
Applying Software Testing Metris to Lapak
David J. Barnes1 and Tim R. Hopkins1Computing LaboratoryUniversity of KentCanterbury, Kent, CT2 7NF, UKfd.j.barnes, t.r.hopkinsg�kent.a.uk

Abstrat. We look at how the appliation of software testing metrisa�ets the way in whih we view the testing of the Lapak suite of soft-ware. We disuss how we may generate a test suite that is easily exten-sible and provides a high degree of on�dene that the pakage has beenwell tested.
1 IntrodutionGood software engineering pratie derees that testing be an integral ativityin the design, implementation and maintenane phases of the software life yle.Software that exeutes suessfully on an extensive, well onstruted suite oftest ases provides inreased on�dene in the ode and allows hanges to andmaintenane of the ode to be losely monitored for unexpeted side e�ets.An important requirement is that the test suite evolves with the software; datasets that highlight the need for hanges to be made to the soure ode shouldautomatially be added to the suite and new tests generated to over newlyadded features.To gauge the quality of a test suite we require quantitative measures of howwell it performs. Suh metris are useful to developers in a number of ways; �rst,they determine when we have ahieved a well-de�ned, minimal level of testing;seond, they an redue the amount (and, thus, the ost) of testing by allowingtests that fail to improve the metri to be disarded and, third, they an providea starting point for a searh for new test ases.In this paper we disuss the strategy that has been used for testing the Lapaksuite of linear algebra routines and we quantify the level of testing ahieved usingthree test metris. Lapak is unusual amongst numerial software pakages inthat it has been updated and extended over a substantial period of time andseveral publi releases have been made available in that time. It is thus possibleto obtain a hange history of the ode and thus identify maintenane �xes thathave been applied to the software either to remove errors or to improve thenumerial qualities of the implementation.In setion 2 we disuss the testing metris we are using and why we wouldonsider using more than one of these measurements. In setion 3 we desribethe testing strategies used by the Lapak pakage and disuss how the use of



2 D.J. Barnes and T.R. Hopkinsthe proposed testing metris alters the way in whih we test some parts of thesoftware.Setion 4 presents our results and our onlusions are given in setion 5.
2 Software Testing MetrisAlthough some work has been done on the appliation of formal methods toprovide the basis for orretness proofs of linear algebra software and formalderivation of soure ode (see, for example, Gunnels [5℄) the vast majority of nu-merial software in day-to-day use has been produed by more traditional stylesof software development tehniques that require extensive testing to inreaseon�dene that it is funtioning orretly.One of the most potent and often underused tools available to assist withthis proess is the ompiler. Most modern ompilers will perform a variety ofstati heks on the soure ode for adherene to the urrent language standard(for example, ANSI Fortran [9℄ and ANSI C [8℄). Some (for example, Nag [14℄and Lahey [11℄) go further and provide feedbak on suh things as undelaredvariables, variables delared but never used, variables set but never used, et.Although these often only require osmeti hanges to the software in some asesthese messages are agging genuine errors where, for example, variable nameshave been misspelt.Furthermore, with judiious use of ompilation options, ompilers will nowprodue exeutable ode that performs extensive run-time heks that wouldbe exeedingly diÆult to perform in any other way. Almost all will hek thatarray indexes are within their delared bounds but many will go further andhek, for example, that variables and array elements have been assigned valuesbefore they are used. Suh heks are useful even where orretness proofs areavailable, sine simple typographial errors are ommon wherever human editingis involved in the implementation or maintenane proesses.While it is true that suh heking imposes a run-time overhead that wouldmake the exeutable ode produed unusable for many appliations where high-performane is essential, it should be mandatory that these apabilities are usedduring the development, testing and maintenane stages of any software projet.Thus our �rst requirement is that all the software ompiles without anywarning messages and that no run-time errors are reported when running thetest suite and all the possible exeution-time heks have been enabled for theompilation system being used. For suh a requirement to have teeth, we musthave on�dene that the test suite thoroughly exerises the soure ode.In order to determine the e�etiveness of the testing phase, quantitative mea-surements are required. Most of the basi testing metris are white-box and aimto measure how well the test data exerises the ode. The simplest is to alulatethe perentage of basi bloks (linear setions of ode) that are exeuted. While100% basi-blok overage is onsidered by many experts [10℄ to be the weakestof all overage riteria its ahievement should always be regarded as an initial



Applying Software Testing Metris to Lapak 3goal by testers. After all how an we have on�dene that software will performas required if bloks of statements are never exeuted during the testing proess?Con�dene in the software an be further enhaned by extending the testingproess to provide more stringent forms of ode overage, for example, branhoverage and linear ode sequenes and jumps (LCSAJ).For branh overage we attempt to generate data sets that will ensure that allbranhes within the ode are exeuted. For example, in a simple if-then-endifblok we seek data that will ause the ondition to be both true and false. Wenote here that 100% branh overage implies 100% basi-blok overage. Thusin the example above basi-blok overage would only require the test to be truein order to exeute the statements within the if ; branh overage testing wouldrequire data to be found that auses the test to be false as well.The LCSAJ metri measures overage of ombinations of linear sequenes ofbasi bloks, on the grounds that omputational e�ets in a single basi blokare likely to have impats on the exeution behavior of immediately followingbasi bloks. Errors not evident from the analysis of a single basi blok maybe revealed when exeuted in ombination with other basi bloks, in the sameway that module integration testing often reveals further errors beyond thoserevealed by individual module testing. However, sine some alulated LCSAJombinations may be infeasible, for instane if they involve ontraditory ondi-tion values, a requirement of 100% LCSAJ overage is unreasonable and a moremodest �gure suh as 60% would be more approahable.For the testing metris desribed above the amount and quality of test datarequired to obtain a determined perentage of overage will generally grow as weprogress from basi-blok overage, through branh overage to LCSAJ testing.Even more thorough testing proedures are available, for example, mutationtesting [15℄ and MC/DC [6℄. We do not onsider these in this paper.To be able to obtain metris data requires tool support. Some ompilersprovide the ability to pro�le ode exeution (for example Sun Fortran 95 Version7.1 [16℄ and the NagWare tool nag pro�le [13℄) although, typially, this onlyprovides basi-blok overage.Tools whih perform more sophistiated pro�ling tend to be ommerial; weare using the LDRA Fortran Testbed [12℄ to generate basi-blok and branhoverage and LCSAJ metris.
3 Testing LapakThe Lapak suite [1℄ onsists of well over a thousand routines whih solve a widerange of numerial linear algebra problems. In the work presented here we haverestrited our attention to the single preision real routines thus reduing thetotal amount of ode to be inspeted to a little over 25% of the total.The �rst release of Lapak was in 1992. Part of the intention of the pakage'sdesigners was to provide a high quality and highly-portable library of numerialroutines. In this, they have been very suessful. Sine its early releases, whihwere written in Fortran 77, the software has been modernized with the release



4 D.J. Barnes and T.R. Hopkinsof Lapak 95 [2℄. Lapak 95 took advantage of features of Fortran 95, suhas optional parameters and generi interfaes, to provide wrapper routines tothe original Fortran 77 ode. This exploited the fat that parameter lists ofsome existing routines were e�etively on�gured by the types of their atualparameters, and that alls to similar routines with di�erent preisions ouldbe on�gured using this type information. These wrappers provided the enduser with improved and more robust alling sequenes whilst preserving theinvestment in the underlying, older ode. Finally, while the injudiious use ofwrapper routines may ause performane overheads, this is unlikely to be aproblem for the high level user allable routines in Lapak.Comprehensive test suites are available for both the Fortran 77 and Fortran95 versions of the pakage and these have provided an exellent starting pointfor the fous of our work on the testing of the pakage. Indeed a ore ompo-nent of the Lapak pakage is its testing material. This has been an importantresoure in assisting with the implementation of the library on a wide variety ofplatform/ompiler ombinations. However, little, if any, measurement appearsto have been made of how well the testing material atually performs from asoftware engineering sense.Finally, a pakage of this size and longevity is potentially a valuable soure ofdata for the evaluation of software quality metris. Over the past 12 years therehave been eight releases of Lapak and this history has allowed us to trak thehanges made to the software sine its initial release. This has provided us with,among other things, data on the number of faults orreted and this has enabledus to investigate whether software quality metris an be used to predit whihroutines are liable to require future maintenane (see [3℄ for further details). Ithas also been possible to determine whether the assoiated test suites have beeninuened by the fault history.The main purpose of the supplied testing material is to support the portingproess. An expetation of this proess is that all of the supplied tests shouldpass without failures. Following on from the work by Hopkins [7℄, we were keento explore how safe this expetation was, by using state-of-the-art ompile-timeand run-time heks. We began by exeuting all the supplied test software usinga variety of ompilers (inluding NagWare Fortran 95, Lahey Fortran 95 andSun Fortran 95) that allowed a large number of internal onsisteny heks to beperformed. This proess deteted a number of faults in both the testing ode andthe numerial routines of the urrent release, inluding aessing array elementsoutside of their delared bounds, type mismathes between atual arguments andtheir de�nitions and the use of variables before they have been assigned values.Suh faults are all non-standard Fortran and ould a�et the �nal omputedresults. In all, some 50 of the single preision real and omplex routines werea�eted.The test-rigs provided are monolithi in that eah generates a large numberof datasets and routine alls. The number and size of the datasets used areontrolled by a user supplied on�guration �le with the majority of the databeing generated randomly and error exits tested separately (but still inside the



Applying Software Testing Metris to Lapak 5monolithi drivers and outside of user ontrol). We used the default on�guration�le in our analysis. Results obtained from eah all are heked automatiallyvia an orale rather than against prede�ned expeted results. This approah hasa number of disadvantages1. there is no quantitative feedbak as to how thorough the atual testing pro-ess is,2. running multiple datasets in a single run masks problems that ould bedeteted easily (for example, via run-time heking) if they were run one ata time,3. the use of a large number of randomly generated datasets is very ineÆient inthat, from the tester's point of view, the vast majority are not ontributingto improving any of the test metris.Having removed all the run-time problems mentioned above our next goalwas to redue the number of tests being run (i.e., the number of alls being madeto Lapak routines) by ensuring that eah test made a positive ontribution tothe metris being used. In order to preserve the e�ort already invested in testingthe Lapak routines it was deided to extrat as muh useful data as possiblefrom the distributed pakage. To do this we modi�ed nag pro�le [13℄ so thatit generated basi-blok overage data (pro�les) for eah individual all to anLapak routine. We disovered that, for most of the routines, we ould obtain thesame basi-blok overage using only a small fration of the generated test sets;see Setion 4 for details. Sripts were onstruted to extrat relevant datasetsand to generate driver programs for testing eah routine. In order to keep thesedriver programs simple we only extrated legal data, preferring to run the errorexit tests separately; this ensured that suh tests were generated for all theLapak routines.The routines within the Lapak pakage split into two distint subsets; thosethat are expeted to be alled diretly by the user of the pakage and thosethat are only envisioned as being alled internally and not desribed in the usermanual. The testing strategy urrently employed by the Lapak 77 test suiteatually goes further and reates �rst and seond lass user allable routines.For example, the testing of the routine sgbbrd is piggy-baked onto the dataused in the testing of a more general routine. This leads to 13 out of the 111basi bloks in sgbbrd being untested; of these 11 were onerned with argumentheking for whih no out-of-bounds data were provided as it was not treated asa �rst lass itizen | suh data had already been �ltered out by its aller. Theother two were in the main body of ode. The data used by the test programwas generated from a standard data �le that de�nes the total bandwidth. Thisroutine also requires the number of sub- and super- diagonals to be spei�ed andthis pair of values is generated from the total bandwidth value. Unfortunatelythe method fails to produe one of the speial ases.However there is a deeper testing problem revealed by this example. Whentesting we usually generate data whih onstitutes a well-de�ned and well do-umented, high level problem (for example, a system of linear equations), we all



6 D.J. Barnes and T.R. Hopkinsthe relevant solver and then hek the omputed results. We assume that it isrelatively straightforward to perform heking at this level of problem de�ni-tion. But, having run enough data sets to obtain 100% basi-blok overage ofthe user allable routine we often �nd that one of the internally alled routineshas a muh lower overage. The problem now for the tester is an they atually�nd high level user data that will provide the required overage in the internalroutines? In many ases the answer will be no. For example, when using manyof the level 1 Blas routines the only possible stride value may be one; no data tothe higher level routines will then test the non-unit stride setions of the Blasode.Where it is impossible for user allable routines to fully exerise internal rou-tines, there are two possibilities. Either require full overage to be demonstratedthrough unit tests that are independent of higher level alls, or supplement thehigher level alls with additional unit test data for the lower level alls. The for-mer approah is less fragile than the latter, in that it retains omplete overageeven in the fae of hanges to the data sets providing overage of the higherlevel routines. On the other hand, it onits with the goal of trying to minimisedupliate and redundant overage.Over the ourse of its history, Lapak has undergone a number of revisions,whih have inluded the usual modi�ations typial of a pakage of this size:addition of new routines, bug �xes, enhanements of routines, minor renaming,ommentary hanges, and so on. Somewhat surprising is that the test overagedoes not always appear to have been extended to reet these hanges. Forinstane between version 2.0 and 3.0, several hanges were made to sbdsqr,suh as the setion onerned with QR iteration with zero shift, but many ofthese hanges remain untested by the suite, as they were before the modi�ation.
4 ResultsOut of the 316 single preision routines (s*.f) exeuted when running the Lapak77 testing software 14,139 basi bloks out of a total of 16,279 were exeuted.This represents a basi-blok overage metri of 86.9% whih is extremely highfor numerial software; many pakages tested ahieve values loser to 50%. Of theapproximately 2,000 unexeuted bloks many are due to the lak of overage ofargument heking ode. However, there are still a substantial number of state-ments onerned with ore funtionality that require data sets to be provided ata higher problem de�nition level.Ideally we would like eah test to ount; eah test should ause basi bloksto be exeuted that no other test exerises. To obtain some idea of the possibledegree of redundany of the supplied tests we looked at individual exeutionpro�les. We de�ne a pro�le as a bit string that shows the basi bloks exeutedby eah all to a routine; i.e., the string ontains a one if the blok has beenexeuted and zero if it has not. Note that we annot extrat any path informationfrom this.



Applying Software Testing Metris to Lapak 7The Lapak 77 test ases ause almost 24 million subroutine alls to be made(note that this does not inlude low level routines like lsame whih was alledover 150 million times.) The most alled routine was slarfg whih aounted forover 1.7 million alls. This routine illustrates the diÆulty in obtaining ompleteoverage as a side e�et of alling higher level routines in that out of the 12 basibloks that make up this routine one still remained unexeuted.More telling was that out of more than 20 million pro�les obtained less thanten thousand were distint. Note that it is not the ase that we an redue thenumber of subroutine alls down to 10,000 sine repeated pro�les will our inhigher level routines to generate di�erent pro�les within lower level routines andvie versa. However it is lear that we should be able to redue the total numberof tests being performed substantially without reduing basi-blok overage. Inslarfg only 3 distint pro�les were generated.ssbgvd provides a good illustration of the value of the ombined ompile-time and run-time approah we have been disussing. It has only 2 distintpro�les from the Lapak 77 test ases, and analysis of the basi-blok overagereveals that neither overs ases where n has a value greater than one. However,the Lapak 95 tests do exerise those ases and reveal a work-array dimensionerror beause of the inorret alulation of lwmin.The original 1.3 million data sets generated were redued to only 6.5K, pro-duing an equivalent basi-blok overage of the top level routines. The dataextration proess was not perfet in that we only extrated data whih gen-erated unique exeution pro�les for the user allable routines. We would thusexpet a redution in the overall overage due to the fat that two identialpro�les to a high level routine generated distint pro�les at a lower level.Having instrumented the Lapak routines using LDRA Testbed the driverprograms were run using all the extrated datasets. Our experiene of using thispakage was that the initial e�ort of instrumenting and running the bulk of theredued data to analyse the exeution histories took several overnight runs on a1GHz Pentium 3 with 256K RAM. Adding new datasets is then relatively heaptaking just a few minutes per dataset. We obtained the following overage metrivalues with the redued data sets1. basi-blok overage: 80%2. branh overage: 72%3. LCSAJ: 32%These results show that we have lost about 7% overage of the basi bloks in theseondary level routines. At this level it is worthwhile upgrading our extrationproess in order to assoiate the seondary level pro�les with the top level datasets that generated them. This will allow the heking of results to take plaeat a higher level. It is still most likely that we will not be able to ahieve 100%basi-blok overage without making independent alls to seond level routines,although, in this ase, there is no way of knowing whether suh alls are possibleusing legal data at the user allable routine level. Additionally it is possiblethat some paths and bloks of ode an never be exeuted; in some instanesit may be possible to identify dead ode and remove it. However there may be



8 D.J. Barnes and T.R. Hopkinsirumstanes where unexeuted ode is the result of defensive programmingand in these ases the statements should ertainly not be removed. It would beuseful (and possibly interesting) if the user ould be prompted to submit dataausing exeution of these setions of ode for inlusion in the test data.The ahieved branh overage is lagging a further 8% behind the basi-blokoverage and the LCSAJ metri is well below the reommended level of 60%.Further work is needed with individual routines where LCSAJ overage is par-tiularly low from the redued datasets in order to determine whether it is sig-ni�antly better with the full omplement of randomly generated datasets.While most of the work we have reported here has foussed on the Lapak77 testing strategy, we are also atively looking at the Lapak 95 test routinesin order to ompare the overage they provide. It is interesting to note that theaddition of ompile-time and run-time heks to the test routines and exam-ple programs supplied with that version of the pakage reveal many problemssimlar to those thrown up with the 77 version: unheked use of optional ar-guments (sgelsd f90); dealloation of unalloated spae (sspgvd f90); use ofan inorret-preision routine (shkge); inorret array sizes (la test sgbsv,serrge and many others); use of literals as inout parameters (serrvx); use ofunset out parameters (la test sgeon); inorret intent (la test sgelss);inorret sliing (la test sgesdd); oating-point overow (la test sppsv).
5 ConlusionsPartiular testing strategies should be hosen to �t spei� goals and it is impor-tant to appreiate that the existing test strategy of the Lapak suite is stronglyinuened by the desire to hek portability rather than ode overage. A featureof the existing testing strategy is to bath up tests in two ways{ using multiple data sets on a single routine{ using similar data on multiple routines.It was disovered that the very at of bathing up tests allowed some errors tobe masked | typially through uninitialised variables used in later tests havingbeen set by earlier tests. Thus, while it requires far more organization, there arevery de�nite advantages to be gained from running eah test separately. An ap-proah using separate tests also supports the inremental approah to improvingtesting metris along with the introdution of additional tests whenever a rou-tine is enhaned, or a new error is disovered and then orreted. Suh additionaltests serve as regression tests for future releases.The need for dealing with a large number of test ases has led us to developa more exible testing environment whih allows for the easy doumentationand addition of test ases while keeping trak of the ode overage obtained.Ideally, we would aim to extend the existing test suite in order to ahieve 100%basi-blok overage as well as inreasing the metri values obtained for branhand onditional overage. Our major problem at present is �nding data thatwill exerise the remaining unexeuted statements. The alling struture of the



Applying Software Testing Metris to Lapak 9numerial routines is hierarhial and, in many ases it is lear that unexeutedode in higher level routines would only be exeuted after the failure of somelower level routine. It is not lear whether suh situations are atually knownto our or if the higher level ode is the result of defensive programming. Inthe former ase it might be useful to issue a message enouraging the user tosubmit suh data to the projet team. While defensive programming pratiesare obviously not to be disouraged, they an potentially onfuse the piturewhen onsidering how thorough a test suite is in pratie and defensive odeshould be well doumented within the soure ode.We have shown how the use of software testing metris may be used toprovide a quantitative measure of how good the testing proess atually is as aon�dene boosting measure of program orretness.We have set up a framework for testing the Lapak suite of routines in termsof a highly targetted redued olletion of datasets. Even so we are still someway from ahieving 100% basi-blok overage whih is onsidered to be theweakest overage metri. Indeed Beizer [4℄ has argued that even if ompletebranh overage is ahieved then probably less than 50% of the faults left in thereleased software will have been found. We will be endeavouring to inrease thebasi-blok overage as well as improving the ondition and branh overage andLCSAJ metris.Referenes1. E. Anderson, Z. Bai, C. Bishof, S. Blakford, J. Demmel, J. J. Dongarra, J. DuCroz, A. Greenbaum, S. Hammarling, A. MKenney, and D. Sorensen. LAPACK:users' guide. SIAM, Philadelphia, third edition, 1999.2. V. A. Barker, L. S. Blakford, J. Dongarra, J. Du Croz, S. Hammarling, M. Mari-nova, J. Wa�sniewski, and P. Yalamov. LAPACK95: Users' Guide. SIAM, Philadel-phia, 2001.3. D.J. Barnes and T.R. Hopkins. The evolution and testing of a medium sizednumerial pakage. In H.P. Langtangen, A.M. Bruaset, and E. Quak, editors,Advanes in Software Tools for Sienti� Computing, volume 10 of Leture Notesin Computational Siene and Engineering, pages 225{238. Springer-Verlag, Berlin,2000.4. B. Beizer. Software System Testing and Quality Assurane. Van Nostrand Rein-hold, New York, US, 1984.5. John A. Gunnels, Fred G. Gustavson, Greg M. Henry, and Robert A. van de Geijn.FLAME: Formal Linear Algebra Methods Environment. ACM Transations onMathematial Software, 27(4):422{455, Deember 2001.6. Kelly J. Hayhurst, Dan S. Veerhusen, John J. Chilenski, and Leanna K. Rierson. Apratial tutorial on modi�ed ondition/deision overage. Tehnial Report TM-2001-210876, NASA, Langley Researh Center, Hampton, Virginia 23681-2199,May 2001.7. Tim Hopkins. A omment on the presentation and testing of CALGO odes anda remark on Algorithm 639: To integrate some in�nite osillating tails. ACMTransations on Mathematial Software, 28(3):285{300, September 2002.8. ISO, Geneva, Switzerland. ISO/IEC 9899:1990 Information tehnology - Program-ming Language C, 1990.



10 D.J. Barnes and T.R. Hopkins9. ISO/IEC. Information Tehnology { Programming Languages { Fortran - Part 1:Base Language (ISO/IEC 1539-1:1997). ISO/IEC Copyright OÆe, Geneva, 1997.10. C. Kaner, J. Falk, and H.Q. Nguyen. Testing Computer Software. Wiley, Chih-ester, UK, 1999.11. Lahey Computer Systems, In., Inline Village, NV, USA. Lahey/Fujitsu Fortran95 User's Guide, Revision C edition, 2000.12. LDRA Ltd, Liverpool, UK. LDRA Testbed: Tehnial Desription v7.0, 2000.13. Numerial Algorithms Group Ltd., Oxford, UK. NAGWare Fortran Tools (Release4.0), September 1999.14. Numerial Algorithms Group Ltd., Oxford, UK. NAGWare f95 Compiler (Release5.0), November 2003.15. A.J. O�ut, A. Lee, G. Rothermel, R.H. Unth, and C. Zapf. An experimentaldetermination of suÆient mutant operators. ACM Transations on Software En-gineering Methodology, 5(2):99{118, April 1996.16. Sun Mirosystems , In., Santa Clara, CA. Fortran User's Guide (Forte Developer7), Revision A edition, May 2002.


