Computer Science at Kent

New eta-reduction and Church-Rosser

Yong Luo

New eta-reduction and Church-Rosser

Yong Luo
Computing Laboratory, University of Kent, Canterbury, UK
Email: Y.Luo@kent.ac.uk

Abstract

This paper introduces a new eta-reduction rule for λ-calculus with dependent types and prove the property of Church-Rosser.

1 Introduction

For the simple λ-calculus, the property of Church-Rosser w.r.t. β and η reduction holds, no matter a term is well-typed or not, and the methods of proving this property vary [Bar84,Tak95,Nip01]. Some systems such as Edinburgh Logical Framework [HHP87,HHP92] have β-reduction only, and the proof method is known as that of Tait and Martin-Löf. However, for some dependently typed systems such as Martin-Löf's Logical Framework [ML84,NPS90,Luo94], the story becomes very different because illtyped terms may not have this property w.r.t. β and η-reduction. The proofs for such systems are very difficult because one has to prove that "well-typed terms have the property of Church-Rosser" [Gog94]. In this paper, a new eta-reduction is introduced in order to give an easy proof of the property of Church-Rosser, and the property does not rely on whether terms are well-typed or not. The new eta-reduction is sufficient for our understanding of eta-reduction in dependent type systems, in the sense that a property that holds w.r.t. the old one also holds w.r.t. the new one.

In Section 2, we give counter examples to demonstrate the problem with the property of Church-Rosser w.r.t. the β-reduction and the old η-reduction. In Section 3, new eta-reduction η^{\prime} and its one-step reduction are introduced, and the relations between the new and the old (normal) eta-reduction are discussed. In Section 4, we prove the property of ChurchRosser w.r.t. β and η^{\prime}-reduction, which holds without the condition of well-typedness. The conclusion is given in the last section.

2 Old reduction rules

In this section, we present a basic definition of terms and knids, and the old β and eta-reduction rules. Counter examples are also given to demonstrate the problem with the property of Church-Rosser.

Definition 1. (Terms and Kinds)

- Term

1. a variable is a term,
2. λx : K.M is a term if x is a variable, K is a kind and M is a term,
3. $M N$ is a term if M and N are terms.

- Kind

1. Type is a kind,
2. $E l(M)$ is a kind if M is a term,
3. $\left(x: K_{1}\right) K_{2}$ is a kind if K_{1} and K_{2} are kinds.

Remark 1. Terms and kinds are mutually and recursively defined.
Notation: Following the tradition, Λ denotes the set of all terms and Π the set of all kinds. We shall use M, N, P, Q, R for arbitrary terms, and K for an arbitrary kind, and x, y, z for arbitrary variables. We also write A for $E l(A)$ when no confusion may occur.

The old (normal) reduction rules:

$$
\begin{gathered}
(\lambda x: K . M) N \longrightarrow \beta[N / x] M \\
\lambda x: K . M x \longrightarrow_{\eta} M \quad x \notin F V(M)
\end{gathered}
$$

Example 1. (Counter examples) The property of Church-Rosser may not hold for ill-typed terms. The following examples will show the problem.

$$
\begin{aligned}
& \lambda x: A .(\lambda y: B . y) x \longrightarrow_{\beta} \lambda x: A . x \\
& \lambda x: A .(\lambda y: B . y) x \longrightarrow_{\eta} \lambda y: B . y \\
& (\lambda z:(y: B) B . \lambda x: A . z x)(\lambda y: B . y) \\
& \longrightarrow_{\beta} \lambda x: A .(\lambda y: B . y) x \\
& \longrightarrow \beta \lambda x: A . x \\
& (\lambda z:(y: B) B . \lambda x: A . z x)(\lambda y: B . y) \\
& \longrightarrow_{\eta}(\lambda z:(y: B) B . z)(\lambda y: B . y) \\
& \longrightarrow_{\beta} \lambda y: B . y
\end{aligned}
$$

where A and B are distinct variables. There is no common reduct for $\lambda x: A . x$ and $\lambda y: B . y$.

3 New eta-reduction rule

In this section, we introduce a new eta-reduction rule and its one-step reduction, and discuss the relations between the old and new.

Definition 2. (Base terms)

- a variable is a base term,
- $M N$ is a base term if M is a base term.

Notation: We shall use \bar{R} for $R_{1}, R_{2}, \ldots, R_{n}$ for some $n \geq 0$, and $M \bar{R}$ for $\left(\ldots\left(\left(M R_{1}\right) R_{2}\right) \ldots R_{n}\right)$, and $x \bar{R}$ for an arbitrary base term.

Definition 3. (Head of terms)

- head $(x)=x$,
- head $(\lambda x: K . M)=\lambda x: K . M$,
- head $(M N)=h e a d(M)$.

Lemma 1. If a term is not a base term, then the head of the term is of the form $\lambda x: K . M$.

New redex for eta-reduction

There are two different forms of redexes: $(\lambda x: K . M) N$ and $\lambda x: K .(y \bar{N}) x$ when $x \notin F V(y \bar{N})$. The reduction rules for these redexes are the following.

$$
\begin{gathered}
(\lambda x: K . M) N \longrightarrow_{\beta}[N / x] M \\
\lambda x: K .(y \bar{N}) x \longrightarrow_{\eta^{\prime}} y \bar{N} \quad x \notin F V(y \bar{N})
\end{gathered}
$$

The one-step β and η^{\prime}-reduction are defined in Figure 1.
Remark 2. We have the following remarks.

- The one-step β-reduction is the same as usual, but the redex for the new eta-reduction rule $\left(\eta^{\prime}\right)$ has a more restricted form (i.e. $y \bar{N}$ is a base term). For the term $\lambda x: A .(\lambda y: B . y) x$ in Example 1, the new eta-reduction rule $\left(\eta^{\prime}\right)$ cannot be applied because $\lambda y: B . y$ is not a base term.
- It is not the case that one has to do all the β-reductions first, then do η^{\prime}-reductions when reducing a term. For example, we have

$$
x(\lambda y: B \cdot z y)((\lambda x: A \cdot x) a) \longrightarrow_{\eta^{\prime}} x z((\lambda x: A \cdot x) a) \longrightarrow_{\beta} x z a
$$

One-step β-reduction:

$$
\begin{gathered}
\overline{(\lambda x: K \cdot M) N} \longrightarrow_{\beta}[N / x] M \\
\frac{M \longrightarrow_{\beta} M^{\prime}}{M N \longrightarrow_{\beta} M^{\prime} N}
\end{gathered} \begin{gathered}
\frac{N \longrightarrow_{\beta} N^{\prime}}{M N \longrightarrow_{\beta} M^{\prime}} \\
\frac{M \longrightarrow_{\beta} M^{\prime}}{\lambda x: K \cdot M \longrightarrow_{\beta} \lambda x: K \cdot M^{\prime}} \quad \frac{K \longrightarrow_{\beta} K^{\prime}}{\lambda x: K \cdot M \longrightarrow_{\beta} \lambda x: K^{\prime} \cdot M} \\
\frac{M \longrightarrow_{\beta} M^{\prime}}{E l(M) \longrightarrow_{\beta} E l\left(M^{\prime}\right)} \\
\frac{K_{1} \longrightarrow_{\beta} K_{1}^{\prime}}{\left(x: K_{1}\right) K_{2} \longrightarrow_{\beta}\left(x: K_{1}^{\prime}\right) K_{2}}
\end{gathered}
$$

One-step η^{\prime}-reduction:

$$
\begin{aligned}
& \frac{x \notin F V(y \bar{N})}{\lambda x: K \cdot(y \bar{N}) x \longrightarrow \eta^{\prime} y \bar{N}} \\
& \frac{M_{i} \longrightarrow \eta_{\eta^{\prime}} M_{i}^{\prime} \quad n \geq 1}{x M_{1} \ldots M_{i} \ldots M_{n} \longrightarrow \eta^{\prime} x M_{1} \ldots M_{i}^{\prime} \ldots M_{n}} \\
& \frac{M \longrightarrow_{\eta^{\prime}} M^{\prime}}{\lambda x: K . M \longrightarrow \eta^{\prime} \lambda x: K . M^{\prime}} \quad \frac{K \longrightarrow \eta_{\eta^{\prime}} K^{\prime}}{\lambda x: K . M \longrightarrow \eta^{\prime} \lambda x: K^{\prime} \cdot M} \\
& \frac{M \longrightarrow \eta_{\eta^{\prime}} M^{\prime}}{E l(M) \longrightarrow \eta^{\prime} E l\left(M^{\prime}\right)} \\
& \frac{K_{1} \longrightarrow \longrightarrow_{\eta^{\prime}} K_{1}^{\prime}}{\left(x: K_{1}\right) K_{2} \longrightarrow \eta^{\prime}\left(x: K_{1}^{\prime}\right) K_{2}} \quad \frac{K_{2} \longrightarrow \eta^{\prime} K_{2}^{\prime}}{\left(x: K_{1}\right) K_{2} \longrightarrow \eta^{\prime}\left(x: K_{1}\right) K_{2}^{\prime}}
\end{aligned}
$$

Figure 1. One-step reduction

Notations: Let \longrightarrow_{R} be one-step R-reduction. We denote $\longrightarrow \overline{\bar{R}}$ as the reflexive closure of \longrightarrow_{R}, and \rightarrow_{R} as the the reflexive, transitive closure of \longrightarrow_{R}, and $=_{R}$ as the R-convertibility.

Lemma 2. If $x \notin F V(M)$ and $M \rightarrow \beta \eta^{\prime} N$, then $x \notin F V(N)$.
In some cases, although there is a η^{\prime}-redex inside a term, this term may not have one-step η^{\prime}-reduction. For instance, $(\lambda x: A . y x) z$ only has β reduction although $\lambda x: A . y x$ is a η^{\prime}-redex. However, we have the following lemma.

Lemma 3. If there is a η^{\prime}-redex inside M, then M has a one-step reduction (i.e. either β or η^{\prime}-reduction).

Proof. By induction on M.

- If M itself is a η^{\prime}-redex, then the statement is true.
- If $M \equiv x N_{1} \ldots N_{n}$ and the redex is inside N_{i}, then by induction hypothesis, N_{i} has either β or η^{\prime}-reduction. By the one-step reduction rules in Figure 1, M has a one-step reduction.
- If $M \equiv \lambda x: K . N$ and the redex is inside K or N, then by induction hypothesis, K or N has either β or η^{\prime}-reduction. By the one-step reduction rules, M has a one-step reduction.
- If $M \equiv(\lambda x: K . P) N_{1} \ldots N_{n}(n \geq 1)$, then M has at least a one-step β-reduction.
- Other cases for kinds are trivial.

Relations between the old and new

Theorem 1. A normal form w.r.t. $\beta \eta^{\prime}$ is also a normal form w.r.t. $\beta \eta$, and vice versa.

Proof. We proceed the proof by contradiction. An interesting case is to prove that, a η-redex contains a β or η^{\prime}-redex. Then by Lemma 3, the whole term has a one-step reduction.

Suppose $\lambda x: K . M x$ is a η-redex, i.e. $x \notin F V(M)$. If M is a base term, then $\lambda x: K . M x$ is a η^{\prime}-redex. If M is not a base term, then by Lemma 1 , the head of M must be of the form $\lambda x: K^{\prime} . N$. So, $M x$ must contain a β-redex.

Lemma 4. A normal form (w.r.t. $\beta \eta$ or $\beta \eta^{\prime}$) is either of the form λy : $K^{\prime} . N$ or of the form $y \bar{N}$ (a base term).

Conjecture 1. If $x \notin F V(M)$ and $\lambda x: K . M x$ is well-typed, then λx : $K . M x={ }_{\beta \eta^{\prime}} M$.

Proof. We only give an informal proof here since the well-typedness has not been defined yet. We are going to prove that the property of ChurchRosser w.r.t. $\beta \eta^{\prime}$-reduction holds for any term, no matter it is well-typed or not. So well-typedness is out of scope of the paper, but the typing inference rules can be found in Appendix. We assume that well-typed terms have good properties such as strong normalisation.

Since $\lambda x: K . M x$ is well-typed, it is strongly normalising, and so is M. We first reduce M to a normal form M^{\prime}. By Lemma $4, M^{\prime}$ is either of the form $\lambda y: K^{\prime} . N$ or of the form $y \bar{N}$.

If $M^{\prime} \equiv y \bar{N}$, then we have

$$
\begin{aligned}
\lambda x: K . M x & ={ }_{\beta \eta^{\prime}} \lambda x: K . M^{\prime} x \\
& \equiv \lambda x: K \cdot(y \bar{N}) x \\
& ={ }_{\eta^{\prime}} y \bar{N} \\
& ={ }_{\beta \eta^{\prime}} M
\end{aligned}
$$

Note that $x \notin F V(y \bar{N})$ by Lemma 2.
If $M^{\prime} \equiv \lambda y: K^{\prime} . N$, because $\lambda x: K .\left(\lambda y: K^{\prime} . N\right) x$ is well-typed, we have $K={ }_{\beta \eta^{\prime}} K^{\prime}$. Then we have

$$
\begin{aligned}
\lambda x: K . M x & ={ }_{\beta \eta^{\prime}} \lambda x: K \cdot M^{\prime} x \\
& \equiv \lambda x: K .\left(\lambda y: K^{\prime} \cdot N\right) x \\
& ={ }_{\beta \eta^{\prime}} \lambda x: K^{\prime} \cdot\left(\lambda y: K^{\prime} \cdot N\right) x \\
& ={ }_{\beta} \lambda x: K^{\prime} \cdot[x / y] N \\
& ={ }_{\alpha} \lambda y: K^{\prime} \cdot N \\
& ={ }_{\beta \eta^{\prime}} M
\end{aligned}
$$

4 Proof of Church-Rosser

In this section, we give some important definitions such as Parallel Reduction and Complete Development for β-reduction, and prove the property of Church-Rosser.

Definition 4. (Parallel reduction for β) The parallel reduction, denoted by \Rightarrow_{β}, is defined inductively as follows.

1. $x \Rightarrow_{\beta} x$,
2. $\lambda x: K . M \Rightarrow_{\beta} \lambda x: K^{\prime} . M^{\prime}$ if $K \Rightarrow_{\beta} K^{\prime}$ and $M \Rightarrow_{\beta} M^{\prime}$,
3. $M N \Rightarrow_{\beta} M^{\prime} N^{\prime}$ if $M \Rightarrow_{\beta} M^{\prime}$ and $N \Rightarrow_{\beta} N^{\prime}$,
4. $(\lambda x: K . M) N \Rightarrow_{\beta}\left[N^{\prime} / x\right] M^{\prime}$ if $M \Rightarrow_{\beta} M^{\prime}$ and $N \Rightarrow_{\beta} N^{\prime}$,
5. Type \Rightarrow_{β} Type,
6. $E l(M) \Rightarrow_{\beta} \operatorname{El}\left(M^{\prime}\right)$ if $M \Rightarrow_{\beta} M^{\prime}$,
7. $\left(x: K_{1}\right) K_{2} \Rightarrow_{\beta}\left(x: K_{1}^{\prime}\right) K_{2}^{\prime}$ if $K_{1} \Rightarrow_{\beta} K_{1}^{\prime}$ and $K_{2} \Rightarrow_{\beta} K_{2}^{\prime}$.

Based on the inductive definition of \Rightarrow_{β}, we have the following lemma.
Lemma 5. We have the following properties, where M and M^{\prime} represent arbitrary terms or kinds, and N and N^{\prime} are arbitrary terms.

1. $M \Rightarrow_{\beta} M$.
2. If $M \longrightarrow_{\beta} M^{\prime}$ then $M \Rightarrow_{\beta} M^{\prime}$.
3. If $M \Rightarrow_{\beta} M^{\prime}$ then $M \rightarrow_{\beta} M^{\prime}$.
4. If $M \Rightarrow_{\beta} M^{\prime}$ and $N \Rightarrow_{\beta} N^{\prime}$ then $[N / x] M \Rightarrow_{\beta}\left[N^{\prime} / x\right] M^{\prime}$.

Proof. For (1), (3) and (4), by induction on M; for (2), by induction on the context of the redex. We only prove the most difficult case (4) here.

1. If $M \equiv x$, then $x \Rightarrow_{\beta} x \equiv M^{\prime}$ and hence

$$
[N / x] M \equiv N \Rightarrow_{\beta} N^{\prime} \equiv\left[N^{\prime} / x\right] M^{\prime}
$$

2. If $M \equiv y \not \equiv x$, then $y \Rightarrow_{\beta} y \equiv M^{\prime}$ and hence

$$
[N / x] M \equiv y \Rightarrow_{\beta} y \equiv\left[N^{\prime} / x\right] M^{\prime}
$$

3. If $M \equiv \lambda y: K . P$, then $\lambda y: K . P \Rightarrow_{\beta} \lambda y: K^{\prime} . P^{\prime} \equiv M^{\prime}$ and $K \Rightarrow_{\beta} K^{\prime}$ and $P \Rightarrow_{\beta} P^{\prime}$. By induction hypothesis, we have $[N / x] K \Rightarrow_{\beta}\left[N^{\prime} / x\right] K^{\prime}$ and $[N / x] P \Rightarrow_{\beta}\left[N^{\prime} / x\right] P^{\prime}$. Hence

$$
[N / x] M \equiv \lambda y:[N / x] K \cdot[N / x] P \Rightarrow_{\beta}\left[N^{\prime} / x\right] M^{\prime}
$$

4. If $M \equiv P Q$, then there are two sub-cases.
(a) $P Q \Rightarrow_{\beta} P^{\prime} Q^{\prime} \equiv M^{\prime}$ and $P \Rightarrow_{\beta} P^{\prime}$ and $Q \Rightarrow_{\beta} Q^{\prime}$. By induction hypothesis, we have $[N / x] P \Rightarrow_{\beta}\left[N^{\prime} / x\right] P^{\prime}$ and $[N / x] Q \Rightarrow_{\beta}\left[N^{\prime} / x\right] Q^{\prime}$. Hence $[N / x] M \Rightarrow_{\beta}\left[N^{\prime} / x\right] M^{\prime}$.
(b) $P Q \equiv(\lambda y: K . R) Q \Rightarrow_{\beta}\left[Q^{\prime} / y\right] R^{\prime} \equiv M^{\prime}$ and $R \Rightarrow_{\beta} R^{\prime}$ and $Q \Rightarrow_{\beta}$ Q^{\prime}. By induction hypothesis, we have $[N / x] R \Rightarrow_{\beta}\left[N^{\prime} / x\right] R^{\prime}$ and $[N / x] Q \Rightarrow_{\beta}\left[N^{\prime} / x\right] Q^{\prime}$. Hence

$$
[N / x] M \Rightarrow_{\beta}\left[\left(\left[N^{\prime} / x\right] Q^{\prime}\right) / y\right]\left(\left[N^{\prime} / x\right] R^{\prime}\right) \equiv\left[N^{\prime} / x\right] M^{\prime}
$$

5. If $M \equiv$ Type, then Type \Rightarrow_{β} Type $\equiv M^{\prime}$ and hence $[N / x] M \Rightarrow_{\beta}$ $\left[N^{\prime} / x\right] M^{\prime}$.
6. If $M \equiv E l(P)$, then $E l(P) \Rightarrow_{\beta} E l\left(P^{\prime}\right) \equiv M^{\prime}$ and $P \Rightarrow_{\beta} P^{\prime}$. By induction hypothesis, we have $[N / x] P \Rightarrow_{\beta}\left[N^{\prime} / x\right] P^{\prime}$. Hence $[N / x] M \Rightarrow_{\beta}$ $\left[N^{\prime} / x\right] M^{\prime}$.
7. If $M \equiv\left(y: K_{1}\right) K_{2}$, then $\left(y: K_{1}\right) K_{2} \Rightarrow_{\beta}\left(y: K_{1}^{\prime}\right) K_{2}^{\prime} \equiv M^{\prime}$ and $K_{1} \Rightarrow_{\beta}$ K_{1}^{\prime} and $K_{2} \Rightarrow_{\beta} K_{2}^{\prime}$. By induction hypothesis, we have $[N / x] K_{1} \Rightarrow_{\beta}$ $\left[N^{\prime} / x\right] K_{1}^{\prime}$ and $[N / x] K_{2} \Rightarrow_{\beta}\left[N^{\prime} / x\right] K_{2}^{\prime}$. Hence $[N / x] M \Rightarrow_{\beta}\left[N^{\prime} / x\right] M^{\prime}$.

From Lemma 5 (1), (2) and (3), we know that \rightarrow_{β} is the reflexive, transitive closure of \Rightarrow_{β}. Therefore, to prove the property of Church-Rosser w.r.t. β-reduction, it suffices to show the "diamond property" of \Rightarrow_{β}, i.e. if $M \Rightarrow_{\beta} N_{1}$ and $M \Rightarrow_{\beta} N_{2}$ then there is a N_{3} such that $N_{1} \Rightarrow_{\beta} N_{3}$ and $N_{2} \Rightarrow_{\beta} N_{3}$. But we will prove a stronger statement in Lemma 6.

Definition 5. (Complete development for β) We define a map $c d:: \Lambda \cup \Pi \rightarrow \Lambda \cup \Pi$.

1. $c d(x)=x$
2. $c d(M N)=\left\{\begin{array}{cl}x c d(N) & \\ \text { if } M \equiv x \\ c d(P Q) c d(N) & \\ \text { if } M \equiv P Q \\ {[c d(N) / x] c d(R)} & \\ \text { if } M \equiv \lambda x: K . R\end{array}\right.$
3.

$c d(\lambda x: K . M)=\lambda x: c d(K) \cdot c d(M)$
4. $c d($ Type $)=$ Type
5. $c d(E l(M))=E l(c d(M))$
6. $c d\left(\left(x: K_{1}\right) K_{2}\right)=\left(x: c d\left(K_{1}\right)\right) c d\left(K_{2}\right)$

Having defined parallel reduction \Rightarrow_{β} and complete development $c d$, we prove the following lemma.

Lemma 6. If $M \Rightarrow_{\beta} N$ then $N \Rightarrow_{\beta} c d(M)$.
Proof. By induction on M.

1. If $M \equiv x$, then $x \Rightarrow_{\beta} x \equiv N=c d(M)$.
2. If $M \equiv \lambda x: K . P$, then $\lambda x: K . P \Rightarrow_{\beta} \lambda x: K^{\prime} . P^{\prime} \equiv N$ and $K \Rightarrow_{\beta} K^{\prime}$ and $P \Rightarrow_{\beta} P^{\prime}$. By induction hypothesis, we have $K^{\prime} \Rightarrow_{\beta} c d(K)$ and $P^{\prime} \Rightarrow_{\beta} c d(P)$. Hence

$$
N \Rightarrow_{\beta} \lambda x: c d(K) \cdot c d(P)=c d(M)
$$

3. If $M \equiv x P$, then $x P \Rightarrow_{\beta} x Q \equiv N$ and $P \Rightarrow_{\beta} Q$. By induction hypothesis, we have $Q \Rightarrow_{\beta} c d(P)$. Hence

$$
N \Rightarrow_{\beta} x c d(P)=c d(M)
$$

4. If $M \equiv(P Q) R$, then $(P Q) R \Rightarrow_{\beta} M^{\prime} R^{\prime} \equiv N$ and $P Q \Rightarrow_{\beta} M^{\prime}$ and $R \Rightarrow_{\beta} R^{\prime}$. By induction hypothesis, we have $M^{\prime} \Rightarrow_{\beta} c d(P Q)$ and $R^{\prime} \Rightarrow_{\beta} c d(R)$. Hence

$$
N \nRightarrow_{\beta} c d(P Q) c d(R)=c d(M)
$$

5. If $M \equiv(\lambda x: K . P) Q$, then there are two sub-cases.
(a) $(\lambda x: K . P) Q \Rightarrow_{\beta}\left(\lambda x: K^{\prime} . P^{\prime}\right) Q^{\prime} \equiv N$ and $K \Rightarrow_{\beta} K^{\prime}, P \Rightarrow_{\beta} P^{\prime}$ and $Q \Rightarrow_{\beta} Q^{\prime}$. By induction hypothesis, we have $P^{\prime} \Rightarrow_{\beta} c d(P)$ and $Q^{\prime} \Rightarrow_{\beta} c d(Q)$. Hence

$$
N \equiv\left(\lambda x: K^{\prime} . P^{\prime}\right) Q^{\prime} \Rightarrow[c d(Q) / x] c d(P)=c d(M)
$$

(b) $(\lambda x: K . P) Q \Rightarrow_{\beta}\left[Q^{\prime} / x\right] P^{\prime} \equiv N$ and $P \Rightarrow_{\beta} P^{\prime}$ and $Q \Rightarrow_{\beta} Q^{\prime}$. By induction hypothesis, we have $P^{\prime} \Rightarrow_{\beta} c d(P)$ and $Q^{\prime} \Rightarrow_{\beta} c d(Q)$. By Lemma 5 (4), we have $\left[Q^{\prime} / x\right] P^{\prime} \Rightarrow_{\beta}[c d(Q) / x] c d(P)$. Hence $N \Rightarrow_{\beta} c d(M)$.
6. If $M \equiv$ Type, then Type \Rightarrow_{β} Type $\equiv N=c d(M)$.
7. If $M \equiv E l(P)$, then $E l(P) \Rightarrow_{\beta} E l\left(P^{\prime}\right) \equiv N$ and $P \Rightarrow_{\beta} P^{\prime}$. By induction hypothesis, we have $P^{\prime} \Rightarrow_{\beta} c d(P)$. Hence

$$
N \Rightarrow_{\beta} E l(c d(P))=c d(M)
$$

8. If $M \equiv\left(x: K_{1}\right) K_{2}$, then $\left(x: K_{1}\right) K_{2} \Rightarrow_{\beta}\left(x: K_{1}^{\prime}\right) K_{2}^{\prime} \equiv N$ and $K_{1} \Rightarrow_{\beta}$ K_{1}^{\prime} and $K_{2} \Rightarrow_{\beta} K_{2}^{\prime}$. By induction hypothesis, we have $K_{1}^{\prime} \Rightarrow_{\beta} c d\left(K_{1}\right)$ and $K_{2}^{\prime} \Rightarrow_{\beta} c d\left(K_{2}\right)$. Hence

$$
N \Rightarrow_{\beta}\left(x: c d\left(K_{1}\right)\right) c d\left(K_{2}\right)=c d(M)
$$

Theorem 2. (Church-Rosser for β) For an arbitrary term or kind M, if $M \rightarrow_{\beta} N_{1}$ and $M \rightarrow{ }_{\beta} N_{2}$ then there is a N_{3} such that $N_{1} \rightarrow_{\beta} N_{3}$ and $N_{2} \rightarrow{ }_{\beta} N_{3}$.

Proof. By Lemma 6 and the fact that \rightarrow_{β} is the transitive closure of \Rightarrow_{β}.
Lemma 7. For an arbitrary term or kind M, if $M \longrightarrow \eta_{\eta^{\prime}} N_{1}$ and $M \longrightarrow \eta^{\prime}$ N_{2} then there is a N_{3} such that $N_{1} \longrightarrow \bar{\eta}^{\prime} N_{3}$ and $N_{2} \longrightarrow \overline{\eta^{\prime}} N_{3}$.

Proof. By induction on M and analysing different cases of one-step η^{\prime} reduction. One interesting case is the following.
$M \equiv \lambda x: K .(y \bar{Q}) x \longrightarrow \eta^{\prime} y \bar{Q} \equiv N_{1}$ and $M \longrightarrow \eta^{\prime} \lambda x: K^{\prime} .(y \bar{Q}) x \equiv N_{2}$. Then, let $N_{3} \equiv N_{1}$ and we have $N_{1} \longrightarrow \underset{\eta^{\prime}}{=} N_{3}$ and $N_{2} \longrightarrow \underset{\eta^{\prime}}{=} N_{3}$.

Corollary 1. For an arbitrary term or kind M, if $M \longrightarrow{ }_{\eta^{\prime}}^{=} N_{1}$ and $M \longrightarrow \bar{\eta}^{\prime} N_{2}$ then there is a N_{3} such that $N_{1} \longrightarrow \overline{\eta^{\prime}} N_{3}$ and $N_{2} \longrightarrow{ }_{\eta^{\prime}}^{\overline{=}} N_{3}$.

Theorem 3. (Church-Rosser for η^{\prime}) For an arbitrary term or kind M, if $M \rightarrow \eta^{\prime} N_{1}$ and $M \rightarrow \eta^{\prime} N_{2}$ then there is a N_{3} such that $N_{1} \rightarrow \eta^{\prime} N_{3}$ and $N_{2} \rightarrow{ }_{\eta^{\prime}} N_{3}$.

Proof. By Corollary 1 and the fact that \rightarrow_{η} is the transitive closure of $\longrightarrow{ }_{\eta^{\prime}}$.

Lemma 8. For an arbitrary term or kind M, if $M \longrightarrow_{\beta} N_{1}$ and $M \longrightarrow \eta^{\prime}$ N_{2} then there is a N_{3} such that $N_{1} \longrightarrow \eta_{\eta^{\prime}} N_{3}$ and $N_{2} \longrightarrow \overline{\bar{\beta}} N_{3}$.

Proof. By induction on M and analysing different cases of one-step η^{\prime} and β-reduction. One interesting case is the following.

$$
M \equiv \lambda x: K \cdot(y \bar{Q}) x \longrightarrow_{\eta^{\prime}} y \bar{Q} \equiv N_{2} \text { and } M \longrightarrow_{\beta} \lambda x: K^{\prime} \cdot(y \bar{Q}) x \equiv N_{1} .
$$ Then, let $N_{3} \equiv N_{2}$ and we have $N_{1} \longrightarrow \eta^{\prime} N_{3}$ and $N_{2} \longrightarrow \overline{\bar{\beta}} N_{3}$.

Theorem 4. (Commutation for $\beta \eta^{\prime}$) For an arbitrary term or kind M, if $M \rightarrow \beta N_{1}$ and $M \rightarrow \eta^{\prime} N_{2}$ then there is a N_{3} such that $N_{1} \rightarrow \eta^{\prime} N_{3}$ and $N_{2} \rightarrow_{\beta} N_{3}$.

Proof. By Lemma 8.
Theorem 5. (Church-Rosser for $\beta \eta^{\prime}$) For an arbitrary term or kind M, if $M \rightarrow \beta \eta^{\prime} N_{1}$ and $M \rightarrow \beta \eta^{\prime} N_{2}$ then there is a N_{3} such that $N_{1} \rightarrow \beta \eta^{\prime}$ N_{3} and $N_{2} \rightarrow_{\beta \eta^{\prime}} N_{3}$.

Proof. By Theorem 2, 3 and 4.

5 Conclusion

For the λ-calculus defined in Definition 1, the property of Church-Rosser w.r.t. β and η-reduction is not an easy matter, unlike the systems with β-reduction only or the simple λ-calculus with β and η-reduction. In this paper, we introduce a new eta-reduction η^{\prime} and its one-step reduction. The property of Church-Rosser holds for β and η^{\prime}-reduction, without the condition of well-typedness.

Acknowledgements Thanks to Zhaohui Luo, Sergei Soloviev and James McKinna for discussions on the issue of Church-Rosser, and for reading the earlier version of the paper, and for their helpful comments and suggestions.

References

[Bar84] H.P. Barendregt. The Lambda Calculus: its Syntax and Semantics. NorthHolland, revised edition, 1984.
[Gog94] H. Goguen. A Typed Operational Semantics for Type Theory. PhD thesis, University of Edinburgh, 1994.
[HHP87] R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. Proc. 2nd Ann. Symp. on Logic in Computer Science. IEEE, 1987.
[HHP92] R. Harper, F. Honsell, and G. Plotkin. A framework for defining logics. Journal of ACM, 40(1):143-184, 1992.
[Luo94] Z. Luo. Computation and Reasoning: A Type Theory for Computer Science. Oxford University Press, 1994.
[ML84] P. Martin-Löf. Intuitionistic Type Theory. Bibliopolis, 1984.
[Nip01] Tobias Nipkow. More Church-Rosser proofs (in Isabelle/HOL). Journal of Automated Reasoning, 26:51-66, 2001.
[NPS90] B. Nordström, K. Petersson, and J. Smith. Programming in Martin-Löf's Type Theory: An Introduction. Oxford University Press, 1990.
[Tak95] Masako Takahashi. Parallel redeuctions in λ-calculus. Journal of Information and Computation, 118:120-127, 1995.

Appendix

Inference rules for a dependently typed logical framework

$$
\begin{gathered}
\\
\begin{array}{c}
<>\text { valid } \\
\frac{\Gamma \vdash K \text { kind } \quad x \notin F V(\Gamma)}{\Gamma, x: K \text { valid }} \\
\frac{\Gamma \vdash \text { valid }}{\Gamma \vdash \operatorname{kind}} \quad \frac{\Gamma \vdash A: \text { Type }}{\Gamma \vdash E l(A) k i n d} \\
\frac{\Gamma \vdash K \text { kind } \quad \Gamma, x: K \vdash K^{\prime} \text { kind }}{\Gamma \vdash(x: K) K^{\prime} k i n d} \\
\frac{\Gamma, x: K, \Gamma^{\prime} \text { valid }}{\Gamma, x: K, \Gamma^{\prime} \vdash x: K} \\
\frac{\Gamma, x: K \vdash k: K^{\prime}}{\Gamma \vdash \lambda x: K \cdot k:(x: K) K^{\prime}} \\
\frac{\Gamma \vdash k: K \quad \Gamma \vdash K^{\prime} \text { kind }}{\Gamma \vdash k: K^{\prime}}\left(K={ }_{\beta \eta^{\prime}} K^{\prime}\right) \\
\frac{\Gamma \vdash f:(x: K) K^{\prime} \quad \Gamma \vdash k: K}{\Gamma \vdash f(k):[k / x] K^{\prime}}
\end{array}
\end{gathered}
$$

