
Technical Report - Porting HaRe to the GHC
API

Chris Ryder and Simon Thompson

October 24, 2005

1 Background to the project

This technical report details a project occurring between February and July
of 2005. The aim of the project was to assess the effort required to port the
Haskell[6] refactoring tool, HaRe[4], from its current compiler front-end system,
Programmatica, to the newly developed GHC[5] API.

1.1 HaRe: An automated refactoring tool

Refactoring[1] is a software development process in which modifications are
made to source code to improve the structure of the code without affecting the
functionality of the code. Refactorings often have conditions which specify when
they can be safely applied. For example, renaming an identifier should not result
in any changes to the binding structure of the code. With some programming
languages it is possible to automate these refactorings, including checking the
conditions associated with a refactoring. HaRe is such an automated refactoring
tool for use with programs written in Haskell[6], a lazy functional programming
language.

HaRe is implemented in Haskell and to perform its task it must parse and
analyse Haskell source code. Rather than implement its own Haskell ‘front- end’
(lexer, parser, scope analysis, etc), HaRe uses the Programmatica[2] system.
Implementing the refactorings often requires a significant amount of boilerplate
code for traversing the Haskell abstract syntax tree representations. To further
aid the implementation of the refactorings, HaRe uses the Strafunski[3] generic
programming library. This is described in more detail in Section 3.2. The HaRe
development team are very grateful to the contributions and support provided
to the HaRe project by the Programmatica and Strafunski development teams.

Programmatica provides all the components of a Haskell front-end that HaRe
needs, but has some limitations:

• Programmatica supports only Haskell 98. Most non-trivial Haskell pro-
grams now use various extensions to the Haskell 98 standard which are
not supported by Programmatica. This has reduced the usefulness of the
HaRe refactoring tool to practising programmers.

• Type checking in Programmatica can be slow. The implementors of the
HaRe tool would like to make use of type information when performing

1

some refactorings, but obtaining such information using Programmatica
can become a performance bottleneck.

• Programmatica is not distributed with any compilers. The Programmatica
tool kit is not distributed with any of the commonly used compilers and
thus HaRe must either include Programmatica in its distribution or users
must download Programmatica themselves. However this is a relatively
minor issue.

1.2 GHC: The Glasgow Haskell Compiler

The most commonly used Haskell compiler for use in non-trivial projects is
GHC, the Glasgow Haskell Compiler. Indeed, GHC Haskell has become the de
facto standard Haskell dialect. GHC is an advanced optimising Haskell compiler
implemented in Haskell. Initially designed as a ‘work bench’ in which researchers
could try out implementation ideas, GHC has since become a production quality
compiler that supports a large number of sophisticated language extensions and
optimisations and as a result has become rather complex.

The Haskell community would like to be able to build on the GHC infras-
tructure in order to produce their own tools (refactoring tools, documentation
tools, editor plugins, etc), but the complex nature of GHC represents a signif-
icant hurdle to reusing its code. Recognising this, the GHC development team
has begun to provide an API with which Haskell programmers can gain access
to internal GHC functionality.

The API, sometimes known as ‘package GHC’ or ‘GHC as a package’, exposes
the entire internal structure and functionality of GHC to user programs. This
is a large and complicated selection of functions, and as such its main benefit
is the ease of using parts of GHC, relative to modifying or extracting parts of
GHC for one’s own use. However, the GHC team is in the process of producing
a more simplified API intended for use by utility writers.

The three main benefits of the GHC API over the Programmatica system
are:

• It provides support for all GHC compiler extensions, allowing utilities to
be used with most Haskell source code.

• It is well maintained by the GHC compiler development team, and should
therefore always contain support for the latest language extensions.

• In the future it will provide a layer of insulation against changes to the
internal organisation of GHC.

2 The Project

Because of the uncertainty over the future of the Programmatica system, as well
as its lack of support for extensions to the Haskell 98 standard, it is desirable to
port the HaRe tool from the Programmatica API to the GHC API. Such a move
would both secure the future support for HaRe, as well as encourage the wider
adoption of the HaRe tool by enabling its use on a greater range of programs.
This project aims to assess the effort required to perform such a port.

2

2.1 Issues to consider

When attempting to port the HaRe tool to a new front-end there are a number
of issues that must be addressed. The Programmatica front-end is focused on
providing facilities for a wide range of tools, whereas GHC front-end is focused
on providing facilities only for a compiler. In addition to this, the GHC front-
end contains a number of optimisations to reduce its memory usage or execution
time, and thus often program information in GHC is not retained past the point
at which it is used. These issues lead to Programmatica and GHC having quite
different APIs.

Fortunately, the HaRe tool contains an abstraction module which hides some,
but not all, of the Programmatica API. Thus it should be possible to port just
the abstraction module to the GHC API to gain most of the functionality of
HaRe. Generally, the changes required for porting HaRe to the GHC API do
not appear to be widely distributed in the source code. However, although
the necessary changes are fairly localised, porting to GHC requires most of
the abstraction module to be rewritten. Additionally, HaRe manipulates the
abstract syntax tree of the program being refactored. The abstract syntax tree
representations used by Programmatica and the GHC API are different, but
the syntax tree representation is not hidden by the HaRe abstraction module
and so this issue will need to be addressed in each individual refactoring. The
following examples shows one case where Programmatica and GHC use different
representations of Haskell syntax.

-- The representation of a Haskell function binding in Programmatica
-- with some data constructors ellided for clarity.
-- D e expression recursion type
-- p pattern recursion type
-- ds declaration recursion type
-- t type recursion type
-- c context recursion type
-- tp type pattern recursion type
data DI i e p ds t c tp

= ...
| HsFunBind SrcLoc [HsMatchI i e p ds]
| HsPatBind ...
| ...

-- The representation of a Haskell function binding in GHC with some
-- constructors ellided for clarity
data HsBind id
= FunBind (Located id)

Bool -- True => infix declaration
(MatchGroup id)
| PatBind ...
| ...

As well as this general issue, there were a number of smaller technical issues
which arose during the project. These smaller issues are described in the next
section.

3

3 Experiences

Performing this project required a number of tasks to be performed. These fall
into the following categories.

• Familiarisation with “Package GHC”.

• Familiarisation with HaRe and Strafunski.

• Attempt to port an existing refactoring to the GHC API.

In the rest of this section we describe in more detail the individual tasks
completed during the project.

3.1 Familiarisation with “Package GHC”

Before attempting to port HaRe to the Package GHC API, it was necessary
to first familiarise ourselves with the facilities it provides. Very early in the
project a number of the HaRe project members visited the GHC developers in
Cambridge, UK. This meeting had a number of aims:

• Demonstrate to the GHC team the interest of the HaRe project in using
the GHC API.

• To gain insight into the structure of the API

• To indicate to the GHC team the typical uses the HaRe tool might make
of the API, with a view to shaping the higher-level, and still developing,
GHC API.

Subsequently to the meeting with the GHC developers, we began to experi-
ment with Package GHC. The first task was build Package GHC, which initially
required additional options to be enabled in the CVS version of the GHC 6.5
source code. However, later CVS versions have the necessary options enabled
by default.

3.2 Familiarisation with HaRe and Strafunski

The HaRe tool makes extensive use of the Strafunski library. Strafunski provides
a library of generic programming routines. Generic programming is particularly
useful for implementing HaRe, which traverses the abstract syntax tree of the
program being refactored. Typically, implementing such syntax tree traversal
routines requires a great deal of boilerplate code which is tedious to write.
Strafunski provides a mechanism for generically specifying traversal routines,
such that one has only to write the “interesting” functionality, with all the
boilerplate code being produced by Strafunski.

Because Strafunski is such a vital building block for HaRe, it was necessary
to ensure that it could be used on the data types of the GHC API, in particular
the abstract syntax representation types which are directly manipulated by the
refactorings. To enable Strafunski to generically traverse arbitrary data types
it requires data types to be instances of two type classes, Data and Typeable.

The GHC data types did not have instances of these classes, so it was there-
fore necessary to add such instances and recompile GHC. However, this lead to
two problems.

4

• GHC uses mutually recursive modules for many of its abstract syntax
types. In order to break these cyclic dependencies, special .hi-boot files,
which specify place holders for identifiers used in the cycles, must be writ-
ten. However, .hi-boot files cannot contain instance definitions, making
it difficult to add the necessary Data and Typeable instances.

Simon Peyton-Jones kindly added support for instances in .hi-boot files
in GHC, but using this feature would require either a three stage build
process for Package GHC, or the liberal use of CPP conditions to hide the
Data and Typeable instances from versions of GHC which do not have
the necessary support.

After discussions with Simon Marlow regarding this issue, it was suggested
that the structure of the offending modules be refactored to break the
recursion in the modules. This was done very quickly but crudely by
placing all the recursive data types into a single module. This allowed
the project to continue, but would obviously require further work before
it could be considered for inclusion in future versions of GHC.

• For performance reasons, several data structures used by GHC incorpo-
rate unboxed types. Unfortunately GHC does not support automatically
deriving instances of type classes for unboxed types. It was therefore nec-
essary to write instances for such types manually.

3.3 An improved hasktags

GHC is distributed with a program called hasktags, which can be used to
generate a list of the location of definitions in a Haskell source file. However,
hasktags does not parse Haskell source code, but instead looks for type sig-
natures. As such, it fails to list definitions without type signatures, as well
as various other definitions such as instance declarations. In order to test the
use of Strafunksi on the GHC data types we implemented a simple hasktags
program that uses Package GHC to parse and type check Haskell sources files
and Strafunski to extract the locations of various definitions. Although our
implementation was very quickly written, it nonetheless still generates a more
complete list of definition locations than the GHC hasktags program. The
source code for our hasktags implementation is shown in Appendix A.

The implementation of our hasktags program showed that the necessary
GHC data types now had the required instances for Strafunski to be used, and
thus paved the way to start porting a refactoring.

3.4 Porting a refactoring

To begin assessing the ease or difficulty of porting HaRe to the GHC API, we
chose the simplest refactoring, renaming[4, 7], as our case study. The porting
process was performed by systematically attempting to compile the renaming
refactoring against the GHC API, and fixing the compile errors as they occurred.
This process showed that there were three main steps to porting the refactoring,
which are summarised below.

• Determine how to initialise the GHC API with the source files of the
program to be refactored.

5

• Determine how to extract GHC internal data such as bindings and scoping
information.

• Determine the differences in the abstract syntax representation data types
between Programmatica and the GHC API.

The porting process was centered on four modules, RefacLocUtils.hs,
RefacUtils.hs, RefacTypeSyn.hs and RefacUtils.hs. Much of the port-
ing effort involved determining how to extract information from the GHC API
which is readily and easily available from Programmatica. For instance, the
token stream of a source file is easily extracted from Programatica using the
parseSourceFile’ function, which takes a file path and returns various pieces
of information about the source file, including its token stream as a list of to-
kens. The GHC API, however, requires a state monad to be primed with the
necessary flags extracted from the GHC global state, the lexer function to be
repeatedly called until the end-of-file token is returned, and finally the list of
tokens extracted from the state monad. The difference between these two ap-
proaches is illustrated in the sample code below. It is also worth noting that
generating the ModSummary parameter from a FilePath in the GHC example
below requires several lines of code.

-- Extracting a token stream with Programmatica
progGetTokenStream :: FilePath -> [PosToken]
progGetTokenStream fp = ts
where (ts,_) = parseSourceFile’ fp

-- Extracting a token stream with the GHC API
ghcGetTokenStream :: Session -> ModSummary -> IO [Located Token]
ghcGetToken ses modSum =
do
dflags <- getSessionDynFlags ses
let

-- Get the string buffer containing the source code
Just sb = ms_hspp_buf modSum
-- Setup the monadic lexer state
st = mkPState sb (mkSrcLoc (moduleFS (ms_mod modSum)) 0 1) dflags
-- Extract the token stream from the lexer monad
tokStrm :: [Located Token]
tokStrm = case unP (lexer strmFunc) st of { POk _ s -> s ; _ -> [] }
-- Generate the token stream
strmFunc :: Located Token -> P [Located Token]
strmFunc lt@(L _ ITeof) = return [lt] -- End of file token
strmFunc lt = do { strm <- lexer strmFunc ; return $ lt:strm }

return tokStrm

Although the GHC API is obviously more verbose, it would be reasonably
straightforward to construct an abstraction module that could provide a uniform
interface to both the GHC and Programmatica front-ends.

Due to the limited time available for this project the renaming refactoring
has not been completely ported to the GHC API. The renaming refactoring
consists of two main parts, the part that extracts all the necessary information

6

to check the preconditions and the part that performs the actual manipulation
of the abstract syntax tree. The first part has been ported to the GHC API, but
the second part remains as work to be completed. Completing this second part
should be straightforward because the use of Strafunski minimises the coupling
to the abstract syntax data types, and it would be expected that completing the
port of the renaming refactoring could be completed within one or two full-time
person months.

4 Final thoughts

This project attempted to port the HaRe refactoring tool to a new compiler
front-end, which offers significant benefits over the system currently used by
the HaRe tool.

Unfortunately, we were unable to complete the porting of the renaming
refactoring in the time available to the project. It is estimated that half the
renaming refactoring has been ported to the GHC API, and no major technical
challenges are expected in porting the remainder of the refactoring.

It is worth noting that much of the work involved in porting the renaming
refactoring is generic across all the refactorings, and therefore porting the first
refactoring is most of the effort of porting HaRe.

There are two main areas of the GHC API where we would have wished for
improvements. Firstly, the GHC API is very large and complicated, but there
is little documentation to explain how the various functions should be used, or
data structures initialised. The lack of such documentation creates a significant
hurdle when beginning a project with the API.

The second area in which we would like to see improvements is the provision
of a higher level API than is currently provided by GHC. For instance, such a
high level API would hide as much detail about the various state mechanisms
used by GHC as possible. Work is currently underway to provide such a high
level API, and contributions and discussion is being actively sought by the GHC
development team.

In conclusion, there do not appear to be any significant technical difficulties
in porting the HaRe tool to the GHC API. Indeed the GHC API looks to be a
significant contribution to the Haskell community and is likely to spawn many
new projects.

Finally, we would like to thank Simon Peyton Jones and Simon Marlow for
their enthusiastic support during this project.

References

[1] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts. Refactoring:
Improving the Design of Existing Code. Addison-Wesley, Boston, MA, USA,
1999. http://www.refactoring.com/.

[2] Thomas Hallgren. Haskell tools from the Programatica project. In Proceed-
ings of the ACM SIGPLAN workshop on Haskell, pages 103–106, Uppsala,
Sweden, 2003. ACM Press.

7

[3] R. Lämmel and J. Visser. A Strafunski Application Letter. In V. Dahl
and P. Wadler, editors, Proceedings of Practical Aspects of Declarative Pro-
gramming (PADL’03), volume 2562 of LNCS, pages 357–375, New Orleans,
Louisiana, USA, January 2003. Springer-Verlag.

[4] Huiqing Li, Claus Reinke, and Simon Thompson. Tool support for refactor-
ing functional programs. In Johan Jeuring, editor, Proceedings of the ACM
SIGPLAN 2003 Haskell Workshop, pages 27–38, Uppsala, Sweden, August
2003. ACM Press.

[5] Simon Marlow and Simon Peyton Jones. The Glasgow Haskell Compiler.
Microsoft Research, Cambridge, UK. http://www.haskell.org/ghc/, De-
cember 2004.

[6] Simon Peyton Jones. Haskell 98 Language and Libraries. Cambridge Univer-
sity Press, Cambridge, UK, 2003. http://www.haskell.org/definition/.

[7] Simon Thompson, Claus Reinke, and Huiqing Le. The Refactoring Cat-
alogue: Renaming. http://www.cs.kent.ac.uk/projects/refactor-fp/
catalogue/Renaming.html, Oct 2005.

A An implementation of the hasktags program
using Strafunski and the GHC API

module Main where

import System
import Control.Exception
import System.IO.Unsafe
import System.IO
import List

-- Package GHC stuff
import GHC
import ErrUtils
import Outputable
import HsSyn
import SrcLoc
import RdrName
import Name
import CRSynTypes (HsBind(..), Sig (..))

-- Strafunski stuff
import StrategyLib
import MonadRun

main :: IO ()
main = do
args <- getArgs
realMain args

8

realMain :: [String] -> IO ()
realMain [] =
do
putStrLn "Usage: hasktags files"

realMain args =
(do
args0 <- GHC.init $ "-B/usr/local/fptools/lib/ghc-6.5":args
GHC.setMsgHandler (\m -> putStrLn ("hasktags: " ++ m))
ses <- GHC.newSession JustTypecheck
dflags0 <- GHC.getSessionDynFlags ses
(dflags1,fileish_args) <- GHC.parseDynamicFlags dflags0 args0
dflags2 <- GHC.initPackages dflags1
targets <- mapM (GHC.guessTarget) args
mapM_ (GHC.addTarget ses) targets
res <- GHC.load ses LoadAllTargets
case res of

Failed ->
do
putStrLn "hasktags: Failed to load modules"

Succeeded ->
do
putStrLn "hasktags: Succeded loading modules"
checked <- GHC.checkModule ses (mkModule "Main")
(\m -> ErrUtils.printErrorsAndWarnings m)

case checked of
Nothing -> putStrLn "hasktags: Failed to check module."
Just _ ->
do
putStrLn "hasktags: Checked module."
-- Get the complete module graph
modGraph <- getModuleGraph ses
taglist <- sequence $ map

(\modSum ->
do
Just cmod <- GHC.checkModule ses (ms_mod modSum)

(\m -> ErrUtils.printErrorsAndWarnings m)
let Just ps = renamedSource cmod
case tags ps of
Just ts -> return ts
Nothing -> return []

) modGraph
alltags <- return $ concat taglist
sequence_ $ map (putStrLn . show) $ sort alltags

) ‘catchDyn‘ (\e ->
putStr $ show (e::GhcException)

)

-- Build a list of tags from a term

9

tags :: Term t => t -> Maybe [Tag]
tags m = applyTU (stop_tdTU step) m
where
step = failTU ‘adhocTU‘ matchHsBind ‘adhocTU‘ matchHsModule

‘adhocTU‘ matchTyClDecl ‘adhocTU‘ matchPostTcType
matchHsModule ((HsModule (Just lmod) _ _ _ _)::HsModule Name) =

let ss = getLoc lmod
mod = unLoc lmod
name = showSDoc $ pprModule mod
file = tidyFileName $ show $ srcSpanFile ss
line = srcSpanStartLine ss
desc = "module " ++ name

in return [Tag name file line desc]
matchHsModule _ = Nothing
matchTyClDecl (ty :: TyClDecl Name) =

case ty of
ForeignType _ _ _ ->
return $ doType "foreign type "

TyData _ _ _ _ _ _ _ ->
let cons = concatMap conDeclTag $ tcdCons ty
in return $ cons ++ doType (

case tcdND ty of {
DataType -> "data ";
NewType -> "newtype "

})
TySynonym _ _ _ ->
return $ doType "type "

ClassDecl _ _ _ _ _ _ ->
return $ doType "class "

where
conDeclTag con =
let lnm = case unLoc con of

ConDecl ln _ _ _ -> ln
GadtDecl ln _ -> ln

ss = getLoc lnm
nm = unLoc lnm
fqName = showSDoc (ppr nm)
name = showSDoc (ppr $ nameOccName nm)
file = tidyFileName $ show $ srcSpanFile ss
line = srcSpanStartLine ss
desc = "const " ++ name

in [Tag fqName file line desc,
Tag name file line desc

]
doType desc =
let ss = getLoc $ tcdLName ty

nm = unLoc $ tcdLName ty
fqName = showSDoc (ppr nm)
name = showSDoc (ppr $ nameOccName nm)
file = tidyFileName $ show $ srcSpanFile ss

10

line = srcSpanStartLine ss
in [Tag fqName file line (desc ++ name),

Tag name file line (desc ++ name)
]

matchHsBind (bnd :: HsBind Name) =
case bnd of
FunBind _ _ _ -> doFunc
VarBind _ _ -> Nothing -- Not implemented yet
_ -> Nothing

where
doFunc = case bindLN bnd of

Nothing -> Nothing
Just rn ->
let ss = getLoc rn

nm = unLoc rn
fqnName = showSDoc (ppr nm)
name = showSDoc (ppr $ nameOccName nm)
file = tidyFileName $ show $ srcSpanFile ss
line = srcSpanStartLine ss
desc = "func " ++ fqnName

in return [Tag name file line desc, Tag fqnName file line desc]
matchPostTcType (a :: PostTcType) = return []

bindLN :: HsBind a -> Maybe (Located a)
bindLN (FunBind ln _ _) = Just ln
bindLN _ = Nothing

-- Remove "./" from the start of a filepath
tidyFileName :: String -> String
tidyFileName (’.’:’/’:str) = str
tidyFileName str = str

type TagName = String
type TagFile = String
type TagLine = Int
type TagDesc = String
-- A tag file entry
data Tag = Tag TagName TagFile TagLine TagDesc
deriving (Eq)

instance Ord Tag where
compare (Tag t1 _ _ _) (Tag t2 _ _ _) = compare t1 t2

instance Show Tag where
show (Tag tag file line desc) =
tag ‘sep‘ file ‘sep‘ (show line) ‘sep‘ ";\t\"" ++ desc ++ "\""

where a ‘sep‘ b = a ++ ’\t’:b

---- END OF PROGRAM ----

11

