutine also requires the number of sub- and super- diagonals to be spe
i�ed andthis pair of values is generated from the total bandwidth value. Unfortunatelythe method fails to produ
e one of the spe
ial 
ases.However there is a deeper testing problem revealed by this example. Whentesting we usually generate data whi
h 
onstitutes a well-de�ned and well do
-umented, high level problem (for example, a system of linear equations), we 
all



6 D.J. Barnes and T.R. Hopkinsthe relevant solver and then 
he
k the 
omputed results. We assume that it isrelatively straightforward to perform 
he
king at this level of problem de�ni-tion. But, having run enough data sets to obtain 100% basi
-blo
k 
overage ofthe user 
allable routine we often �nd that one of the internally 
alled routineshas a mu
h lower 
overage. The problem now for the tester is 
an they a
tually�nd high level user data that will provide the required 
overage in the internalroutines? In many 
ases the answer will be no. For example, when using manyof the level 1 Blas routines the only possible stride value may be one; no data tothe higher level routines will then test the non-unit stride se
tions of the Blas
ode.Where it is impossible for user 
allable routines to fully exer
ise internal rou-tines, there are two possibilities. Either require full 
overage to be demonstratedthrough unit tests that are independent of higher level 
alls, or supplement thehigher level 
alls with additional unit test data for the lower level 
alls. The for-mer approa
h is less fragile than the latter, in that it retains 
omplete 
overageeven in the fa
e of 
hanges to the data sets providing 
overage of the higherlevel routines. On the other hand, it 
on
i
ts with the goal of trying to minimisedupli
ate and redundant 
overage.Over the 
ourse of its history, Lapa
k has undergone a number of revisions,whi
h have in
luded the usual modi�
ations typi
al of a pa
kage of this size:addition of new routines, bug �xes, enhan
ements of routines, minor renaming,
ommentary 
hanges, and so on. Somewhat surprising is that the test 
overagedoes not always appear to have been extended to re
e
t these 
hanges. Forinstan
e between version 2.0 and 3.0, several 
hanges were made to sbdsqr,su
h as the se
tion 
on
erned with QR iteration with zero shift, but many ofthese 
hanges remain untested by the suite, as they were before the modi�
ation.
4 ResultsOut of the 316 single pre
ision routines (s*.f) exe
uted when running the Lapa
k77 testing software 14,139 basi
 blo
ks out of a total of 16,279 were exe
uted.This represents a basi
-blo
k 
overage metri
 of 86.9% whi
h is extremely highfor numeri
al software; many pa
kages tested a
hieve values 
loser to 50%. Of theapproximately 2,000 unexe
uted blo
ks many are due to the la
k of 
overage ofargument 
he
king 
ode. However, there are still a substantial number of state-ments 
on
erned with 
ore fun
tionality that require data sets to be provided ata higher problem de�nition level.Ideally we would like ea
h test to 
ount; ea
h test should 
ause basi
 blo
ksto be exe
uted that no other test exer
ises. To obtain some idea of the possibledegree of redundan
y of the supplied tests we looked at individual exe
utionpro�les. We de�ne a pro�le as a bit string that shows the basi
 blo
ks exe
utedby ea
h 
all to a routine; i.e., the string 
ontains a one if the blo
k has beenexe
uted and zero if it has not. Note that we 
annot extra
t any path informationfrom this.



Applying Software Testing Metri
s to Lapa
k 7The Lapa
k 77 test 
ases 
ause almost 24 million subroutine 
alls to be made(note that this does not in
lude low level routines like lsame whi
h was 
alledover 150 million times.) The most 
alled routine was slarfg whi
h a

ounted forover 1.7 million 
alls. This routine illustrates the diÆ
ulty in obtaining 
omplete
overage as a side e�e
t of 
alling higher level routines in that out of the 12 basi
blo
ks that make up this routine one still remained unexe
uted.More telling was that out of more than 20 million pro�les obtained less thanten thousand were distin
t. Note that it is not the 
ase that we 
an redu
e thenumber of subroutine 
alls down to 10,000 sin
e repeated pro�les will o

ur inhigher level routines to generate di�erent pro�les within lower level routines andvi
e versa. However it is 
lear that we should be able to redu
e the total numberof tests being performed substantially without redu
ing basi
-blo
k 
overage. Inslarfg only 3 distin
t pro�les were generated.ssbgvd provides a good illustration of the value of the 
ombined 
ompile-time and run-time approa
h we have been dis
ussing. It has only 2 distin
tpro�les from the Lapa
k 77 test 
ases, and analysis of the basi
-blo
k 
overagereveals that neither 
overs 
ases where n has a value greater than one. However,the Lapa
k 95 tests do exer
ise those 
ases and reveal a work-array dimensionerror be
ause of the in
orre
t 
al
ulation of lwmin.The original 1.3 million data sets generated were redu
ed to only 6.5K, pro-du
ing an equivalent basi
-blo
k 
overage of the top level routines. The dataextra
tion pro
ess was not perfe
t in that we only extra
ted data whi
h gen-erated unique exe
ution pro�les for the user 
allable routines. We would thusexpe
t a redu
tion in the overall 
overage due to the fa
t that two identi
alpro�les to a high level routine generated distin
t pro�les at a lower level.Having instrumented the Lapa
k routines using LDRA Testbed the driverprograms were run using all the extra
ted datasets. Our experien
e of using thispa
kage was that the initial e�ort of instrumenting and running the bulk of theredu
ed data to analyse the exe
ution histories took several overnight runs on a1GHz Pentium 3 with 256K RAM. Adding new datasets is then relatively 
heaptaking just a few minutes per dataset. We obtained the following 
overage metri
values with the redu
ed data sets1. basi
-blo
k 
overage: 80%2. bran
h 
overage: 72%3. LCSAJ: 32%These results show that we have lost about 7% 
overage of the basi
 blo
ks in these
ondary level routines. At this level it is worthwhile upgrading our extra
tionpro
ess in order to asso
iate the se
ondary level pro�les with the top level datasets that generated them. This will allow the 
he
king of results to take pla
eat a higher level. It is still most likely that we will not be able to a
hieve 100%basi
-blo
k 
overage without making independent 
alls to se
ond level routines,although, in this 
ase, there is no way of knowing whether su
h 
alls are possibleusing legal data at the user 
allable routine level. Additionally it is possiblethat some paths and blo
ks of 
ode 
an never be exe
uted; in some instan
esit may be possible to identify dead 
ode and remove it. However there may be



8 D.J. Barnes and T.R. Hopkins
ir
umstan
es where unexe
uted 
ode is the result of defensive programmingand in these 
ases the statements should 
ertainly not be removed. It would beuseful (and possibly interesting) if the user 
ould be prompted to submit data
ausing exe
ution of these se
tions of 
ode for in
lusion in the test data.The a
hieved bran
h 
overage is lagging a further 8% behind the basi
-blo
k
overage and the LCSAJ metri
 is well below the re
ommended level of 60%.Further work is needed with individual routines where LCSAJ 
overage is par-ti
ularly low from the redu
ed datasets in order to determine whether it is sig-ni�
antly better with the full 
omplement of randomly generated datasets.While most of the work we have reported here has fo
ussed on the Lapa
k77 testing strategy, we are also a
tively looking at the Lapa
k 95 test routinesin order to 
ompare the 
overage they provide. It is interesting to note that theaddition of 
ompile-time and run-time 
he
ks to the test routines and exam-ple programs supplied with that version of the pa
kage reveal many problemssimlar to those thrown up with the 77 version: un
he
ked use of optional ar-guments (sgelsd f90); deallo
ation of unallo
ated spa
e (sspgvd f90); use ofan in
orre
t-pre
ision routine (s
hkge); in
orre
t array sizes (la test sgbsv,serrge and many others); use of literals as inout parameters (serrvx); use ofunset out parameters (la test sge
on); in
orre
t intent (la test sgelss);in
orre
t sli
ing (la test sgesdd); 
oating-point over
ow (la test sppsv).
5 Con
lusionsParti
ular testing strategies should be 
hosen to �t spe
i�
 goals and it is impor-tant to appre
iate that the existing test strategy of the Lapa
k suite is stronglyin
uen
ed by the desire to 
he
k portability rather than 
ode 
overage. A featureof the existing testing strategy is to bat
h up tests in two ways{ using multiple data sets on a single routine{ using similar data on multiple routines.It was dis
overed that the very a
t of bat
hing up tests allowed some errors tobe masked | typi
ally through uninitialised variables used in later tests havingbeen set by earlier tests. Thus, while it requires far more organization, there arevery de�nite advantages to be gained from running ea
h test separately. An ap-proa
h using separate tests also supports the in
remental approa
h to improvingtesting metri
s along with the introdu
tion of additional tests whenever a rou-tine is enhan
ed, or a new error is dis
overed and then 
orre
ted. Su
h additionaltests serve as regression tests for future releases.The need for dealing with a large number of test 
ases has led us to developa more 
exible testing environment whi
h allows for the easy do
umentationand addition of test 
ases while keeping tra
k of the 
ode 
overage obtained.Ideally, we would aim to extend the existing test suite in order to a
hieve 100%basi
-blo
k 
overage as well as in
reasing the metri
 values obtained for bran
hand 
onditional 
overage. Our major problem at present is �nding data thatwill exer
ise the remaining unexe
uted statements. The 
alling stru
ture of the



Applying Software Testing Metri
s to Lapa
k 9numeri
al routines is hierar
hi
al and, in many 
ases it is 
lear that unexe
uted
ode in higher level routines would only be exe
uted after the failure of somelower level routine. It is not 
lear whether su
h situations are a
tually knownto o

ur or if the higher level 
ode is the result of defensive programming. Inthe former 
ase it might be useful to issue a message en
ouraging the user tosubmit su
h data to the proje
t team. While defensive programming pra
ti
esare obviously not to be dis
ouraged, they 
an potentially 
onfuse the pi
turewhen 
onsidering how thorough a test suite is in pra
ti
e and defensive 
odeshould be well do
umented within the sour
e 
ode.We have shown how the use of software testing metri
s may be used toprovide a quantitative measure of how good the testing pro
ess a
tually is as a
on�den
e boosting measure of program 
orre
tness.We have set up a framework for testing the Lapa
k suite of routines in termsof a highly targetted redu
ed 
olle
tion of datasets. Even so we are still someway from a
hieving 100% basi
-blo
k 
overage whi
h is 
onsidered to be theweakest 
overage metri
. Indeed Beizer [4℄ has argued that even if 
ompletebran
h 
overage is a
hieved then probably less than 50% of the faults left in thereleased software will have been found. We will be endeavouring to in
rease thebasi
-blo
k 
overage as well as improving the 
ondition and bran
h 
overage andLCSAJ metri
s.Referen
es1. E. Anderson, Z. Bai, C. Bis
hof, S. Bla
kford, J. Demmel, J. J. Dongarra, J. DuCroz, A. Greenbaum, S. Hammarling, A. M
Kenney, and D. Sorensen. LAPACK:users' guide. SIAM, Philadelphia, third edition, 1999.2. V. A. Barker, L. S. Bla
kford, J. Dongarra, J. Du Croz, S. Hammarling, M. Mari-nova, J. Wa�sniewski, and P. Yalamov. LAPACK95: Users' Guide. SIAM, Philadel-phia, 2001.3. D.J. Barnes and T.R. Hopkins. The evolution and testing of a medium sizednumeri
al pa
kage. In H.P. Langtangen, A.M. Bruaset, and E. Quak, editors,Advan
es in Software Tools for S
ienti�
 Computing, volume 10 of Le
ture Notesin Computational S
ien
e and Engineering, pages 225{238. Springer-Verlag, Berlin,2000.4. B. Beizer. Software System Testing and Quality Assuran
e. Van Nostrand Rein-hold, New York, US, 1984.5. John A. Gunnels, Fred G. Gustavson, Greg M. Henry, and Robert A. van de Geijn.FLAME: Formal Linear Algebra Methods Environment. ACM Transa
tions onMathemati
al Software, 27(4):422{455, De
ember 2001.6. Kelly J. Hayhurst, Dan S. Veerhusen, John J. Chilenski, and Leanna K. Rierson. Apra
ti
al tutorial on modi�ed 
ondition/de
ision 
overage. Te
hni
al Report TM-2001-210876, NASA, Langley Resear
h Center, Hampton, Virginia 23681-2199,May 2001.7. Tim Hopkins. A 
omment on the presentation and testing of CALGO 
odes anda remark on Algorithm 639: To integrate some in�nite os
illating tails. ACMTransa
tions on Mathemati
al Software, 28(3):285{300, September 2002.8. ISO, Geneva, Switzerland. ISO/IEC 9899:1990 Information te
hnology - Program-ming Language C, 1990.



10 D.J. Barnes and T.R. Hopkins9. ISO/IEC. Information Te
hnology { Programming Languages { Fortran - Part 1:Base Language (ISO/IEC 1539-1:1997). ISO/IEC Copyright OÆ
e, Geneva, 1997.10. C. Kaner, J. Falk, and H.Q. Nguyen. Testing Computer Software. Wiley, Chi
h-ester, UK, 1999.11. Lahey Computer Systems, In
., In
line Village, NV, USA. Lahey/Fujitsu Fortran95 User's Guide, Revision C edition, 2000.12. LDRA Ltd, Liverpool, UK. LDRA Testbed: Te
hni
al Des
ription v7.0, 2000.13. Numeri
al Algorithms Group Ltd., Oxford, UK. NAGWare Fortran Tools (Release4.0), September 1999.14. Numeri
al Algorithms Group Ltd., Oxford, UK. NAGWare f95 Compiler (Release5.0), November 2003.15. A.J. O�ut, A. Lee, G. Rothermel, R.H. Unt
h, and C. Zapf. An experimentaldetermination of suÆ
ient mutant operators. ACM Transa
tions on Software En-gineering Methodology, 5(2):99{118, April 1996.16. Sun Mi
rosystems , In
., Santa Clara, CA. Fortran User's Guide (Forte Developer7), Revision A edition, May 2002.


