
Communicating Process Architectures 2005
Jan Broenink, Herman Roebbers, Johan Sunter, Peter Welch, and David Wood (Eds.)
IOS Press, 2005

165

Lazy Cellular Automata
with Communicating Processes

Adam SAMPSON, Peter WELCH and Fred BARNES

Computing Laboratory, University of Kent,
Canterbury, Kent, CT2 7NF, England.

{ats1 , P.H.Welch , F.R.M.Barnes} @kent.ac.uk

Abstract. Cellular automata (CAs) are good examples of systems in which large num-
bers of autonomous entities exhibit emergent behaviour. Using the occam-pi and
JCSP communicating process systems, we show how to construct “lazy” and “just-in-
time” models of cellular automata, which permit very efficient parallel simulation of
sparse CA populations on shared-memory and distributed systems.

Keywords. CSP, occam-pi, JCSP, parallel, CA, Life, lazy, just-in-time, simulation

Introduction

The TUNA project is investigating ways to model nanite assemblers that allow their safety
properties and emergent behaviour to be analysed. We are working with theoccam-π lan-
guage [1] and with the JCSP package for Java [2], both of whichprovide concurrency facil-
ities based on the CSP process algebra and theπ-calculus. The techniques described in this
paper may be used in either environment; examples will be given in a pseudocode based on
occam-π.

Autonomous devices with emergent behaviour will be familiar to anybody who has ex-
perimented with cellular automata; indeed, some of the firstmodels constructed by the TUNA
project are in the form of CAs. While CAs are significantly simpler than the sorts of devices
we want eventually to model – for example, they have very simple state, usually operate upon
a regular grid, and have a common clock – they provide a good starting point for modelling
approaches. We examine several sequential and parallel approaches to simulating cellular
automata inoccam-π and JCSP.

The major desirable feature for a CA simulation is that very large scales can be achieved.
This means that it should execute as fast as possible and use as little memory as possible. In
particular, we would like to be able to take advantage of bothdistributed clusters of machines
and new multi-core processor chips. We demonstrate approaches to CA modelling that satisfy
these goals.

1. The Game of Life

The CA that we will use as an example is John Conway’s Game of Life, usually referred to
simply as “Life” [3]. First discovered in 1970, Life produces startling emergent behaviour
using a simple rule to update the state of a rectangular grid,each cell of which may be either
“alive” or “dead”. All cells in the grid are updated in a single time step (“generation”). To
compute the new state of a cell, its live neighbours are counted, where the cell’s neighbours
are those cells that are horizontally, vertically or diagonally adjacent to it. If a cell was dead



166 A.T. Sampson et al. / Lazy Cellular Automata with Communicating Processes

Figure 1. Five generations of a Life glider; black cells are alive.

in the previous generation and has exactly three live neighbours, it will become alive; if it
was alive in the previous generation and does not have eitherexactly two or exactly three live
neighbours, it will die. (See Figure 1.)

Thirty-five years of research into Life have produced a vast collection of interesting
patterns to try. Simple arrangements of cells may repeat a cyclic pattern (“blinkers”), move
across the grid by moving through a cyclic pattern that ends up with the original arrangement
in a different location (“gliders”), generate a constant stream of other patterns (“guns” and
“puffer trains”), constantly expand to occupy more of the grid (“space-fillers”), or display
many other emergent behaviours. Life is Turing-complete; it is possible to create logic gates
and Turing machines [4].

Life has some features which allow it to be simulated very efficiently. The most impor-
tant is that cells only change their state in response to changes in the neighbouring cells; this
makes it easy to detect when a cell’s state must be recalculated. The new state rule is entirely
symmetric; it does not make a difference which of a cell’s neighbours are alive, just that a
given number of them are, so the state that must be propagatedbetween cells does not need
to include cell locations. Finally, the new state rule is based on a simple count of live neigh-
bours, which can be incremented and decremented as state change messages are received
without needing to compute it from scratch on each cycle. These features are not common to
all CAs – and certainly will not hold for some of the models that TUNA will investigate – but
are nonetheless worth investigating from the implementer’s point of view; if such a feature
makes a system especially easy to simulate or reason about, it may be worth modifying a
TUNA design to include it.

Some simple variants on Life exist that can be simulated using near-identical code.
The normal Life rule is that a cell must have three neighboursto be born and two or three
neighbours to survive; many variations simply change thesenumbers. (For example, in the
HighLife variant, a cell may also survive if it has six neighbours.) Other variations change
the topology of the Life grid: HexLife uses a hexagonal grid,and 3D Life uses a three-
dimensional grid where cells are cubes and have 26 neighbours. Many other CAs that run
on regular grids, such as WireWorld [5], may also be implemented within a Life-simulating
framework, although they may require cells to keep or transfer more state.

2. Framework

Input and output for most of these approaches can be handled using common code; during
development we constructed anoccam-π framework which could support several different
simulation approaches.

The input to a CA simulator consists of an initial state for all (or some) of the cells. For
testing purposes, simple predictable patterns are the mostuseful, since correct behaviour may
easily be recognised. However, some problems may be difficult to expose except under ex-
treme load, so the ability to generate random patterns, or toload complex predefined patterns
from disk, is also desirable. For CAs such as Life, learning to recognise correct and incorrect
behaviour by eye is straightforward.

The output clearly must include the state of all of the cells;it is also helpful to display
statistics such as the number of active cells. In order to obtain reasonable display perfor-
mance, it is desirable to only update the screen once per generation (or even less often); this



A.T. Sampson et al. / Lazy Cellular Automata with Communicating Processes 167

can be done by having a simulation process send a “tick” to thedisplay once per generation.
Depending on how the display is implemented, it may be necessary for it to keep its own state
array for all the cells; this can allow more interesting visualisations than simply showing the
cells’ states. For example, it is useful in Life to show how long each cell has been alive; the
present framework uses theoccam-π OpenGL bindings [6] to display a 3D projection of the
Life grid where cells’ ages are represented by their heightsand colours.

3. Sequential Approach

The simplest approach to simulating Life is to walk over the entire grid for each generation,
computing the new state of each cell (typically writing it into a second copy of the grid, which
is exchanged with the first at the end of each step). This algorithm is O(number of cells in the
grid).

As the majority of existing Life implementations are sequential, some techniques have
been devised to speed up simulation. The most promising is Bill Gosper’s HashLife algo-
rithm [7], which computes hash functions over sections of the grid in order to spot repeating
patterns; by caching the new state resulting from such patterns the first time they are com-
puted, several generations of the new state for that region may simply be retrieved from the
cache rather than computing it again, provided no other patterns interact with it. HashLife is
particularly useful for quickly computing the outcome of a long-running Life pattern when
there is no need to show the intermediate steps. The performance depends on the type of
pattern being simulated; patterns with many repeating elements will perform very well, but
the worst-case behaviour (where the pattern progresses without repetition) is worse than the
simple approach, since hash values are being computed for nogain.

The sequential algorithms typically have good cache locality, and can thus operate very
efficiently on a single processor. (Life has even been implemented using image manipulation
operations on a graphics card processor.) However, in orderto simulate very large Life grids
– those with hundreds of millions of active cells – at an acceptable speed, we need to take
advantage of multiple processors and hosts; we must investigate parallel algorithms.

4. Process-per-Cell Approaches

We examine a number of CSP-based parallel approaches to modelling Life in which each
Life cell is represented by a process, starting with the simplest approach and demonstrating
how incremental changes may be made to the model to improve performance.

4.1. Simple Concurrent Approach

The simplest parallel model of Life using a CSP approach is tohave one process for each
cell, connected using channels to form a grid (see Figure 2).

Wiring up the channels correctly is the most complex part of this approach – one ap-
proach is to say that each cell “owns” its outgoing channels,which are numbered from 0 to 7
clockwise starting from the top; channelN outgoing then connects to channel(N +4) mod 8
on its destination cell, which can be found by adding an appropriate offset to the current lo-
cation (see Figure 3). The easiest way to deal with the connections at the edge of the grid is
to wrap them around (making the grid topologically equivalent to a torus); alternately, they
may connect to “sink cells” which behave like regular cells but act as if they are always dead.
None of the cells need to know their absolute locations in thegrid.

On each step, each cell must find out the state of those around it. This is done with an
I/O-PAR exchange [8] in which each cell, in parallel, outputs its state to its neighbours and



168 A.T. Sampson et al. / Lazy Cellular Automata with Communicating Processes

Figure 2. Grid of cell processes with interconnecting channels.

INITIAL [Height][Width]BOOL initial.state IS [...]:

[Height][Width]CHAN BOOL changes:

[Height][Width][8]CHAN BOOL links:

VAL [8]INT y.off IS [-1, -1, -1, 0, 0, 1, 1, 1]:

VAL [8]INT x.off IS [-1, 0, 1, -1, 1, -1, 0, 1]:

INT FUNCTION wrap (VAL INT v, max) IS (v + max) \ max:

PAR

display (changes)

PAR y = 0 FOR Height

PAR x = 0 FOR Width

[8]CHAN BOOL from.others IS

[i = 0 FOR 8 |

links[wrap(y + y.off[i], Height)]

[wrap(x + x.off[i], Width)]

[(i + 4) \ 8]]:

cell (from.others, links[y][x], changes[y][x],

initial.state[y][x])

Figure 3. Code to set up Life grid.

to the display, and reads its neighbours’ state. Once the cell knows its neighbours’ states,
it computes its own state for the next generation (see Figure4). As each cell must do nine
outputs and eight inputs for each generation, there is no need for an external clock; the entire
grid stays synchronised.

The I/O-PAR design rule guarantees that this implementation is free from deadlock.
However, it runs very slowly – particularly when compared toa sequential implementation –
because the majority of the time is spent doing communications, many of which are carrying
state that has not changed. As we know that a Life cell’s statewill not change unless its
neighbours’ states have changed, this is wasteful, particularly for sparse patterns on a large
grid.

4.2. Using a Barrier

We thus want to avoid communicating except upon state changes: a cell should only broadcast
its state to its surrounding cells when it changes. This implies that we cannot use the I/O-
PAR approach any more. Furthermore, it is possible that two groups of cells which are active
may not be in contact with each other, so the inter-cell communications cannot provide the
“generation tick”; another approach must be found.



A.T. Sampson et al. / Lazy Cellular Automata with Communicating Processes 169

PROC cell ([8]CHAN BOOL inputs, outputs,

CHAN BOOL changes!,

VAL BOOL initial.state)

INITIAL BOOL my.state IS initial.state:

[8]BOOL neighbour.states:

WHILE TRUE

SEQ

PAR

changes ! my.state

PAR i = 0 FOR 8

PAR

outputs[i] ! my.state

inputs[i] ? neighbour.states[i]

my.state := compute.new.state (neighbour.states)

:

Figure 4. Code for one Life cell using the “simple” approach.

We could synchronise all the cells by having a central “clock” process with a channel
leading to each cell, which outputs in parallel to all of them; however, we are trying toreduce
the number of communications per generation! Fortunately,CSP provides a more efficient
alternative in multiway events, which are available inoccam-π and JCSP as barrier synchro-
nisations. Barriers maintain an “enrolled” count of processes which may synchronise upon
them; a process that attempts to synchronise will not proceed until all processes enrolled with
the barrier are attempting to do so. We can provide generation synchronisation by making
cell processes synchronise on a barrier shared with all the other cells in the grid.

Cells start by performing a single I/O-PAR exchange, as in the simple approach, in order
to obtain the initial state of their neighbours; this could be avoided if all cells had access to
a shared initial state array. The state of the cells around them is now held as a simple count
of live cells. For each generation, a cell first computes its new state; if it has changed, it
broadcasts it to the cells around it and to the display. It then synchronises on the barrier, and
finally polls its input channels to collect any changes that have been sent by its neighbours,
adjusting the count of live neighbours appropriately (see Figure 5).

This approach would cause instant deadlock if regular unbufferedoccam-π channels –
which cause writes to block until a matching read comes along, and vice versa – were used to
connect the processes, since all writes are done before the barrier synchronisation and reads
afterwards. Instead, the channels should be one-place buffered – that is, a process may write
one message to the channel without blocking, and the read endmay asynchronously collect
the message at some point in the future. Unfortunately, while JCSP provides N-buffered
channels,occam-π does not; it is, however, possible to simulate them using an “id” buffer
process running at high priority [9]. The high priority guarantees that all the buffer processes
will run before the barrier synchronisation completes. (This is strictly an abuse of the priority
system, which is meant to be used for advisory purposes; however, we have found priorities
useful for prototyping new communications mechanisms likethis.)

With this approach, we are now only communicating when a state change occurs. How-
ever, all the cells on the grid are still taking part in the barrier synchronisation on each cycle;
it is faster, but we can do better.

4.3. Resigning from the Barrier – The Lazy Model

A process that is enrolled on a barrier may also resign from it. A resigned process acts as
through it were not enrolled; the barrier does not wait for itto synchronise before allowing
other processes to run. We can take advantage of this to make cells “sleep” whilst nothing



170 A.T. Sampson et al. / Lazy Cellular Automata with Communicating Processes

PROC cell ([8]ONE-BUFFERED CHAN BOOL inputs, outputs,

CHAN CHANGE changes!, BARRIER bar,

VAL BOOL initial.state)

INITIAL BOOL my.state IS initial.state:

INT live.neighbours:

SEQ

... do one I/O-PAR exchange as before to count

initially-alive neighbours

WHILE TRUE

BOOL new.state:

SEQ

... compute new.state based on live.neighbours

IF

new.state <> my.state

PAR -- state changed

my.state := new.state

PAR i = 0 FOR 8

outputs[i] ! new.state

changes ! new.state

TRUE

SKIP -- no change

SYNC bar

SEQ i = 0 FOR 8

PRI ALT

BOOL b:

inputs[i] ? b

... adjust live.neighbours

SKIP

SKIP -- just polling

:

Figure 5. Code for one Life cell using the “barrier” approach.

around them is changing. This results in “lazy simulation”,where cells only execute when it
is absolutely necessary.

...

IF

new.state <> my.state

SEQ

... broadcast new state as before

TRUE

SEQ -- no change, so go to sleep

... set priority to high

RESIGN bar

ALT i = 0 FOR 8

BOOL b:

inputs[i] ? b

... adjust live.neighbours

SYNC bar

... set priority to normal

...

Figure 6. Changes to the “barrier” approach to support resignation.

This requires some simple modifications to the “barrier” approach. The basic idea is that
if the state has not changed, then the process resigns from the barrier and performs a regular
ALT across its input channels; it will thus not run again until itreceives a change message



A.T. Sampson et al. / Lazy Cellular Automata with Communicating Processes 171

from a neighbour, at which point it will rejoin the barrier, synchronise on it, and continue as
it did with the previous approach (see Figure 6).

However, we have also had to insert some priority changes. Ifall processes are running at
the same priority, then the barrier resignation causes a race condition to be present: between
the ALT and the end of theRESIGN block, it is possible that all the other processes would
synchronise on the barrier, meaning that when this process synchronises it must wait for
the next generation. The priority changes are the simplest way to accomplish this, but other
approaches are arguably more correct [10].

This optimisation causes a significant performance improvement, since only active cells
occupy CPU time: a small glider moving across a huge grid willonly require the cells that the
glider touches to run. For typical patterns, performance isnow rather better than a sequential
simulation of the same grid, and the performance is much better than the first parallel ap-
proach described: after fifty generations on a randomly-initialised large grid, this approach
was a factor of 15 faster than the original approach, and the relative performance increases
further as the number of active cells decreases. However, itstill uses far more memory, as
there is a dormant process for each grid cell with a number of channels attached to it.

4.4. Using Shared Channels

Memory usage may be reduced significantly by cutting down on the number of channels.
Since Life cells do not care about which neighbouring cell a change message was received
from, we can take advantage of anotheroccam-π and JCSP feature: shared channels. The
approach is simply to replace the eight channels coming intoeach cell with a single shared
channel; each of the eight neighbouring processes holds a reference to the shared channel.

The code is much the same as the previous approach: the only change is to the polling
code, which must poll the shared channel repeatedly until itsees no data. It is also necessary
for the one-place buffered channels to become eight-place buffered channels, since it is pos-
sible that all eight cells surrounding a cell may have changed. (To simulate this without real
buffered channels, the approach is to make the buffers writeto the eight neighbouring cells
in parallel.)

We have thus reduced the number of channels by a factor of eight. In memory terms, this
is not quite as good as it looks, since the buffer size in each channel has been increased by a
factor of eight, and some overheads are caused by the channels being shared; nonetheless we
have saved memory, and made the code a little more straightforward too.

More importantly, we have freed the code from the constraints of a rectangular grid. It
would now be easy to use the same cells for a grid with a different number of neighbours, or
even on “grids” with non-regular topologies such as Penrosetiles [11].

While this implementation scales significantly better thanthe conventional sequential
implementation – and even performs better in many cases – itsmemory usage is still high.

4.5. Using Forking – The Just-In-Time Model

The major problem with the previous approach is that there isstill one dormant process per
grid cell; whileoccam-π processes are extremely lightweight compared to OS threads, they
still require space to hold their internal state variables.Fortunately, we can avoid dormant
processes entirely usingoccam-π’s “forking” mechanism.

Forking is a safer variant of thread-spawning, in which parameters are passed safely
with the semantics of channel communication, and an enclosingFORKING block waits for all
processesFORKed inside it to finish. It is commonly used to spawn worker processes to handle
incoming requests, as a more efficient replacement for the “pool of workers” approach that
is often found in classicaloccam code.



172 A.T. Sampson et al. / Lazy Cellular Automata with Communicating Processes

REC PROC cell ([Height][Width]PORT BOOL state, running,

MOBILE BARRIER bar, VAL INT y, x)

SEQ

SYNC bar -- Phase 2 (cells are started from Phase 1)

INITIAL BOOL me.running IS TRUE:

WHILE me.running

BOOL new.state:

SEQ

SYNC bar -- Phase 1: read state, atomic set running

... compute new.state from neighbours

IF

new.state <> state[y][x]

PAR i = 0 FOR 8

... compute neighbour location (n.y, n.x)

INITIAL BOOL b IS TRUE:

SEQ

atomic.swap (running[n.y][n.x], b)

IF

b -- neighbour already running

SKIP

TRUE -- neighbour not running

FORK cell (state, running, changes!,

bar, n.y, n.x)

TRUE

me.running := FALSE

SYNC bar -- Phase 2: write state, clear running

state[y][x] := new.state

running[y][x] := FALSE

:

Figure 7. Code for one Life cell using the “forking” approach.

For this example, we shall do away entirely with channels forinter-cell communication
– a very nontraditional approach foroccam! Instead, we use sharedPORT data with phased
access controlled by a barrier [10]. The framework starts the simulation byFORKing off a set
of cell processes for the cells that are initially active. Each generation then consists of two
phases. In Phase 1, the cell reads the states of the cells around it (directly from the shared state
array), computes its new state, and ensures that any cells that need to change are running. In
Phase 2, the cell writes its own state back to the shared array(see Figure 7).

The display update can now be done more efficiently: the display process shares the state
array and the barrier with the cells, and follows the same phase discipline, reading the state
array in Phase 1. It may even be possible to use the computer’sdisplay memory directly as
the state array, doing away with the separate display process entirely.

The logic to ensure that cells are started correctly requires some explanation. Since a
cell may become active for more than one reason – for example,if the cells above and below
it both change state – it is necessary to prevent more than onecell process beingFORKed
for the same cell. A shared “running” array is used for this. In Phase 1, cells atomically
swap a variable containing the valueTRUE with the element in the array representing the cell
they want to start; if the variable containsFALSE after the swap, the cell was not already
running and needs to be started. In Phase 2, dying cells resettheir slots in the “running”
array toFALSE. As new cell processes areFORKed off from Phase 1, they must do an initial
barrier synchronisation to get into Phase 2 for the top of theloop. (The only action that would
normally be performed in Phase 2 is to write a changed cell’s state into the array, and a
newly-forked cell will not need to do that.)

The amortised cost of forking off new processes inoccam-π is very low (of the order of



A.T. Sampson et al. / Lazy Cellular Automata with Communicating Processes 173

70 IA32 instructions), so the sample code will happily consider a cell “dead” if it has been
inactive for a single generation. In practice, this is rather pessimistic for most Life patterns;
many cells will toggle on and off with a period greater than two generations. If we wished to
reduce the rate at which processes are created and destroyed, a simple heuristic could be put
into place: count the number of generations that the cell hasbeen inactive, and only cause
the cell process to die once it has been inactive for N generations. This may result in better
performance with JCSP on a system that uses native threads.

We now have a very efficient parallel Life implementation in which only as many pro-
cesses as are needed are running at any one time – process creation is done “just in time”.
However, it relies upon shared memory, and thus cannot be implemented (efficiently) across
a cluster of machines. For a cluster solution, our approach needs further modification.

4.6. Dynamic Network Creation

As occam programmers have known since the 1980s, CSP channels provide a convenient
way of modelling network connections between discrete processors. We would therefore like
to use channels to connect up our cells while keeping as many of the advantages of the
“forking” approach as possible – in particular, only havingas many processes in memory as
are necessary for the level of activity on the grid. To do this, we will need to dynamically build
channel connections between cells – which we can do usingoccam-π’s mobile channels [9].

Figure 8. Ether surrounding clumps of active processes.

As with the previous approach, problems are caused when two clusters of cells split
apart then rejoin, causing the cells between them to be activated for multiple reasons. In this
case, it is necessary to connect up the channels correctly between the groups of rejoining
cells. Previously we solved this sort of problem using shared data and atomic operations;
now we shall instead use a coordinating process which manages channel ends that are not
connected to active processes. As, from the modelling perspective, this process occupies the
space around and between the clusters of active cells, it is called the “ether” (see Figure 8).

Cells now need to know their locations relative to an arbitrary reference point, in order
that the ether can identify clusters of cells that drift apart and rejoin. For a non-regular topol-
ogy, it may be possible to use unique identifiers rather than coordinates, and use external data
structures to represent the relationships between cells; that scheme is rather less flexible than
the shared-channels approach, but may be easier to manage under some circumstances.

Each cell process has channels connecting it to the cells around it (either shared or un-
shared), much like our previous parallel approaches, except now they are mobile channels,
the ends of which may be passed around between processes. Each process also has a connec-
tion to the ether (via a channel shared between all cells); when it goes inactive and exits, it



174 A.T. Sampson et al. / Lazy Cellular Automata with Communicating Processes

sends a message to the ether returning its channel ends. Fromthe perspective of the cell, all
channels are connected to other cells; however, they may actually connect to the ether.

When the ether receives a change notification from a cell, it spawns a new cell in the ap-
propriate location, checking its internal data structuresto see whether it should be connected
to any other cells in its vicinity using other channel ends that the ether is holding. If the ether
can reuse existing channels it will; otherwise it will create new mobile channels, keep one
end, and pass the other to the new process. (Since the search for existing channel ends is done
purely on the basis of coordinates, it should be possible to do it very efficiently within the
ether.)

As well as cluster-friendliness, using this approach also has the advantage that there is
no longer a need for a big array of state. Indeed, sections of the grid that are inactive can
just disappear, provided their states are known to the coordinating process; if they consist
of empty space then this is easy. This approach should therefore work very well for testing
gliders, spaceships and other Life patterns that move across the grid leaving little or nothing
behind them; a feature that it has in common with HashLife. Visualising the output from a
Life simulation implemented this way could be done by automatically zooming the display to
encompass the section of the field that is currently being simulated; this could produce a very
compelling visualisation for space-fillers and patterns such as the R-pentomino that expand
from a simple cluster.

One final problem: the single ether process is a classic bottleneck; not a desirable feature
for a parallel system, particularly if we want to make our cluster network topology mimic the
connections in our Life grid.

4.7. Removing the Bottleneck

The final change is to parallelise the ether. This may be done straightforwardly by divid-
ing it up into sections by coordinates (wrapping around so that an infinitely large grid may
be simulated). Adjacent ether processes would need to communicate in order to create new
processes and channels within the appropriate ether; air traffic controllers in the real world
provide an appropriate analogy. As processes that need to communicate with each other will
most likely be registered with the same ether, this approachoffers good locality for cluster
implementations of Life. In environments which do not provide transparent network chan-
nels, the ether processes can also be made responsible for setting up appropriate adaptors at
machine boundaries.

5. Process-per-Block Approaches

While we have described several efficient ways of implementing Life usingoccam-π’s fa-
cilities, all of the approaches described use one CSP process per cell, and thus still have
significantly higher per-cell overhead than the existing sequential approaches. However, this
is relatively easy to fix: all of the above approaches may be applied equally well to situa-
tions where each “cell” process is actually simulating a group of cells using a sequential (or
even internally parallel) approach. The only change is thatthe state to be exchanged between
processes becomes the set of states of the cells on the adjoining edges or corners.

Existing sequential approaches can be used virtually unmodified to obtain high perfor-
mance. It may even be possible to switch between several different sequential approaches
depending on the contents of the block; for example, the trade-off between HashLife and a
“plain” sequential algorithm could be made on the fly depending upon the cache hit rate. To
minimise communication costs when two chunks are on the samemachine, mobile arrays of
data could be swapped back and forth, or shared data could be used, protected by a barrier.



A.T. Sampson et al. / Lazy Cellular Automata with Communicating Processes 175

6. Conclusion

We have presented a number of approaches for simulating cellular automata in efficient ways
in extended-CSP programming environments. It is to be hopedthat some of these ideas could
be used to implement highly-parallel CA simulators that canoperate efficiently on extremely
large grids. It should be possible to extend these ideas beyond CAs and into other cases where
many autonomous entities need to be simulated – for example,finite element analysis or
computational fluid dynamics.

We have also presented a number of applications for new functionality in theoccam-π
environment: in particular, some of the first practical usesfor barriers and safely-shared data.

7. Acknowledgements

The authors would like to acknowledge EPSRC’s support for this work through both a re-
search studentship (EP/P50029X/1) and the TUNA project (EP/C516966/1).

References

[1] F.R.M. Barnes.Dynamics and Pragmatics for High Performance Concurrency. PhD thesis, University of
Kent at Canterbury, June 2003.

[2] P.H. Welch. Process Oriented Design for Java: Concurrency for All. In H.R.Arabnia, editor,Proceed-
ings of the International Conference on Parallel and Distributed Processing Techniques and Applications
(PDPTA’2000), volume 1, pages 51–57. CSREA, CSREA Press, June 2000.

[3] M. Gardner. The fantastic combinations of John Conway’snew solitaire game “life”.Sci. Amer., 223:120–
123, October 1970.

[4] A. Adamatzky, editor.Collision-Based Computing. Springer Verlag, 2001.
[5] A.K. Dewdney. Computer Recreations.Sci. Amer., 262:146, January 1990.
[6] D.J. Dimmich and C.L. Jacobsen. A foreign function interface generator for occam-pi. In J. Broenink,

H. Roebbers, J. Sunter, P.H. Welch, and D.C. Wood, editors,Communicating Process Architectures 2005,
Concurrent Systems Engineering, pages 235–248, IOS Press,The Netherlands, September 2005. IOS
Press.

[7] R.W. Gosper. Exploiting regularities in large cellularspaces.Physica D, 10:75–80, 1984.
[8] P.H. Welch, G.R.R. Justo, and C.J. Willcock. Higher-Level Paradigms for Deadlock-Free High-

Performance Systems. In R. Grebe, J. Hektor, S.C. Hilton, M.R. Jane, and P.H. Welch, editors,Transputer
Applications and Systems ”93, Proceedings of the 1993 WorldTransputer Congress, volume 2, pages
981–1004, Aachen, Germany, September 1993. IOS Press, The Netherlands. ISBN 90-5199-140-1.

[9] F.R.M. Barnes and P.H. Welch. Prioritised dynamic communicating processes: Part 1. In J. Pascoe,
P.H. Welch, R. Loader, and V. Sunderam, editors,Communicating Process Architectures 2002, volume 60
of Concurrent Systems Engineering, pages 321–352, IOS Press, The Netherlands, September 2002. IOS
Press.

[10] F.R.M. Barnes, P.H. Welch, and A.T. Sampson. Barrier synchronisations for occam-pi. InProceedings of
the 2005 International Conference on Parallel and Distributed Processing Techniques and Applications
(PDPTA’2005). CSREA press, June 2005. to appear.

[11] R. Penrose. U.S. Patent #4,133,152: Set of tiles for covering a surface, 1979.


