
Communicating Process Architectures 2005
Jan Broenink, Herman Roebbers, Johan Sunter, Peter Welch, and David Wood (Eds.)
IOS Press, 2005

249

Interfacing C and occam-pi

Fred BARNES

Computing Laboratory, University of Kent,
Canterbury, Kent, CT2 7NF, England.

F.R.M.Barnes@kent.ac.uk

Abstract. This paper describes an extension to the KRoC occam-π system that allows
processes programmed in C to participate inoccam-π style concurrency. The uses of
this are wide-ranging, from providing low-level Cprocesses running concurrently as
part of anoccam-π network, through to concurrent systems programmed entirely in
C. The easily extended API for C processes is based on the traditional Inmos C API,
used also by CCSP, extended to cover new features ofoccam-π. One of the motiva-
tions for this work is to ease the development of low-level network communication in-
frastructures. A library that provides for networking of channel-bundles over TCP/IP
networks is presented, in addition to initial performance figures.

Keywords. C, occam-pi, concurrency, processes, networks

Introduction

The occam-π language [1] extends classicaloccam [2] in numerous ways. Included in
these extensions, and supported by the KRoC [3] implementation, are mechanisms that al-
low occam-π processes to interact with the external environment. Classical occam on the
Transputer [4] had a very physical environment — hardware links to other Transputers. In
contrast, modern systems support highly dynamic application environments, e.g. file-systems
and networking, thatoccam-π applications should be able to take full advantage of.

In most cases, interaction with anything external to anoccam-π program requires in-
terfacing with C — since the environments in which KRoC programs run have C as a com-
mon interface (e.g. UNIX). There are a few exceptions, however, such as the mechanism
that provides low-level hardware I/O access directly fromoccam-π using “PLACED PORT”s
(described in [5]).

The mechanisms currently support by KRoC for interfacing with C are: simple exter-
nal C calls [6]; blocking external C calls [7]; and a “user defined channels” mechanism that
allows C calls (blocking and non-blocking) to be placed behind channel operations, includ-
ing direct support forALTing on completion of external calls. These mechanisms, although
mostly adequate, lack the level of flexibility that programmers require. For example, it is not
immediately clear as to how a low-level network communication infrastructure, such as that
required by KRoC.net [8], would be implemented using the existing mechanisms.

All of these existing mechanisms essentially attach ‘dead’C function calls to various
occam-π operations. Programming interactions between these calls, which would be re-
quired if multiplexing channels over IP links, is difficult and prone to error. On the other hand,
most of the infrastructure could be programmed inoccam-π, with only the lowest-level I/O
inside C functions. However,occam-π does not lend itself to the type of programming we
might wish to employ at this level — e.g. deliberate pointer aliasing for efficiency (which we
know to be safe, but which cannot be checked by the currentoccam-π compiler).

The C interface mechanism presented here (CIF) attempts to address these issues, by
providing a very general framework for the construction of parallel processes and programs

250 F.R.M.Barnes / Interfacing C and occam-pi

in C. In some respects, this mechanism provides exactly whatCCSP [9] provided in terms of
support for C programs, but with the added benefits ofoccam-π (e.g. mobiles and extended
synchronisations) and the ability to support mixedoccam-π and C process networks. The
interface presented to applications is based on the original Inmos and CCSP APIs.

The uses for this are wide-ranging. Applications that require only a limited amount of
external interaction can encapsulate these in concurrent Cprocesses, avoiding the overheads
of repeated external C calls. The CIF mechanism can also be used to migrate existing C code
into occam-π systems — e.g. minimal-effort porting of Linux device-drivers to RMoX [5].
At the far end of the scale, the CIF mechanism can be used to program entire concurrent
systems in C. In contract with some alternative parallel C environments, CIF offers very low
overheads and a reasonable level of control. Unlikeoccam-π, however, the C compiler —
typically ‘gcc’ [10] — does not perform parallel-usage checks, leaving the potential for race-
hazard errors. The opportunity for such error can be minimised by good application design.

Section 1 examines the technical aspects of the C interface,implementation and API.
Section 2 presents a specific application of CIF for networking mobile channel-bundles, in
addition to a general discussion of potential application areas. Conclusions and initial perfor-
mance results are presented in section 3, together with plans for future work.

1. Interfacing C and occam-π

The C interface operates by encapsulating C processes such that the KRoC run-time system
sees them as ordinaryoccam-π processes. No changes are required in the KRoC run-time to
support these C processes, and no damage is caused to the performance of existingoccam-π
code. As a consequence, C processes incur a slight overhead each time they interact with the
run-time system (switching from a CIFprocess-context to anoccam-π one). This overhead
is small, however (less than 100 nanoseconds on an 800 MHz Pentium-3).

C processes are managed through a variety of API calls, the majority of which require
a C process context. Some do not, however, including those used for initial creation of C
processes. Creation and execution of the first C process in a system is slightly complicated,
requiring the use of the basic C calling mechanism. For example, using the C interface, the
standard ‘integrate’ component could be written as:

void integrate (Process *me, Channel *in, Channel *out)

{

int v, total = 0;

for (;;) {

ChanInInt (in, &v);

total += v;

ChanOutInt (out, total);

}

}

out!in?
integrate

The ‘me’ parameter given to CIF processes gives the process a handleon itself. The
CIF infrastructure always knows which particular C processis executing, however, raising
questions about the necessity of this extra (and automatically provided) parameter. The above
process shows examples of the ‘ChanInInt’ and ‘ChanOutInt’ API calls, whose usage is
mostly obvious.

1.1. Starting C Processes

To create an instance of the above ‘integrate’ process requires a call to either ‘ProcAlloc’
or ‘ProcInit’. To do this fromoccam-π requires the use of an external C call:

F.R.M.Barnes / Interfacing C and occam-pi 251

void real_make_integrate (Channel *in, Channel *out, Process **p)

{

*p = ProcAlloc (integrate, 1024, 2, in, out);

}

void _make_integrate (int *ws)

{

real_make_integrate ((Channel *)(ws[0]), (Channel *)(ws[1]),

(Process **)(ws[2]));

}

that can be called from anoccam-π program after declaring with:

#PRAGMA EXTERNAL "PROC C.make.integrate (CHAN INT in?, out!, RESULT INT p) = 0"

The usage of this inoccam-π is slightly peculiar since the call will return providing a
process address in ‘p’, but having already consumed its ‘in?’ and ‘out!’ parameters. An in-
line occam-π procedure is provided by CIF that executes the C process, returning only when
the C process has terminated — at which point it could be freed1 using ‘ProcAllocClean’.
For example:

#INCLUDE "cifccsp.inc"

PROC external.integrate (CHAN INT in?, out!)

INT proc:

SEQ

C.make.integrate (in?, out!, proc)

cifccsp.startprocess (proc)

:

Creating and executing C processes inside a CIF process is much simpler. Processes are
created in the same way using ‘ProcAlloc’, but are executed using ‘ProcPar’ (or one of its
variants).

It should be noted that the above two C functions, the entry-point ‘ make integrate’
and ‘real make integrate’, could be made into a single function. Separating them out
gives the parameters passed explicit names, however, instead of using indices into the ‘ws’
array. The ‘real’ function can be declared ‘inline’ to get equivalent performance if desired.

1.2. Masquerading as occam

In order to present themselves asoccam-π processes, CIF processes need a validoccam-π
process workspace. This is a fixed-size block that contains the state of the CIF process, in
addition to the ‘magic’ workspace fields used for process control. Figure 1 shows the layout
of this structure, with word-offsets relative to the ‘Process’ pointer (equivalent to anoccam
process’sworkspace-pointer).

The workspace below offset 0 is that normally associated with suspendedoccam-π pro-
cesses. These are used only when the CIF process is inactive,e.g. blocked on channel com-
munication. The workspace offsets from 0 to 2 are used by CIF processes that have gone
parallel and are waiting for their sub-processes to terminate, in the same way thatoccam-π
processes do. The workspace offsets from 4 to 12 hold the CIF-specific process state, includ-
ing the stored state of the run-time system when a CIF processis executing (held in processor
registers foroccam-π processes).

When a CIF process is initially created, itsentry-point is set to the C function specified
in the call to ‘ProcAlloc’. The iptr field is set to point at an assembler routine that starts the

1There seems little point in cleaning up after this ‘integrate’ process, since it is not expected to terminate.

252 F.R.M.Barnes / Interfacing C and occam-pi

timer−state
timer−link
pointer/state
priority
link
iptr
temp/par−succ
par−count
par−priority

c−stack−pointer

occam−stack
c−stack−base

entry−point
Fptr
Bptr
call−succ
endp−link
nparamwords

0
−1
−2

−4
−5
−6

−3

1
2
3

5
4

6
7
8
9

11
10

12

"magic"
workspace

used by
PAR

process
state

CIF

Figure 1. CIF process workspace

process for the first time and handles its shutdown. When a CIFprocess is blocked, theentry-
point field holds the real ‘return’ address in the user’s C code, whilst theiptr field points to an
assembler routine that resumes the process. Figure 2 shows the life-cycle of a CIF process.

process
CIF

ProcAlloc()
creates process

cifccsp.startprocess
schedules process

suspends self CIF process scheduled

(user C code)

run−time kernel
interaction

restore C state
save occam state

restore occam state
save C state

enter run−time
kernel

restore occam state
reschedules parent
process terminates

returns
cifccsp.startprocess

ProcAlloc()
creates process

suspends self

ProcPar()
schedules processes

reschedule if last

ProcPar() returns

ProcAllocClean()
destroys process

Figure 2. CIF process life-cycle

When entering the run-time kernel, a CIF process must set up its workspace in the same
way that anoccam-π process would. Furthermore, it must also use the correct calling con-
vention for the particular entry-point. In-line assemblermacros are used to achieve this, con-
taining code very similar to that generated by the KRoC translator, ‘tranx86’ [11]. The return-
address (iniptr) is always to a pre-defined block of assembler, however, thatrestores the CIF
process correctly when it is rescheduled.

F.R.M.Barnes / Interfacing C and occam-pi 253

As an example, the following shows the pseudocode for the ‘ChanInInt()’ assembler
routine (placed in-line within the C code):

1: // chan : channel address (in register)
2: // ptr : destination pointer (in register)

chan-in-int (chan, ptr):
3: push (frame-pointer)
4: save-c-state
5: restore-occam-state
6: wptr[iptr]⇐ global-resume-point
7: jump (Y in32, chan, ptr)

local-resume-point:
8: pop (frame-pointer)

There is a certain degree of unpleasantness in the actual assembler code. Much of it
due to subtle differences in the way that different GCC versions handle in-line assembler
macros such as these2. The actual kernel call here ‘Y in32’ expects to be called with the
channel-address in the EAX register and the destination address in the EBX register. These
are handled usingregister constraints (a GCC feature) in the assembler-C interface.

The assembler macros represented by ‘save-c-state’ and ‘restore-occam-state’ are imple-
mented respectively with:

1: frame-pointer⇐ wptr
2: wptr[c-stack-pointer]⇐ stack-pointer
3: wptr[entry-point]⇐ local-resume-point

and:

1: stack-pointer⇐ wptr[occam-stack]
2: Fptr⇐ wptr[fptr]
3: Bptr⇐ wptr[bptr]

The first of these saves the globally visible ‘cifccsp wptr’ variable (containing the
workspace-pointer for the CIF process, ‘wptr’) in the EBP register, that holds the workspace-
pointer ofoccam-π processes. The current stack pointer is saved inside the CIFworkspace,
along with the address at which the C process should resume. The second of these macros
restores theoccam run-time state, consisting of its stack-pointer (which is the actual C stack-
pointer of the run-time system), and the current run-queue pointers (that are held in the ESI
and EDI registers). Strictly speaking, the copying of ‘cifccsp wptr’ to the EBP register is
part of restoring theoccam run-time state, but since these macros typically always follow
each other, restoring EBP early results in more efficient code.

The actual return address of the CIF process, as seen by the run-time system, is the
address of the ‘global-resume-point’. This is a linked-in assembler routine that performs,
effectively, the inverse of these two macros, before jumping to the stored resume point.

1.3. Providing the API

The application interface and user-visible types are contained in the header file “cifccsp.h”.
Files containing CIF functions need only include this to access the API. The various func-
tions that make up the API are either preprocessor macros that expand to blocks of in-line

2This is not so much the fault of GCC, but rather certain distributions that included development (and poten-
tially unstable) versions of GCC.

254 F.R.M.Barnes / Interfacing C and occam-pi

assembler (as shown above), or for some more complex operations (e.g. ‘ProcPar()’ and
‘ProcAlt()’), actual C functions provided by the CIF library.

The API includes the majority of functions available in the original Inmos C API and
the CCSP API. Additional functions are provided specifically for new occam-π mecha-
nisms, again a mixture of assembler macros and C functions. These include, for example,
‘ProcFork()’ to fork a parallel process (following theoccam-π ‘FORK’ mechanism) and
‘DMemAlloc()’ to dynamically allocate memory.

A complete description of the supported API, and some basic examples, can be found
on the CIF web-page [12].

In addition to the standard and extended API functions, fouradditional macros are pro-
vided to make external C calls. The first two of these are used to make blocking C calls, i.e.
that run in a separatethread with the expectation that they will block in an OS system-call.
The second pair of macros are used to make ordinary external Ccalls, but only for certain
functions. For each macro pair, there is one that is used to call functions with no arguments,
and a second to call functions with an arbitrary number of arguments. For example:

void do_write (int fd, const void *buf, size_t count, int *result)

{

*result = write (fd, buf, count);

}

void my_process (Process *me, Channel *in, Channel *out)

{

for (;;) {

void *mobile_array[2];

int fd, result;

/* input INT descriptor followed by a MOBILE []BYTE

* array of data.

*/

ChanInInt (in, &fd);

ChanMIn64 (in, mobile_array);

BLOCKING_CALLN (do_write, fd, mobile_array[0],

(size_t)(mobile_array[1]), &result);

DMemFree (mobile_array[0]);

ChanOutInt (out, result);

}

}

This process inputs an integer file-descriptor, followed bya dynamic mobile array from
the ‘in’ channel, then writes that data to the given file-descriptor(typically a network socket).
After the call the dynamic mobile array is freed, followed bycommunication of the underly-
ing ‘write’ result on the ‘out’ channel.

The correspondingoccam-π interface for ‘my process’ would be:

PROTOCOL FD.DATA IS INT; MOBILE []BYTE:

PROC my.process (CHAN FD.DATA in?, CHAN INT out!)

It should be noted that ordinary CIF routines may not be used inside an external C call.
For blocking calls (e.g. ‘do write()’ in the above), code executes with a thread stack, not
in the CIF process’s stack. For ordinary (non-blocking) external C calls, code may or may
not execute in a thread stack. For example, the ‘BLOCKING CALLN’ in the above could be
replaced with:

F.R.M.Barnes / Interfacing C and occam-pi 255

EXTERNAL_CALLN (do_write, fd, mobile_array[0],

(size_t)(mobile_array[1]), &result);

The decision of whether to run ‘do write’ in the CIF process’s stack, or theoccam-π
run-time’s stack, depends on whether POSIX threads [13] areenabled. Where POSIX threads
arenot enabled (and the run-time system uses Linux’s native ‘clone’ thread mechanism), the
above call will be reduced to just:

do_write (fd, mobile_array[0], (size_t)(mobile_array[1]), &result);

When POSIX threads are enabled, the call is redirected to a linked-in assembler routine,
that performs the call on theoccam-π run-time’s stack. This stack-switch is actually only
required when the POSIX threads implementation stores thread-specific information in the
stack, rather than in proessor registers. In this case it is relevant since the ‘write()’ call sets
the global ‘errno’ value; however, the standard C library, in the presence of POSIX threads,
re-directs this to a thread-specific ‘errno’ (so that concurrent system-calls in different threads
do not race on ‘errno’). In cases where the POSIX threads implementation is builtto store
the thread-identifier in processor registers, locating this thread-specific ‘errno’ is no problem
— and can be done safely when code is executing in a C stack. However, if POSIX threads
are configured to use the stack to store thread-specific data,making the call from a CIF stack
results in a crash (as the ‘pthreads’ code walks off the top ofthe CIF stack whilst looking
for thread-specific data). Linux distributions vary in their handling of this, but it is arguably
better to use spare processor registers for holding the thread identifier (avoiding the chance
of false-positives in a stack search).

2. Applications

CIF has a potentially huge range of application. Generally speaking, it allows the programmer
to interface C withoccam-π in a naturally compatible way, i.e. channel communication
and other CSP-style concurrency mechanisms [14]. Despite the safety and practicality of
occam-π, there are some things which are still more desirable to program in C — particularly
low-level interface code that typically deals withpointers, whichoccam-π does not support
natively. Explicit pointer types (such as those found in C) create the potential for aliasing and
race-hazard errors, requiring care on the programmer’s part.

One of the original motivations for CIF was in order to ease implementation of the
‘ENCODE.CHANNEL’ and ‘DECODE.CHANNEL’ compiler built-ins [15]. These transformoccam
channel communications intoaddress,size pairs, using extended inputs to block the process
outputting whilst the resulting address and size are handled. These “protocol converters”
are necessary for implementing the KRoC.net infrastructure [8]3 — as well as other sim-
ilar infrastructures — transforming application-level communications into something suit-
able for network communication. The standard implementation of ‘ENCODE.CHANNEL’ and
‘DECODE.CHANNEL’ is by means of tree re-writing inside the compiler, necessary because dif-
ferent channel protocols require different handling, for which run-time information is gen-
erally not available. Although the mechanism is fully sufficient for its intended uses, mak-
ing it compatible with newoccam-π types, e.g. a ‘MOBILE BARRIER’ [16], is non-trivial and
time-consuming.

A generic implementation of ‘ENCODE.CHANNEL’ and ‘DECODE.CHANNEL’ in C is rela-
tively simple, provided that information about the structure of the channel-protocol is avail-
able. Recent versions of the KRoC system have the option of including this information in
generated code. In practice, this is only supported for mobile channel-types, since they pro-

3KRoC.net will be known as “pony” when released, to avoid confusion with a.net targeting KRoC.

256 F.R.M.Barnes / Interfacing C and occam-pi

vide a convenient place to store a pointer to the generated type-description block. Figure 3
shows an example of how a generic protocol decoder could be used with anoccam-π appli-
cation.

cif_decode_channel network_ifaceapplication (tcp)

Figure 3. Generic protocol decoding in C

Unlike the compiler built-in versions of these protocol converters, the C implementations
are substantially simpler. In the case of figure 3, the two C routines could be combined to
a certain degree, providing a single CIF process that deals with networking ofoccam-π
channels directly — such a mechanism would be non-transparent, unlike KRoC.net where
transparency is key.

The following section presents a library that uses CIF processes to provide networked
mobile channels. Eachchannel-bundle networked results in multiple encode/decode pro-
cesses and the necessary infrastructure to support them.

2.1. Networking Mobile Channels

A simple mobile channel-type networking mechanism foroccam-π is currently being de-
veloped. In particular it aims to facilitate the multiple-client/single-server arrangement of
communication, of an arbitrary mobile channel-type. For example:

PROTOCOL REQUEST IS MOBILE []BYTE:

PROTOCOL RESPONSE IS MOBILE []BYTE:

CHAN TYPE APP.LINK

MOBILE RECORD

CHAN REQUEST req?:

CHAN RESPONSE resp!:

:

Figure 4 gives an idea of what such a networked application might look like. New clients
can connect to a server, and “plug-in” a client-end of the desired channel-type, provided they
know where it is — i.e. host-name and TCP port. Unlike the KRoC.net infrastructure, this
“application link layer” is unable to cope with the communication of mobile channel ends,
that could alter the TCP ‘wiring’, and is beyond its scope in any case.

The implementation under development allows the user to specify different behaviours
for the networked “virtual mobile-channel”. In this example, and in order to operate as we
intend, the infrastructure needs to know how communications on ‘req?’ correspond with
those on ‘resp!’ — if at all. To a certain extent, this is related to how the shared client-end
‘CLAIM’ gets handled. For the network shown in figure 4, applicationnodes will compete
internally for access to the server, or will delegate that responsibility to the server. Which
behaviour is chosen can affect performance significantly.

For instance, if each communication on ‘req?’ is followed by a communication on
‘resp!’, the client-end semaphore claim can remain local to application nodes — the server
knows that whichever client communicated on ‘req?’ will be expecting a response on
‘resp!’, or rather, to which client the communication on ‘resp!’ should be sent. However, if
the application behaviour is such that communications on ‘resp!’ can happen independently
of those on ‘req?’, the server needs to be aware of client-end claims, so that it knows which
client to send data output on ‘resp!’ to.

F.R.M.Barnes / Interfacing C and occam-pi 257

net−iface net−iface

net−iface

server

application application

node2node1

node3

virtual mobile−channel(tcp)(tcp)

Figure 4. Networking any-to-one shared mobile-channels

The primary aims of this link-layer are simplicity and efficiency. To connect to a server
using the above protocol, a client will use code such as:

SHARED APP.LINK! app.cli:

APP.LINK? app.svr:

INT result:

SEQ

app.cli, app.svr := MOBILE APP.LINK

all.client.connect (app.svr, "korell:3238", result)

IF

result = 0

SKIP -- else STOP

... code using "app.cli"

The call to ‘all.client.connect’ dynamically spawns the necessary processes to han-
dle communication, connecting to the server and verifying the protocol before returning. It is
the server that specifies how communication is handled, for example:

SHARED APP.LINK! app.cli:

APP.LINK? app.svr:

INT result:

SEQ

app.cli, app.svr := MOBILE APP.LINK

all.server.listen (app.cli, "**:3238", "**(0 -> 1)", result)

IF

result = 0

SKIP -- else STOP

... code using "app.svr"

The string “*(0 -> 1)” is given as the usage-specification, stating that each commu-
nication on channel 0 (‘req?’) is followed by a communication on channel 1 (‘resp!’), re-
peated indefinitely. These usage-specifications are essentially regular-expression styletraces
(for that channel-type only), and like the direction-specifiers are specified from the server
point-of-view. Table 1 gives an overview of the supported specification language, in order of
precedence.

The usage specification, in addition to controlling the behaviour of client-side ‘CLAIM’s,
is used to build a state-machine. This state machine is used by client and server nodes to keep
track of the currenttrace position. In particular, the infrastructure will not allowa communi-
cation to proceed if it not ‘expected’.

258 F.R.M.Barnes / Interfacing C and occam-pi

Table 1. Supported usage-specification expression syntax

Syntax Description

(X) sub-expression, whereX is an expression most binding

*X X repeated zero or more times, whereX is an expression

+X X repeated one or more times, whereX is an expression

X | Y X or Y, whereX andY are expressions

n -> X n followed byX, wheren is a channel index andX is an expression

n communication onn, wheren is a channel index least binding

The infrastructure comprising this “application link layer” is dynamically created behind
the relevant client and server calls. Figure 5 shows the infrastructure created at the server-end,
for the above ‘APP.LINK’ channel type.

application link layer

(op−channels)

req?

resp!

(TCP/IP)

server.process

encode_channel

decode_channel

all_server_linkif

all_sock_if

shutdown_delta

Figure 5. Server-side channel-type networking infrastructure

The three ‘op-channels’ emerging from the channel-bundle are specially inserted by the
compiler, that generates communications on entry and exit from a ‘CLAIM’ block, and when
the channel-end is freed by the application (i.e. when it leaves scope). Programming this
infrastructure in C makes easier the handling of dynamically created ‘encode’ and ‘decode’
processes. Internally, ‘all server linkif’ ALTs across its input channels and processes
them accordingly. The ‘all sock if’ process is responsible for network communication
and operates by waiting in a ‘select()’ system-call, that allows it to be interrupted without
side-effects, before reading or writing data.

The low-level protocol used by the current implementationdoes not respectoccam-π
channel semantics. Instead, the individual channels transported behave as buffered channels,
where the size of the buffer is determined by the network and operating-system. This will be
addressed in the future, once confidence in the basic mechanism has been established — i.e.
successfully using CIF to transportoccam-π channel-communications over an IP network.
The current implementation is reliable, however.

A future implementation will likely use UDP [17] instead of TCP [18], giving the link-
layer explicit control over acknowledgements, timeouts and packet re-transmission. Having
available a description of channel usage enables some optimisations to be made in the under-
lying protocol, that are currently being investigated.

3. Conclusions and Future Work

The C interface mechanism presented in this paper has a wide range of uses, from providing
low-level C functionality tooccam-π applications through to supporting entire CSP-style

F.R.M.Barnes / Interfacing C and occam-pi 259

applications written in C. Although CIF processes incur additional overheads (saving and
restoring the C andoccam states), these are not significantly damaging to performance.

The ‘commstime’ benchmark is traditionally used to measure communicationoverheads
in occam-π; it has been rewritten using CIF in order to get a practical measurement of
the CIF overheads. On a 3.2 GHz Pentium-4, each loop for theoccam-π commstime takes
approximately 89 nanoseconds, 396 nanoseconds for CIF. This corresponds to a complete
save/restore overhead of 26 nanoseconds, which will be an acceptable overhead for the ma-
jority of applications.

The current CIF implementation is not intended to be excessively efficient (i.e. in-lining
of certain run-time kernel calls, as ‘tranx86’ optionally does). These will gradually appear in
future releases of KRoC, as the C interface matures.

The one major drawback of the CIF interface is the inability of the C compiler to
guarantee correct usage. This particularly applies to the handling of dynamic mobile types,
whose internal reference-counts must be correctly manipulated. Incorrect handling can lead
to memory-leaks, deadlocks and/or undefined behaviour (chaos). Despite this, it is hoped
that users will find this C interface useful, for both its use with occam-π and as a software-
engineering tool to apply CSP concurrency in C applications(e.g. migrating threaded C ap-
plications to a more compositional, and predictable/provable, framework).

References

[1] P.H. Welch and F.R.M. Barnes. Communicating mobile processes: introducing occam-pi. In A.E. Abdal-
lah, C.B. Jones, and J.W. Sanders, editors,25 Years of CSP, volume 3525 ofLecture Notes in Computer
Science, pages 175–210. Springer Verlag, April 2005.

[2] Inmos Limited.occam2 Reference Manual. Prentice Hall, 1988. ISBN: 0-13-629312-3.
[3] P.H. Welch, J. Moores, F.R.M. Barnes, and D.C. Wood. The KRoC Home Page, 2000. Available at:

http://www.cs.kent.ac.uk/projects/ofa/kroc/.
[4] M.D. May, P.W. Thompson, and P.H. Welch.Networks, Routers and Transputers, volume 32 ofTransputer

and occam Engineering Series. IOS Press, 1993.
[5] F.R.M. Barnes, C.L. Jacobsen, and B. Vinter. RMoX: a Raw Metaloccam Experiment. In J.F. Broenink

and G.H. Hilderink, editors,Communicating Process Architectures 2003, WoTUG-26, Concurrent Sys-
tems Engineering, ISSN 1383-7575, pages 269–288, Amsterdam, The Netherlands, September 2003. IOS
Press. ISBN: 1-58603-381-6.

[6] David C. Wood. KRoC – Calling C Functions fromoccam. Technical report, Computing Laboratory,
University of Kent at Canterbury, August 1998.

[7] F.R.M. Barnes. Blocking System Calls in KRoC/Linux. In P.H. Welch and A.W.P. Bakkers, editors,
Communicating Process Architectures, volume 58 ofConcurrent Systems Engineering, pages 155–178,
Amsterdam, the Netherlands, September 2000. WoTUG, IOS Press. ISBN: 1-58603-077-9.

[8] M. Schweigler, F.R.M. Barnes, and P.H. Welch. Flexible,Transparent and Dynamicoccam Network-
ing with KRoC.net. In J.F. Broenink and G.H. Hilderink, editors,Communicating Process Architectures
2003, WoTUG-26, Concurrent Systems Engineering, ISSN 1383-7575, pages 199–224, Amsterdam, The
Netherlands, September 2003. IOS Press. ISBN: 1-58603-381-6.

[9] J. Moores. CCSP – a Portable CSP-based Run-time System Supporting C andoccam. In B.M. Cook,
editor,Architectures, Languages and Techniques for Concurrent Systems, volume 57 ofConcurrent Sys-
tems Engineering series, pages 147–168, Amsterdam, The Netherlands, April 1999. WoTUG, IOS Press.
ISBN: 90-5199-480-X.

[10] Free Software Foundation inc. Using the GNU Compiler Collection (GCC), version 3.3.5, 2003. Available
at:http://gcc.gnu.org/onlinedocs/gcc-3.3.5/gcc/.

[11] F.R.M. Barnes.tranx86 – an Optimising ETC to IA32 Translator. In Alan Chalmers, Majid Mirmehdi,
and Henk Muller, editors,Communicating Process Architectures 2001, volume 59 ofConcurrent Systems
Engineering, pages 265–282, Amsterdam, The Netherlands, September 2001. WoTUG, IOS Press. ISBN:
1-58603-202-X.

[12] F.R.M. Barnes. The occam-pi C interface, May 2005. Available at:http://www.cs.kent.ac.uk/
projects/ofa/kroc/cif.html.

260 F.R.M.Barnes / Interfacing C and occam-pi

[13] International Standards Organization, IEEE. Information Technology – Portable Operating System In-
terface (POSIX) – Part 1: System Application Program Interface (API) [C Language], 1996. ISO/IEC
9945-1:1996 (E) IEEE Std. 1003.1-1996 (Incorporating ANSI/IEEE Stds. 1003.1-1990, 1003.1b-1993,
1003.1c-1995, and 1003.1i-1995).

[14] C.A.R. Hoare.Communicating Sequential Processes. Prentice-Hall, London, 1985. ISBN: 0-13-153271-
5.

[15] Frederick R.M. Barnes.Dynamics and Pragmatics for High Performance Concurrency. PhD thesis,
University of Kent, June 2003.

[16] P.H. Welch and F.R.M. Barnes. Mobile Barriers for occam-pi: Semntics, Implementation and Applica-
tion. In J. Broenink, H. Roebbers, J. Sunter, P. Welch, and D.Wood, editors,Communicating Process
Architectures 2005. IOS Press, September 2005.

[17] J. B. Postel. User datagram protocol. RFC 768, InternetEngineering Task Force, August 1980.
[18] J. B. Postel. Transmission control protocol. RFC 793, Internet Engineering Task Force, September 1981.

