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Abstract. We look at how the application of software testing metrics
affects the way in which we view the testing of the Lapack suite of soft-
ware. We discuss how we may generate a test suite that is easily exten-
sible and provides a high degree of confidence that the package has been
well tested.

1 Introduction

Good software engineering practice decrees that testing be an integral activity
in the design, implementation and maintenance phases of the software life cycle.
Software that executes successfully on an extensive, well constructed suite of
test cases provides increased confidence in the code and allows changes to and
maintenance of the code to be closely monitored for unexpected side effects.
An important requirement is that the test suite evolves with the software; data
sets that highlight the need for changes to be made to the source code should
automatically be added to the suite and new tests generated to cover newly
added features.

To gauge the quality of a test suite we require quantitative measures of how
well it performs. Such metrics are useful to developers in a number of ways; first,
they determine when we have achieved a well-defined, minimal level of testing;
second, they can reduce the amount (and, thus, the cost) of testing by allowing
tests that fail to improve the metric to be discarded and, third, they can provide
a starting point for a search for new test cases.

In this paper we discuss the strategy that has been used for testing the Lapack
suite of linear algebra routines and we quantify the level of testing achieved using
three test metrics. Lapack is unusual amongst numerical software packages in
that it has been updated and extended over a substantial period of time and
several public releases have been made available in that time. It is thus possible
to obtain a change history of the code and thus identify maintenance fixes that
have been applied to the software either to remove errors or to improve the
numerical qualities of the implementation.

In section 2 we discuss the testing metrics we are using and why we would
consider using more than one of these measurements. In section 3 we describe
the testing strategies used by the Lapack package and discuss how the use of
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the proposed testing metrics alters the way in which we test some parts of the
software.

Section 4 presents our results and our conclusions are given in section 5.

2 Software Testing Metrics

Although some work has been done on the application of formal methods to
provide the basis for correctness proofs of linear algebra software and formal
derivation of source code (see, for example, Gunnels [5]) the vast majority of nu-
merical software in day-to-day use has been produced by more traditional styles
of software development techniques that require extensive testing to increase
confidence that it is functioning correctly.

One of the most potent and often underused tools available to assist with
this process is the compiler. Most modern compilers will perform a variety of
static checks on the source code for adherence to the current language standard
(for example, ANSI Fortran [9] and ANSI C [8]). Some (for example, Nag [14]
and Lahey [11]) go further and provide feedback on such things as undeclared
variables, variables declared but never used, variables set but never used, etc.
Although these often only require cosmetic changes to the software in some cases
these messages are flagging genuine errors where, for example, variable names
have been misspelt.

Furthermore, with judicious use of compilation options, compilers will now
produce executable code that performs extensive run-time checks that would
be exceedingly difficult to perform in any other way. Almost all will check that
array indexes are within their declared bounds but many will go further and
check, for example, that variables and array elements have been assigned values
before they are used. Such checks are useful even where correctness proofs are
available, since simple typographical errors are common wherever human editing
is involved in the implementation or maintenance processes.

While it is true that such checking imposes a run-time overhead that would
make the executable code produced unusable for many applications where high-
performance is essential, it should be mandatory that these capabilities are used
during the development, testing and maintenance stages of any software project.

Thus our first requirement is that all the software compiles without any
warning messages and that no run-time errors are reported when running the
test suite and all the possible execution-time checks have been enabled for the
compilation system being used. For such a requirement to have teeth, we must
have confidence that the test suite thoroughly exercises the source code.

In order to determine the effectiveness of the testing phase, quantitative mea-
surements are required. Most of the basic testing metrics are white-box and aim
to measure how well the test data exercises the code. The simplest is to calculate
the percentage of basic blocks (linear sections of code) that are executed. While
100% basic-block coverage is considered by many experts [10] to be the weakest
of all coverage criteria its achievement should always be regarded as an initial
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goal by testers. After all how can we have confidence that software will perform
as required if blocks of statements are never executed during the testing process?

Confidence in the software can be further enhanced by extending the testing
process to provide more stringent forms of code coverage, for example, branch
coverage and linear code sequences and jumps (LCSAJ).

For branch coverage we attempt to generate data sets that will ensure that all
branches within the code are executed. For example, in a simple if-then-endif
block we seek data that will cause the condition to be both true and false. We
note here that 100% branch coverage implies 100% basic-block coverage. Thus
in the example above basic-block coverage would only require the test to be true
in order to execute the statements within the if; branch coverage testing would
require data to be found that causes the test to be false as well.

The LCSAJ metric measures coverage of combinations of linear sequences of
basic blocks, on the grounds that computational effects in a single basic block
are likely to have impacts on the execution behavior of immediately following
basic blocks. Errors not evident from the analysis of a single basic block may
be revealed when executed in combination with other basic blocks, in the same
way that module integration testing often reveals further errors beyond those
revealed by individual module testing. However, since some calculated LCSAJ
combinations may be infeasible, for instance if they involve contradictory condi-
tion values, a requirement of 100% LCSAJ coverage is unreasonable and a more
modest figure such as 60% would be more approachable.

For the testing metrics described above the amount and quality of test data
required to obtain a determined percentage of coverage will generally grow as we
progress from basic-block coverage, through branch coverage to LCSAJ testing.
Even more thorough testing procedures are available, for example, mutation
testing [15] and MC/DC [6]. We do not consider these in this paper.

To be able to obtain metrics data requires tool support. Some compilers
provide the ability to profile code execution (for example Sun Fortran 95 Version
7.1 [16] and the NagWare tool nag_profile [13]) although, typically, this only
provides basic-block coverage.

Tools which perform more sophisticated profiling tend to be commercial; we
are using the LDRA Fortran Testbed [12] to generate basic-block and branch
coverage and LCSAJ metrics.

3 Testing Lapack

The Lapack suite [1] consists of well over a thousand routines which solve a wide
range of numerical linear algebra problems. In the work presented here we have
restricted our attention to the single precision real routines thus reducing the
total amount of code to be inspected to a little over 25% of the total.

The first release of Lapack was in 1992. Part of the intention of the package’s
designers was to provide a high quality and highly-portable library of numerical
routines. In this, they have been very successful. Since its early releases, which
were written in Fortran 77, the software has been modernized with the release
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of Lapack 95 [2]. Lapack 95 took advantage of features of Fortran 95, such
as optional parameters and generic interfaces, to provide wrapper routines to
the original Fortran 77 code. This exploited the fact that parameter lists of
some existing routines were effectively configured by the types of their actual
parameters, and that calls to similar routines with different precisions could
be configured using this type information. These wrappers provided the end
user with improved and more robust calling sequences whilst preserving the
investment in the underlying, older code. Finally, while the injudicious use of
wrapper routines may cause performance overheads, this is unlikely to be a
problem for the high level user callable routines in Lapack.

Comprehensive test suites are available for both the Fortran 77 and Fortran
95 versions of the package and these have provided an excellent starting point
for the focus of our work on the testing of the package. Indeed a core compo-
nent of the Lapack package is its testing material. This has been an important
resource in assisting with the implementation of the library on a wide variety of
platform/compiler combinations. However, little, if any, measurement appears
to have been made of how well the testing material actually performs from a
software engineering sense.

Finally, a package of this size and longevity is potentially a valuable source of
data for the evaluation of software quality metrics. Over the past 12 years there
have been eight releases of Lapack and this history has allowed us to track the
changes made to the software since its initial release. This has provided us with,
among other things, data on the number of faults corrected and this has enabled
us to investigate whether software quality metrics can be used to predict which
routines are liable to require future maintenance (see [3] for further details). It
has also been possible to determine whether the associated test suites have been
influenced by the fault history.

The main purpose of the supplied testing material is to support the porting
process. An expectation of this process is that all of the supplied tests should
pass without failures. Following on from the work by Hopkins [7], we were keen
to explore how safe this expectation was, by using state-of-the-art compile-time
and run-time checks. We began by executing all the supplied test software using
a variety of compilers (including NagWare Fortran 95, Lahey Fortran 95 and
Sun Fortran 95) that allowed a large number of internal consistency checks to be
performed. This process detected a number of faults in both the testing code and
the numerical routines of the current release, including accessing array elements
outside of their declared bounds, type mismatches between actual arguments and
their definitions and the use of variables before they have been assigned values.
Such faults are all non-standard Fortran and could affect the final computed
results. In all, some 50 of the single precision real and complex routines were
affected.

The test-rigs provided are monolithic in that each generates a large number
of datasets and routine calls. The number and size of the datasets used are
controlled by a user supplied configuration file with the majority of the data
being generated randomly and error exits tested separately (but still inside the
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monolithic drivers and outside of user control). We used the default configuration
file in our analysis. Results obtained from each call are checked automatically
via an oracle rather than against predefined expected results. This approach has
a number of disadvantages

1. there is no quantitative feedback as to how thorough the actual testing pro-
cess is,

2. running multiple datasets in a single run masks problems that could be
detected easily (for example, via run-time checking) if they were run one at
a time,

3. the use of a large number of randomly generated datasets is very inefficient in
that, from the tester’s point of view, the vast majority are not contributing
to improving any of the test metrics.

Having removed all the run-time problems mentioned above our next goal
was to reduce the number of tests being run (i.e., the number of calls being made
to Lapack routines) by ensuring that each test made a positive contribution to
the metrics being used. In order to preserve the effort already invested in testing
the Lapack routines it was decided to extract as much useful data as possible
from the distributed package. To do this we modified nag_profile [13] so that
it generated basic-block coverage data (profiles) for each individual call to an
Lapack routine. We discovered that, for most of the routines, we could obtain the
same basic-block coverage using only a small fraction of the generated test sets;
see Section 4 for details. Scripts were constructed to extract relevant datasets
and to generate driver programs for testing each routine. In order to keep these
driver programs simple we only extracted legal data, preferring to run the error
exit tests separately; this ensured that such tests were generated for all the
Lapack routines.

The routines within the Lapack package split into two distinct subsets; those
that are expected to be called directly by the user of the package and those
that are only envisioned as being called internally and not described in the user
manual. The testing strategy currently employed by the Lapack 77 test suite
actually goes further and creates first and second class user callable routines.
For example, the testing of the routine SGBBRD is piggy-backed onto the data
used in the testing of a more general routine. This leads to 13 out of the 111
basic blocks in SGBBRD being untested; of these 11 were concerned with argument
checking for which no out-of-bounds data were provided as it was not treated as
a first class citizen — such data had already been filtered out by its caller. The
other two were in the main body of code. The data used by the test program
was generated from a standard data file that defines the total bandwidth. This
routine also requires the number of sub- and super- diagonals to be specified and
this pair of values is generated from the total bandwidth value. Unfortunately
the method fails to produce one of the special cases.

However there is a deeper testing problem revealed by this example. When
testing we usually generate data which constitutes a well-defined and well doc-
umented, high level problem (for example, a system of linear equations), we call
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the relevant solver and then check the computed results. We assume that it is
relatively straightforward to perform checking at this level of problem defini-
tion. But, having run enough data sets to obtain 100% basic-block coverage of
the user callable routine we often find that one of the internally called routines
has a much lower coverage. The problem now for the tester is can they actually
find high level user data that will provide the required coverage in the internal
routines? In many cases the answer will be no. For example, when using many
of the level 1 Blas routines the only possible stride value may be one; no data to
the higher level routines will then test the non-unit stride sections of the Blas
code.

Where it is impossible for user callable routines to fully exercise internal rou-
tines, there are two possibilities. Either require full coverage to be demonstrated
through unit tests that are independent of higher level calls, or supplement the
higher level calls with additional unit test data for the lower level calls. The for-
mer approach is less fragile than the latter, in that it retains complete coverage
even in the face of changes to the data sets providing coverage of the higher
level routines. On the other hand, it conflicts with the goal of trying to minimise
duplicate and redundant coverage.

Over the course of its history, Lapack has undergone a number of revisions,
which have included the usual modifications typical of a package of this size:
addition of new routines, bug fixes, enhancements of routines, minor renaming,
commentary changes, and so on. Somewhat surprising is that the test coverage
does not always appear to have been extended to reflect these changes. For
instance between version 2.0 and 3.0, several changes were made to SBDSQR,
such as the section concerned with QR iteration with zero shift, but many of
these changes remain untested by the suite, as they were before the modification.

4 Results

Out of the 316 single precision routines (s*.f) executed when running the Lapack
77 testing software 14,139 basic blocks out of a total of 16,279 were executed.
This represents a basic-block coverage metric of 86.9% which is extremely high
for numerical software; many packages tested achieve values closer to 50%. Of the
approximately 2,000 unexecuted blocks many are due to the lack of coverage of
argument checking code. However, there are still a substantial number of state-
ments concerned with core functionality that require data sets to be provided at
a higher problem definition level.

Ideally we would like each test to count; each test should cause basic blocks
to be executed that no other test exercises. To obtain some idea of the possible
degree of redundancy of the supplied tests we looked at individual execution
profiles. We define a profile as a bit string that shows the basic blocks executed
by each call to a routine; i.e., the string contains a one if the block has been
executed and zero if it has not. Note that we cannot extract any path information
from this.
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The Lapack 77 test cases cause almost 24 million subroutine calls to be made
(note that this does not include low level routines like LSAME which was called
over 150 million times.) The most called routine was SLARFG which accounted for
over 1.7 million calls. This routine illustrates the difficulty in obtaining complete
coverage as a side effect of calling higher level routines in that out of the 12 basic
blocks that make up this routine one still remained unexecuted.

More telling was that out of more than 20 million profiles obtained less than
ten thousand were distinct. Note that it is not the case that we can reduce the
number of subroutine calls down to 10,000 since repeated profiles will occur in
higher level routines to generate different profiles within lower level routines and
vice versa. However it is clear that we should be able to reduce the total number
of tests being performed substantially without reducing basic-block coverage. In
SLARFG only 3 distinct profiles were generated.

SSBGVD provides a good illustration of the value of the combined compile-
time and run-time approach we have been discussing. It has only 2 distinct
profiles from the Lapack 77 test cases, and analysis of the basic-block coverage
reveals that neither covers cases where N has a value greater than one. However,
the Lapack 95 tests do exercise those cases and reveal a work-array dimension
error because of the incorrect calculation of LWMIN.

The original 1.3 million data sets generated were reduced to only 6.5K, pro-
ducing an equivalent basic-block coverage of the top level routines. The data
extraction process was not perfect in that we only extracted data which gen-
erated unique execution profiles for the user callable routines. We would thus
expect a reduction in the overall coverage due to the fact that two identical
profiles to a high level routine generated distinct profiles at a lower level.

Having instrumented the Lapack routines using LDRA Testbed the driver
programs were run using all the extracted datasets. Our experience of using this
package was that the initial effort of instrumenting and running the bulk of the
reduced data to analyse the execution histories took several overnight runs on a
1GHz Pentium 3 with 256K RAM. Adding new datasets is then relatively cheap
taking just a few minutes per dataset. We obtained the following coverage metric
values with the reduced data sets

1. basic-block coverage: 80%
2. branch coverage: 72%
3. LCSAJ: 32%

These results show that we have lost about 7% coverage of the basic blocks in the
secondary level routines. At this level it is worthwhile upgrading our extraction
process in order to associate the secondary level profiles with the top level data
sets that generated them. This will allow the checking of results to take place
at a higher level. It is still most likely that we will not be able to achieve 100%
basic-block coverage without making independent calls to second level routines,
although, in this case, there is no way of knowing whether such calls are possible
using legal data at the user callable routine level. Additionally it is possible
that some paths and blocks of code can never be executed; in some instances
it may be possible to identify dead code and remove it. However there may be
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circumstances where unexecuted code is the result of defensive programming
and in these cases the statements should certainly not be removed. It would be
useful (and possibly interesting) if the user could be prompted to submit data
causing execution of these sections of code for inclusion in the test data.

The achieved branch coverage is lagging a further 8% behind the basic-block
coverage and the LCSAJ metric is well below the recommended level of 60%.
Further work is needed with individual routines where LCSAJ coverage is par-
ticularly low from the reduced datasets in order to determine whether it is sig-
nificantly better with the full complement of randomly generated datasets.

While most of the work we have reported here has focussed on the Lapack
77 testing strategy, we are also actively looking at the Lapack 95 test routines
in order to compare the coverage they provide. It is interesting to note that the
addition of compile-time and run-time checks to the test routines and exam-
ple programs supplied with that version of the package reveal many problems
simlar to those thrown up with the 77 version: unchecked use of optional ar-
guments (SGELSD_F90); deallocation of unallocated space (SSPGVD_F90); use of
an incorrect-precision routine (SCHKGE); incorrect array sizes (LA_TEST_SGBSV,
SERRGE and many others); use of literals as INOUT parameters (SERRVX); use of
unset OUT parameters (LA_TEST_SGECON); incorrect intent (LA_TEST_SGELSS);
incorrect slicing (LA_TEST_SGESDD); floating-point overflow (LA_TEST_SPPSV).

5 Conclusions

Particular testing strategies should be chosen to fit specific goals and it is impor-
tant to appreciate that the existing test strategy of the Lapack suite is strongly
influenced by the desire to check portability rather than code coverage. A feature
of the existing testing strategy is to batch up tests in two ways

— using multiple data sets on a single routine
— using similar data on multiple routines.

It was discovered that the very act of batching up tests allowed some errors to
be masked — typically through uninitialised variables used in later tests having
been set by earlier tests. Thus, while it requires far more organization, there are
very definite advantages to be gained from running each test separately. An ap-
proach using separate tests also supports the incremental approach to improving
testing metrics along with the introduction of additional tests whenever a rou-
tine is enhanced, or a new error is discovered and then corrected. Such additional
tests serve as regression tests for future releases.

The need for dealing with a large number of test cases has led us to develop
a more flexible testing environment which allows for the easy documentation
and addition of test cases while keeping track of the code coverage obtained.
Ideally, we would aim to extend the existing test suite in order to achieve 100%
basic-block coverage as well as increasing the metric values obtained for branch
and conditional coverage. Our major problem at present is finding data that
will exercise the remaining unexecuted statements. The calling structure of the
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numerical routines is hierarchical and, in many cases it is clear that unexecuted
code in higher level routines would only be executed after the failure of some
lower level routine. It is not clear whether such situations are actually known
to occur or if the higher level code is the result of defensive programming. In
the former case it might be useful to issue a message encouraging the user to
submit such data to the project team. While defensive programming practices
are obviously not to be discouraged, they can potentially confuse the picture
when considering how thorough a test suite is in practice and defensive code
should be well documented within the source code.

We have shown how the use of software testing metrics may be used to
provide a quantitative measure of how good the testing process actually is as a
confidence boosting measure of program correctness.

We have set up a framework for testing the Lapack suite of routines in terms
of a highly targetted reduced collection of datasets. Even so we are still some
way from achieving 100% basic-block coverage which is considered to be the
weakest coverage metric. Indeed Beizer [4] has argued that even if complete
branch coverage is achieved then probably less than 50% of the faults left in the
released software will have been found. We will be endeavouring to increase the
basic-block coverage as well as improving the condition and branch coverage and
LCSAJ metrics.
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