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Abstract. We consider models of emergence, adding downward causa-
tion to conventional models where causation permeates from low-level
elements to high-level behaviour. We describe an architecture and proto-
type simulation medium for tagging and modelling emergent features in
CA-like systems. This is part of ongoing work on engineering emergence.
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1 Introduction

This paper represents part of ongoing research to establish engineering principles
for complex emergent systems. Various systems require several levels of descrip-
tion; for example, the behavioural descriptions of individual components and of
some aggregate. In an emergent system, there is a discontinuity in the descrip-
tions of these various layers. For example, the low-level components might be
described as changing state, whereas the system description might be in terms
of the movement of patterns. The upper, system, level describes the required
emergent properties.

We consider complex emergent systems, comprising many simple compo-
nents. Often-cited examples of complex emergent systems include network navi-
gation by ants (real or simulated), construction by termites, swarming and flock-
ing, for example by birds or their simulated equivalent, boids, and cellular au-
tomata (CAs).

Engineering is a quality-enhancing activity, and is essential for the safe ex-
ploitation of emergence in nature-inspired computational systems; the engineered
emergent system would be robust, with assurance of functionality and safety. In
exploring emergent systems engineering, we are looking at compositionality and
refinement. We start with simple emergent systems, specifically CAs, and derive
more general guidance from our observations.

Elsewhere [9], we describe a system architecture to underpin engineering of
complex emergent systems. We identify three key elements: the high-level de-
scription of the required system; the specification of the components that form



the lowest level of the system; and the specification of the representation that
integrates the first two elements. Conventional development approaches, relying
on a linear reduction in non-determinism (data and process refinement; model-
driven development, etc) are applicable within each element, but the low-level
system components cannot be systematically derived from the system specifica-
tion. The components are fundamentally different from the overall system, and
cannot be described using the same language concepts.

In this paper, we explore extraction of a layered component model. The
introduced layer maps from the component language towards the concepts of
the emergent system. The layering approach explored here is derived from pure
CA models; we deduce some characteristics of causal linkage among the system
elements. We consider a system requiring emergence of specific gliders, and a
case study simulating blood platelets.

2 Cellular Automata and Upward Causation

In a simple CA, such as Conway’s Game of Life (GoL) [6], cell update rules
and initial cell states completely determine the evolution of the CA. Emergence
is detected when each cell state has a visual representation, and the repeated
synchronous update of the cells reveals recognisable structures in space and
time. When seeking to engineer emergence on such a CA, the three architectural
elements are as follows.

1. Required emergent structures, such as gliders, described using relative mo-
tion concepts.

2. The CA, comprising many identical cell instances.
3. The representation, discretised space, to define cell neighbourhoods, and on

which relative motion can be detected.

 
 Fig. 1. A 2-D GoL Glider Gun

The CA has an upward
causal relationship to the re-
quired emergence. For exam-
ple, the upper part of figure
1 shows a GoL glider gun. In
this part of the representation,
we observe seemingly-random
continuously-changing patterns.
From the gun, a stream of glid-
ers emerges, moving at a con-
stant velocity, at 45 degrees
from the vertical, down the

screen. The glider gun is a simple result of applying the GoL rules to cells
arranged in a 2-D regular grid, with a suitable arrangement of initial cell states.
The high-level description of the observed behaviour of gliders does not have any
role in the evolution of the CA; the described higher level behaviours are caused
by the lower-level actions.



To be able to engineer emergent systems from high-level requirements, we
need a more flexible and realistic causal model. First, we introduce our research
case study; we then use some of its models to explore causality further.

3 The Case Study: Artificial Blood Platelets

Our working case study, a platform for specification, simulation and other emer-
gent engineering aspects, is a system of artificial platelets. The desired emergent
property is the sealing of breaks (wounds) in a tube or vessel.

decaying platelet

passive platelet

deployed platelet

phagocyte

TIME

Fig. 2. Schematic of the artificial platelets

The model is loosely based on
the medical process of haemosta-
sis. Real platelets are passive quasi-
cells carried in the bloodstream. A
platelet becomes active when a bal-
ance of chemical suppressants and
activators shifts in favour of acti-
vation, usually due to damage to
cells or vessel linings. With suf-
ficient stimulus, platelets become
sticky and form clusters. This is
the first phase in limiting blood-
loss and healing a wound.

Our artificial platelet model,
figure 2, assumes that the platelets
can complete the entire wound-
closing process. Our goal system
might resemble Freitas’ vision [5]
of some 108 mechanical platelets
of two microns diameter circulat-
ing in the blood, each carrying a
fibre mesh. At a wound site, the
mesh deploys, revealing sticky sec-
tions that bind other platelets and
seal the wound; when the wound is
healed, the mesh disperses.

In this paper, we consider the development of a model of platelet movement
and clustering, the basis for a computer simulation. The high-level description is
of platelets moved by blood flow through a vessel, with no independent means of
locomotion. When platelets merge with other platelets, they form a slow-moving
cluster. This description of platelet behaviour is at the same level of abstraction
as the high-level glider description.

3.1 Upward Causation Model of Artificial Blood Platelets

Our first platelet model represents a blood vessel as a one-dimensional grid.
Figure 3 shows eight time steps of a purpose-built CA running on this repre-



sentation, to simulate the flow of platelets, the formation of clusters, and the
movement of clusters. Here, we see two clusters merging, and then free platelets
joining the large cluster from behind.
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Fig. 3. 1D platelet CA

The CA rules are given in the Ap-
pendix. To achieve the required be-
haviour with pure CA rules, the first
platelet in a cluster can move (non-
deterministically), creating a vacuum;
the cluster moves by successively pass-
ing the vacuum backwards. All free
platelets move in each time step.

This is a pure CA, with a stochastic
rule that determines whether a cluster
moves in any step. There is only lo-
cal communication, and only upward
causation from the CA to the required
emergent clusters.

4 Downward Causation and Rule Distribution

The simple CA platelet model is not ideal. The rate of movement of a cluster
is very much slower than that of a free platelet, at most one cell per update,
because cells cannot communicate throughout a cluster. Furthermore, a model
where platelet locations control platelet movement by upward causality is not
an adequate model of reality; we know that platelet aggregation influences the
flow of blood and the flow of blood influences the aggregation of platelets. Such
causal links are well-known in biological and other emergent systems [1].
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Fig. 4. Two-layer platelets

A revised model retains the one-
dimensional CA structure at the lowest
level, to simulate discrete physical loca-
tions that may contain a platelet. A more
abstract level sits above the CA to model
clustering characteristics. In this model,
only the higher level “knows” that a par-
ticular platelet is part of a cluster. Figure
4 shows four time steps. The free platelets
still move in every time step; each cluster
either moves or stays put, depending on
the decision made in the higher layer.

Conventional CA rules still determine
whether a cell could change state, but the
actual change requires permission to be

communicated from the platelet layer, a downward causation from the higher
level to the CA. The permission is used to co-ordinate the movement of platelets
in a cluster, depending on the (non-deterministic) movement of the front platelet.



The higher layer can also be used to add further cluster behaviour, such as cluster
breakdown and dispersion.

5 Discussion of Rule Migration

In the platelet models, the glider model [9], and other CA-based systems, the CA
model has no inherent awareness of the structures that may emerge. In general,
modelling is simplified if there are extra modelling layers that capture concepts
expressed in the system-level language. Thus, the gliders are specified in terms
of velocity not CA cell states; they can be identified by monitoring at a higher
level, over many time steps. Similarly, platelet behaviour (here) is specified in
terms of clustering characteristics; clusters are initially identified from the CA,
but their persistent characteristics are modelled in the higher layer.

In the platelet model, the clustering rules have been taken out of the CA
and migrated to the higher layer; the downward causation (permission) main-
tains integrity between the layers. We observe that, if the low-level rules are very
compact, as in the GoL without the added requirement of structure identifica-
tion, there may be no rule migration that makes the model simpler. The simplest
additional layer provides “tagging”, with no downward causation, for example
as an aid to the detection of emergence. Thus, in the glider model, a higher level
might be used to detect and highlight gliders; this is analogous to experiments
in nature that use markers for tracking to collect data. At a level more akin
to that of the platelet model, we might then wish to exercise control over, for
example, what happens when two gliders collide; this would be accomplished via
downward causation from the higher level to the relevant cells of the CA.

In engineering terms, the migrated rules are used to produce more natural,
comprehensible models. Whether to choose the pure CA or a multi-level model
is a modelling decision. The downward causation layers introduce control, and
can be used to bring the power of the models closer to the full environmental
interactions of real systems. In general, as the number of control aspects modelled
in the abstracted layers increases, the behavioural similarities of the single-layer
and multi-layer models become less apparent.

5.1 Emergence and Relativity

In physics, there is no absolute space; all motion is relative. It is also the case that
all emergence is relative. Consider a single GoL glider; viewed from a sufficient
distance, a glider moving across the screen is indistinguishable from a screen
window being scrolled past a stationary glider. To perceive motion, there needs
to be a frame of reference within the window. This could be a visible grid, a
stationary (or slower-moving) CA structure, or other gliders. The glider is then
seen to be moving relative to the other contents of the window.

In migrating CA rules upwards, we often move from an absolute to a relative
perspective, taking the design nearer to the context in which the emergence is



detectable. We would like to be able to abstract away from artificial represen-
tations, to use natural descriptions of these high-level rules. For example, when
modelling the layers on top of a CA, we should ignore the absolute grid represen-
tation, describing the emergence (gliders and other CA structures) abstractly,
and without reference to lower level rules. We can then connect the high- and low-
level elements by suitable causation links, to engineer the required emergence.
The next section shows how a layered design can be implemented, preserving
the relativity of the higher layer and the absolute lower-layer concepts.

6 An Implementation of the Layered Platelet Design

To explore simulations that demonstrate rule migration, we use a mobile exten-
sion of a traditional concurrent language. occam-π 1 is a small language that
implements the communication strengths of Hoare’s CSP[7] and the mobile as-
pects of Milner’s π-calculus[8]. It takes the well-grounded semantics of these
specification calculi, and provide a programming environment to support an en-
gineering approach to the underlying mathematics[2, 10].

The implementation of the platelet model uses occam-π static processes to
represent the underlying CA, and mobile processes to model the activation and
clustering of platelets. Downward causation is programmed as the mobile pro-
cesses stimulating change in a CA cell. Upward causation is the reading of cell
state by the mobile channels.

We can associate various visualisations to the simulation. An absolute-space
model can be observed if static processes communicate their location and state
to a display. A relative-location visualisation is achieved if mobile processes com-
municate their size and relative location to a display.

6.1 The occam-π Design

The occam-π model has a one-dimensional cell array, as before. Each cell is a
static server process.

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

mobile

headtaillag

free

lead

Fig. 5. A two-platelet cluster

One approach to simulating the two-layer
platelet model it to associate a mobile
process to each cell containing a platelet.
The mobile process (figure 5) holds the
size of the cluster and client-ends of four
(multi-way) channels: head and tail con-
nect to the first and last cells in a cluster;
lead and lag connect to cells immediately
ahead of and behind the cluster, acting as
feelers to the cells round the cluster. The

mobile process also holds the server -end of the free channel, used to merge
adjacent clusters. The channel protocols allow two-way communication for the
1 See http://frmb.org/kroc.html for the latest implementation.



setting and retrieving of data and channel ends. Each cluster deposits the client-
end of its free channel in the cell connected through tail. When the cluster
moves, the free channel is thus dragged along the cells in turn.

When a platelet or cluster head enters the cell immediately behind another,
the front mobile process (m1) detects its presence via an enquiry on the lag
channel. The back process (m2) also detects that it is adjacent to another cluster
via an enquiry on its lead channel, which points to the same cell as m1’s tail.

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

m1m2

Fig. 6. Two coalescing clusters

Figure 6 shows the results of the m2
process using its lead channel to ac-
quire the client-end of m1’s free chan-
nel, resulting in direct communication
between the two clusters. Once the link
between the mobile processes is estab-
lished, m2 communicates its size, the
client-ends of its tail and lag, and the
server-end of its free channel to m1; m2
then terminates. m1 adds the received

size to its own size, and overwrites its tail, lag, and free channel ends with
those that it receives. m1 has now assumed control of the combined cluster, shown
in figure 7.
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Fig. 7. The completed merger

Coordination of cluster merging and
movement is safely and efficiently man-
aged by barrier synchronisation. A two-
phase cluster cycle is divided by barri-
ers. Phase one detects when one clus-
ter has other adjacent clusters (on one
or both sides) and handles all the re-
sultant cluster merges. In phase two,
mobile processes determine the move-
ment of their clusters. Barrier synchro-
nisation in occam-π is extremely cheap
(see [3]). All memory for terminated pro-

cesses and discarded mobile channels is automatically freed (without garbage
collection); there can be no memory leaks and the model runs indefinitely.

6.2 Extending the Platelet and Glider Simulations

The occam-π simulation allows us to explore the use of higher layers in a CA-
based model, and to explore platelet simulation with additional control factors
from environmental models. The mobile process tagging will also be used on
a GoL simulation to facilitate automatic detection of incipient gliders. An ele-
ment of downward causation could be added to the GoL, perhaps “clearing” the
neighbours ahead of a new glider to prevent its being absorbed by background
“noise”.

The mobile processes used to tag gliders and link platelets implement relative
location (i.e. connections to neighbouring cells); this information is held locally.



Rules at the higher level refer only to relative properties, not absolute properties
of the current grid location. The lowest level still uses an absolute grid, but this
is accessed only to display the result of each update cycle; individual cells are
unaware of their absolute grid location.

7 Related Work

We are not alone in recognising that representations are often layered, such that
point events at one level correspond in some approximate but definable way to
actions with extent at lower levels. The point events are often invisible at higher
levels. We are aware of at least three other research initiatives, in areas as diverse
as model-driven architectures and real-time systems, which are discovering that
layering is a key concept; no work has yet been published on these discoveries.

There are some similarities between our extra levels to control and interpret
the CA behaviour and other CA-based research programmes; the difference is
that others do not explicitly use their interpretation layers for downward causa-
tion. For example, in Fredkin’s digital philosophy, readings of various parameters
at various of six defined phases of a two-time-layer, 3-D CA are interpreted as
physical properties. The CA simulates the laws of physics [4]. Wuensche’s work,
interpreting the time-series of CA updates and detecting attractors [11, 12], also
provides implicit interpretation layers. This work is potentially important for
engineering emergence, since design is likely to be considerably facilitated if the
attractors of an emergent feature can be established.

8 Conclusion

Our work exploits notions of layering and causality in emergent systems to im-
prove our ability to engineer required properties and to enhance the expressive
power of our simulations.

Having introduced layers for migrated rules, in the platelet model we can ex-
ploit the higher layer for more natural control laws, and the implemented platelet
simulation could easily be extended to a two- or three-dimensional representa-
tion that is a better model of a blood vessel. We can introduce and experiment
with models of environmental interaction, and, having abstracted platelet con-
trol from the CA grid, we could introduce local diffusion CAs on the absolute
grid, modelling the chemical environment that acts on and is affected by the
platelets. Further local CA rules could model flow features such as the effect of
proximity to the vessel boundary on speed. These new features would be moni-
tored by the higher-layer structures, which would also communicate “chemical”
signals to the CAs.

In engineering terms, we are using layering and causality to devise architec-
tural patterns for the design of emergent systems. We also seek to introduce
good engineering practices, such as validation, testing and safety argumentation
to the development process associated with this layered architecture.
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A Appendix: CA Model of Platelets

This is one possible CA rule set to simulate platelet clustering. The cell design has
boolean state, next and vacuum variables. The nd variable is set to determine
whether a cell containing a platelet loses its platelet in the next time step. It
takes values 0, 1 and 2, where 0 represents “no change”, 1 represents “change”
and 2 is assigned if the resolution of non-determinism is a decision to change.

The value of nd is deterministic for all cells except the first cell of a cluster
and the cell immediately behind (most) vacuums. The value is set using the first
set of CA rules. The next variable of each cell is then calculated in the second
phase. Calculations within a phase can be concurrent, as can the actual update
where each state is reset to the cell’s next.



A.1 The First Phase

The first pass visits only cells having cell[i].state = TRUE.

Rule A. A platelet cannot move because it is blocked by platelets ahead.
Rule B. A platelet cannot move because it is located ahead of a vacuum.
Rule C. A platelet between two vacuums cannot move.
Rule D. A platelet before a vacuum can decide whether or not to move.
Rule E. The platelet at the front of a cluster can decide whether or not to move.
Rule F. A singleton platelet must move.

The tabular summary gives the rule name, then the applicable values of the
current cell and its neighbours, and the resulting nd. An occupied cell is labelled,
T; an empty cell, -; and a vacuum, V.

RULE nd
A T T T 0

- T T 0
V T T 0

RULE nd
B V T - 0
C V T V 0

RULE nd
D T T V nd

- T V nd
E T T - nd

RULE nd
F - T - 1

A.2 The Second Phase

In the second pass, any cell that contains a platelet and has an nd value of 0 is
unchanged. The next state for cells with nd > 0 is calculated to take account of
vacuums. Cells that do not contain platelets have their state calculated.

Rule S.1. A cell with nd = 2, and a platelet behind, becomes a vacuum.
Rule S.2. A cell with nd = 2, which is at the back of a cluster, becomes empty.
Rule S.3. A cell holding a singleton platelet becomes empty.
Rule S.4. An empty cell, with an empty cell before it, does not change.
Rule S.5. An empty or vacuum cell, with a preceeding platelet having nd = 0,
does not change. The CA design disallows a vacuum with an empty cell after it.
Rule S.6. A cell whose nd value is 0 does not change.
Rule S.7. An empty or vacuum cell with a platelet behind it having nd > 0,
becomes occupied.

In the summary tables, each rule number is followed by the applicable states
of the current cell and its neighbours; the last column is the next value of the
current cell. Where the fact that the nd value was set non-deterministically is
important, the resolved value is shown (eg T,2 ).

RULE next
S.1. T T,2 - V

T T,2 V V
S.2. - T,2 V -
S.3. - T - -

RULE next
S.4. - - - -

- - T -
S.5. T,0 - T -

T,0 - - -
T,0 V T V

RULE next
S.6. T T,0 T T

- T,0 T T
V T T T
V T - T

S.7. T,2 - T T
T,2 - - T
T,2 V T T


