
Delegation Issuing Service for X.509 
D.W.Chadwick, University of Kent, Canterbury, CT2 7NZ, England 

 
 

Abstract 
This paper describes the concept of a 
delegation issuing service (DIS), which is a 
service that issues X.509 attribute 
certificates on behalf of an attribute 
authority (typically a manager). The paper 
defines the X.509 certificate extensions that 
are being proposed for the 2005 edition of 
X.509 in order to implement the DIS 
concept, as well as the additional steps that a 
relying party will need to undertake when 
validating certificates issued in this way. 
The paper also presents our initial 
experiences of designing a DIS to add to the 
PERMIS authorization infrastructure. The 
paper concludes by reviewing some of the 
previous standards work in delegation of 
authority and anticipating some of the 
further standardization work that is still 
required in the field of privilege 
management. 

1. Introduction 
The 2000 edition of X.509 [1] defines a 
Privilege Management Infrastructure (PMI) 
based on attribute certificates (ACs). 
Attribute certificates are very similar to 
public key certificates (PKCs) but hold 
privileges (as attributes) instead of public 
keys. In the X.509 PMI model, the root of 
the PMI is termed the Source of Authority 
(SoA), and subordinates are termed 
Attribute Authorities (AAs). Delegation of 
Authority passes down the chain from SoA 
to AA to subordinate AAs in much the same 
way as the authority to issue public key 
certificates passes down a PKI certification 
authority hierarchy from the root CA to 
subordinate CAs (see Figure 1A). A 
subordinate AA is given a set of privileges 

by its superior AA, and may delegate these 
further to subordinates (AAs or end entities). 
A subordinate who is not allowed to 
delegate further is termed an end entity. In 
the normal situation all privilege holders 
(AAs and end entities) are allowed to assert 
the privileges that are delegated to them. 
 
However, in some situations a privilege 
holder may be allowed to delegate the held 
privileges to a subordinate, but may not be 
allowed to assert the privileges itself. An 
example might be an airline manager who 
assigns privileges to pilots to fly particular 
aircraft, but is not allowed to fly the aircraft 
himself, or a hospital manager who assigns 
privileges to doctors on duty but is not 
allowed to assert these privileges himself. 
Whilst the X.509 standard recognizes this 
scenario, it offers no support for this in the 
ACs that can be issued to these AAs i.e. 
there is no way of signaling to a relying 
party (RP) that an AC holder may not assert 
the privileges contained in the AC that it 
holds. This deficiency needs rectifying. 
 
Work is now progressing towards issuing 
the 2005 edition of X.509, and another 
delegation scenario has been identified in 
the draft amendment [2] to X.509(2000). 
This concerns the use of a delegation service 
to issue ACs on behalf of other AAs. The 
delegation issuing service (DIS) concept 
recognizes that in some organizational 
contexts, it might be preferable for a 
manager (an AA) who wishes to delegate 
authority to a subordinate, be not 
empowered to issue the X.509 AC herself, 
but rather should request a DIS to issue the 
AC on her behalf.  



 
 

Bill

Alice

Bob

SOA

AA

End
Entity

Issues
AC to

Issues
AC to

Bill

Alice

Bob

SOA

AA

Issues
AC to

Issues
AC to

Delegation
Issuing
Service

Issues
AC to

Figure 1A. Normal
Delegation of Authority

Figure 1B. Delegation of Authority using a
Delegation Issuing Service

AC

Points to issuer

Points to
holder

End
Entity

Points to Issued On
Behalf Of

1.1 Advantages of a DIS 
The benefits of using a delegation issuing 
service instead of AAs issuing X.509 ACs 
themselves are several. Firstly, the DIS can 
support a fully secure audit trail and 
database, so that there is an easily accessible 
record of every AC that has been issued and 
revoked throughout the organization. If each 
manager were allowed to independently 
issue their own ACs, then this information 
would be distributed throughout the 
organization, making it difficult or 
impossible to collect, being possibly badly 
or never recorded or even lost. Secondly, the 
DIS can be provided with the organization’s 
delegation policy, and apply control 
procedures to ensure that a manager does 
not overstep her authority by issuing greater 
privileges to subordinates, or even to herself, 
than the organization’s policy allows. 

Thirdly, the manager does not need to hold 
and maintain her own private signing key, 
which would be needed if the manager were 
to issue and sign her own ACs. Only the DIS 
needs to have an AC signing key. This could 
be a very important feature in organizations 
that use mechanisms other than PKIs for 
authentication such as biometrics, user 
names and passwords, or Kerberos etc. 
Finally, if the DIS is given its own AC by 
the SOA, it can replace the (set of) 
manager’s AC(s) in the AC validation chain 
and therefore decrease the complexity of AC 
chain validation. The AC chain length 
would always be two when the DIS issues 
the ACs to end entities, whereas it would be 
of arbitrary length when the managers issue 
the ACs themselves. Also less CRLs will 
need to be issued – only the DIS will need to 
issue a CRL rather than each manager. This 
will further simplify AC chain validation. 



1.2 DIS Deployment Models 
Two deployment models for the DIS are 
envisaged in the 2005 draft amendment [2]. 
In both models the DIS is empowered to 
issue ACs on behalf of other AAs, by being 
issued with its own AC by the SoA. This AC 
confers on the DIS the authority to issue 
ACs on behalf of other AAs. This 
empowerment model is similar to the PKI 
concept of an indirect CRL issuer, whereby 
an entity is given the authority to issue 
CRLs on behalf of a CA.  In the first DIS 
deployment model (which we have called 
the AC PKI mode), a privilege holder 
requests the DIS to issue privileges on its 
behalf, but the DIS does not actually hold 
the privileges itself. The AA tells the DIS 
which privileges to delegate. In the second 
deployment model, the DIS is actually given 
the privileges to be delegated by the SoA 
(we have called this the PMI mode). 
However, the 2005 draft amendment had no 
mechanisms for implementing either of 
these deployment models. 
 
In our research and design of a DIS service 
for PERMIS [5], we have also identified a 
third deployment model in which the DIS is 
not given an AC, but has its own PKI key 
pair for signing the ACs its issues, with 
empowerment flagged in the public key 
certificate (we call this the PKI mode). The 
DIS now only needs to authenticate the AAs 
and issue ACs on their behalf, without 
validating the contents of the ACs. 
Furthermore, the users do not need to have 
their own PKI key pairs. This simplifies the 
design and deployment of the DIS service, 
but the downside is that it complicates the 
process of AC chain validation by the 
relying parties due to the delegation 
indirection introduced by the DIS, as 
described later. 

1.3 Disadvantages of a DIS 
As mentioned above, in PKI (and AC PKI) 
modes, AC chain validation is more 
complex when a DIS issues the ACs. 
Another potential disadvantage of a DIS is 
that the single CRL issued by the DIS could 
get very large, unless distribution points are 
used. A large CRL can adversely affect the 
performance of AC chain validation. 
Further, when cross certification between 
PMIs takes place, in PMI mode there is a 
loss of granularity since it has to be the DIS 
that is cross certified rather than any of the 
AAs that are trusted. But perhaps the biggest 
disadvantage of using a DIS for some 
applications is that the AC signing key 
should be online and ready to be used to 
sign ACs when requested. In some highly 
secure systems this would be unacceptable. 

1.4 Paper Contents 
This paper describes proposed extensions to 
the 2000 edition of X.509 that can be used to 
implement the DIS model for delegation of 
authority, as well as rectify the 2000 
deficiency that there is no way to signal that 
an AA holds a privilege for delegation but is 
not allowed to assert the privilege. These 
extensions have recently been included as 
part of the revised draft amendment to 
X.509(2000). 
 
The rest of this paper is structured as 
follows. Section 2 describes the X.509 
extension that can be used to signal that a 
privilege holder is not allowed to assert the 
privileges that it holds. This corrects the 
deficiency in the 2000 edition of X.509. 
Section 3 describes the X.509 extensions 
that can be used to implement the DIS 
model. Section 4 describes how relying 
parties will need to use these new extensions 
in order to validate ACs issued by a DIS.  
Section 5 describes how we are 
implementing the DIS in PERMIS. Section 
6 describes related standards work and 



research in this area, whilst Section 7 
describes further standardization work that 
is still needed to be done in the X.509 PMI 
framework. 

2. No Assertion of Privileges 
There are two scenarios where privilege 
holders may be given privileges in an AC1, 
in order to delegate them to other entities, 
but where they are not allowed to assert the 
privileges themselves. The first is where a 
manager is tasked with allocating roles or 
duties to subordinates, but is not allowed to 
assert the roles or duties himself. The 
previous section gave a couple of examples 
of this scenario, in the shape of an airline 
manager and a hospital manager. This 
scenario is represented by Alice in Figure 
1A. The second scenario is where a 
delegation issuing service (DIS) is given a 
set of privileges to delegate, as directed by 
the SoA. This is represented by the 
Delegation Issuing Service in Figure 1B.  
 
We can prevent the holder of these 
privileges (Alice in Figure 1A and the DIS 
in Figure 1B) from asserting them by 
placing a “no assertion” extension into the 
AC issued to it. This extension will inform 
all relying parties that understand the 
extension that the AC holder is not allowed 
to assert the privileges contained within the 
AC. This extension obviously needs to be a 
critical extension, since any relying party 
that does not understand it, must refuse to 
accept the AC, rather than simply ignore the 
extension and allow the privileges to be 
asserted. 
 
The “no assertion” extension is formally 
defined in ASN.1 [6] as: 

                                                 
1 We do not consider it sensible to issue privileges to 
AAs via the subjectDirectoryAttributes extension of 
public key certificates, since the AAs would not be 
allowed to delegate these privileges further by issuing 
additional PKCs, since they are not a CA. 

noAssertion EXTENSION ::=  { 
SYNTAX NULL 
IDENTIFIED BY { id-ce-

noAssertion }   } 
 
where id-ce-noAssertion is an object 
identifier (OID) assigned in X.509.  
 
If present, this extension indicates that the 
AC holder cannot assert the privileges 
indicated in the attributes of the AC. This 
field can only be inserted into AA ACs, and 
not into end entity ACs. If present, this 
extension shall always be marked critical. 

3. X.509 Extensions to Support 
the Delegation Issuing Service 
As described in the Introduction, three 
deployment models have been identified for 
the DIS, two in [2], in which the DIS is 
issued with its own AC and we have termed 
the AC PKI and PMI modes, and one from 
our own research, termed the PKI mode, in 
which the DIS does not have its own AC. 

3.1 DIS Empowerment 
The Delegation Issuing Service (DIS) needs 
to be empowered by the SoA to issue ACs 
on behalf of other AAs. This is done by 
including an “indirect issuer” extension in 
either the PKC or the AC issued to the DIS 
by the CA or SoA respectively. The indirect 
issuer extension serves a similar purpose as 
the indirect CRL boolean of the issuing 
distribution point extension in PKI CRLs i.e. 
it gives authority to the DIS. The indirect 
issuer extension is formally defined in 
ASN.1 as: 
 
indirectIssuer EXTENSION ::= { 
 SYNTAX  NULL 
 IDENTIFIED BY  id-ce-
indirectIssuer  } 
 
where id-ce-indirectIssuer is an OID 
assigned in X.509.  



The indirect issuer extension may be used 
by the relying party when validating an AC 
chain to check that the AC issuer was 
empowered to issue ACs on behalf of other 
AAs (otherwise anyone with a signing key 
could issue an AC and say it was authorized 
by an AA). Alternatively, it may be used by 
the DIS software at initialization time to 
check that it is empowered to act as a DIS. 
 
The draft extension to X.509 states that the 
indirect issuer extension may be placed in 
either an AC or PKC containing the 
subjectDirectoryAttributes extension issued 
to a DIS by an SoA. In our research we have 
identified that this extension may also be 
placed in a PKC that does not contain the 
subjectDirectoryAttributes extension.  
 
The presence of this extension means that 
the subject AA (the DIS) is authorized by 
the SoA to act as a proxy and issue ACs that 
delegate privileges, on behalf of other 
delegators. This extension is always non-
critical, since it does not matter to a relying 
party if it understands this extension or not 
when the DIS is acting as a privilege asserter 
by presenting this to the RP to assert the 
privileges contained within this certificate. 
This extension can be used by a RP when 
validating an AC chain which has the DIS 
acting on behalf of another AA somewhere 
in the AC chain (see section 4).  

3.2 Requesting an AC 
When an AA wishes to delegate some of its 
privileges to a subordinate, and wishes to 
use the services of a DIS to issue the AC on 
its behalf, it needs to contact the DIS to 
request the certificate to be issued. How this 
communication is achieved is outside the 
scope of X.509. Some discussion of this is 
provided later. Assuming this 
communication is successful, i.e. that the 
AA is authenticated to the DIS, and is 
allowed by the DIS’s attribute allocation 

policy to request the AC to be issued, the 
DIS will issue an AC on behalf of the 
requesting AA. Thus we need an extension 
to be inserted into the AC, informing all 
relying parties that this certificate was issued 
on behalf of a particular AA. This leads to 
the requirement for the “issued on behalf of” 
extension, which is formally defined in 
ASN.1 below. 
 
issuedOnBehalfOf EXTENSION ::=  { 

SYNTAX GeneralName 
IDENTIFIED BY id-ce-

issuedOnBehalfOf  } 
 
where id-ce-issuedOnBehalfOf is an OID 
assigned in X.509.  
 
This extension is inserted into an AC by an 
indirect issuer. It indicates the AA that has 
requested the indirect issuer to issue the AC, 
and allows the delegation of authority chain 
to be constructed and validated by the 
relying party if necessary (see section 4). 
 
The GeneralName is the name of the AA 
who has asked the issuer to issue this AC 
 
The issuer of this AC must have been 
granted the privilege to issue ACs on behalf 
of other AAs by an SOA, through the 
indirectIssuer extension in its AC or PKC. 
 
This extension may be critical or non-critical 
as necessary to ensure delegation path 
validation (see next section). 

4. Validating Indirect AC chains 
The X.509 standard already provides a 
procedure for validating privilege paths and 
delegation chains in the standard delegation 
of authority scenario. This chain is 
represented by the curved arrows that point 
to issuers in Figure 1A. This procedure 
needs to be enhanced when indirectly issued 
ACs are encountered in the delegation chain, 



such as those in Figure 1B. As can be seen 
from the addition of the issuedOnBehalfOf 
arrows in Figure 1B, the procedure is more 
complex and more delegation links need to 
be validated when this extension is marked 
critical. 
 
Three deployment models have been 
identified, which we have termed the AC 
PKI, PMI and PKI modes. In PMI mode, the 
DIS has been issued with an AC by the 
SOA, which contains a superset of the 
attributes that it will issue on behalf of other 
AAs. This model presents the simplest path 
validation processing, since the AC chains 
will always comprise of just two ACs: the 
end entity’s AC signed by the DIS, and the 
DIS’s AC signed by the SOA. The existing 
standard path validation procedure will work 
for this AC chain. The RP may safely ignore 
the issuedOnBehalfOf and indirectIssuer 
extensions which will be marked as non-
critical, since the DIS had full authority to 
issue the ACs to the end entities even though 
in reality it was a peer AA that asked for the 
delegation to be performed. Note that the 
DIS might not have permission to assert 
these privileges itself, but that will be 
signaled separately by the noAssertion 
extension. 
 
In AC PKI mode, the DIS has an AC 
containing the indirectIssuer extension, but 
does not have any of the attributes that it 
will issue to others. These are held by the 
AAs that request the DIS to issue the ACs. 
In this case the issuedOnBehalfOf extension 
must be set to critical, since the RP will need 
to validate that the requesting AA had 
sufficient privileges to delegate to the end 
entity. If the extension was not set to critical, 
the RP is likely to compute that the AC 
chain is invalid since the DIS issuer did not 
have a superset of the privileges that were 
allocated to the end entity. 
 

In PKI mode, the DIS does not have an AC, 
but only has a PKC containing the 
indirectIssuer extension. In this case the 
ACs issued by the DIS have to have the 
issuedOnBehalfOf extension set to critical, 
since the DIS is incapable of performing any 
validation of the requesting AA other than 
authenticating that it is who it says it is. All 
PMI validation has to be done by the RP. 
But this is in fact little different to the 
validation performed in the AC PKI mode, 
and is if anything slightly simpler since the 
DIS only has a PKC to be validated and not 
a PKC and an AC. 
 
In addition to the standard procedural tasks 
of validating signatures and revocation lists, 
the relying party will also have to perform 
the following additional steps. 
 
i) Starting with the end entity’s AC, the 

RP will need to extract the issuer 
name and look at the critical flag of 
the issuedOnBehalfOf name. 

ii) If the issuedOnBehalfOf extension is 
marked critical, the RP retrieves the 
ACs of the issuedOnBehalfOf AA 
and validates that the AA has a 
superset of the privilege attributes 
issued to the end entity and that the 
ACs have not been revoked. If it 
does not have sufficient privileges, 
or they have been revoked, the end 
entity’s AC is rejected. The RP 
retrieves the certificates (ACs and 
PKCs) of the issuer and validates 
that the issuer is an indirect issuer of 
the SoA (i.e. has the indirectIssuer 
extension in one of its certificates). If 
not the end entity’s AC is rejected. 

iii) If the issuedOnBehalfOf extension is 
missing or non-critical, the RP 
retrieves the ACs of the AA (the 
DIS) and validates that the AA has a 
superset of the privileges issued to 
the end entity. If not, the end entity’s 



AC is rejected. 
iv) For each AC of the issuer that 

contains one or more of the 
delegated privileges, the RP recurses 
to step i) for each AC, thereby 
moving up the delegation chain. This 
recursion continues until the RP 
arrives at the AC of an AA that is 
issued by the trusted SoA(s) who 
is(are) the root(s) of the PMI. This 
validates that the privileges were 
properly delegated. 

4.1 Validating the noAssertion 
extension 
If an AA’s certificate has the noAssertion 
extension in it, what is to stop the AA 
issuing another AC to itself and omitting the 
noAssertion extension? Clearly there is 

nothing to stop this from happening. For this 
reason, SPKI decided (in section 4.2 of [11]) 
that they were powerless to stop this in their 
simple certificates that tied authorizations to 
public keys. However, X.509 has the 
advantage that AAs are given globally 
unique names by CAs. Providing an AA is 
not able to obtain an alias name for itself 
from the same or another trusted CA then 
the relying party can check if any AA’s AC 
in a certificate path has the noAssertion 
extension set, and if it does, apply it also to 
any subordinate ACs that contain the same 
holder name. Clearly if an AA is able to 
obtain totally unrelated aliases from one or 
more trusted CAs, then the RP is unlikely to 
know that the AA is asserting privileges that 
it was not intended to, by using an alias 
name. 

 

ACM

Single Java program

ACM

Web Service
Interface

DIS Web Service

DIS

DIS
Apache

SSL or
Shibboleth

Apache

Web
browser

SSL or
Shibboleth

Web Service
Interface

DIS

Figure 2. DIS Communications

1

2

3

4

 

5. Implementing the DIS 
We decided to implement the DIS as part of 
the PERMIS X.509 PMI, as an aid to 

implementing dynamic delegation of 
authority. However, a number of issues 
needed to be resolved that are not addressed 
in the proposed extensions to X.509. 



Firstly there is no mention of how the 
communication between the DIS and the AA 
should be achieved. Clearly the use of a 
standardized protocol is preferable to a 
proprietary one. One can envisage that an 
IETF working group such as PKIX might 
define a protocol similar to CMP [3], using a 
request similar to a PKCS#10 message [4]. 
In the absence of such a standard, in our 
own research we are proposing to use a Web 
Services protocol (see  in Figure 2), and 
the Java GSSAPI [19] for authenticating the 
user. The GSS tokens will then be base64 
encoded and inserted into SOAP messages. 
We are also defining a Java API for the DIS 
(see  in Figure 2), so that the DIS can be 
built into other Java programs such as the 
PERMIS Attribute Certificate Manager 
(ACM) and called directly by it. In this case 
user authentication is not necessary. We are 
also proposing to adopt a 3 tiered model 
where an Apache server acts as the DIS 
client, authenticates the AAs via either 
Apache authentication (e.g. SSL) or 
Shibboleth (see  in Figure 2), and then 
acts as a proxy for them to the DIS. It would 
also be possible for Apache to directly call 
the DIS via our Java API (see  in Figure 
2). 
 
Secondly there are a number of issues 
concerned with AC path validation. As 
pointed out by Knight and Grandy in [18] 
this can be extremely complex when 
dynamic delegation of authority is 
implemented. We want to simplify this 
process as much as possible. We have 
already taken the step of not issuing role 
specification ACs, and instead we store their 
contents in each target’s PERMIS policy 
read in by its PDP at initialization time. We 
thus only issue role allocation ACs. Our 
preferred DIS deployment model is the PMI 
mode, since the DIS is issued with a role 
allocation AC containing a superset of the 
attributes that it can delegate. In this way we 

limit AC path lengths to two, and if the 
target policy is willing to trust the DIS as a 
root (as well as the SoA) then path 
validation lengths are reduced to just one 
AC, that of the end user. 
 
In our implementation, the DIS is given an 
AC containing a full set of privileges, and is 
configured with its own PERMIS PDP. The 
PDP is configured with an attribute (or role) 
assignment policy (RAP) [7], so that it can 
validate the AA requests. At initialization 
time the DIS will check that its AC has the 
indirectIssuer extension in it, otherwise it 
will fail to start. When an AA asks for an 
AC to be issued, the DIS will check that the 
AA is allowed to do this under the RAP 
policy, and also that the set of attributes 
requested are a subset of those held by the 
DIS. Validation against the RAP is done by 
the existing PERMIS PDP code. It is passed 
the (unsigned) AC requested by the AA, and 
it validates the credentials in the AC against 
the RAP. The only modification needed to 
PERMIS is to provide it with a null 
signature validation object that will return 
signature valid to every request to validate 
the unsigned ACs. If the AC passes the 
policy, the DIS will check that the requested 
attributes are a subset of those it holds in its 
own AC. The task of the RP is now made 
much simpler, since it only needs to validate 
1 or 2 ACs, that of the user issued by the 
DIS, and optionally that of the DIS issued 
by the SOA. 
 
Finally we wanted to simplify the use of 
PMIs in organizations that do not have fully 
functional PKIs implemented. These 
organizations, which are in the majority, 
already have a fully functional user 
authentication mechanism, and only have a 
handful of PKCs, e.g. web server 
certificates. It is for this reason that we have 
chosen to implement communications 
between the user and DIS as a three tiered 



model via an Apache web server as in path 
 in Figure 2. This will allow organizations 

to use their existing authentication method. 
One problem that has to be solved is that of 
proxying, since the DIS will authenticate 
Apache, Apache will authenticate the user 
and Apache will then ask for an AC to be 
issued on behalf of the user. The DIS has to 
know if Apache is authorized to proxy in 
this way. We could solve this in a couple of 
ways. We could configure the details (name 
address of Apache) into the DIS. Or we 
could issue Apache with its own AC 
containing a proxy privilege. When Apache 
authenticates to the DIS, the DIS will call 
the PERMIS PDP to validate Apache’s AC, 
and if it has the proxy credential the DIS 
will allow it to request ACs be issued on 
behalf of other AAs. 

6. Related Research 
Some of the earliest standardization work 
for attribute certificates and attribute 
certificate issuing servers was undertaken by 
ECMA in the late 80’s and early 90’s. This 
lead to the publication of ECMA Standard 
219 [9] which specifies a model for 
distributed authentication and access 
control. The Privilege Attribute Certificates 
(PACs) described therein are a forerunner of 
the attribute certificates later standardized in 
X.509.  A Privilege Attribute Server (PA-
Server) is responsible for issuing PACs to 
users, and is similar in concept to the DIS 
described in this paper. However, to support 
delegation of authority between principals, 
new PACs are not issued to the delegatees 
(as in this paper) but rather the PA-Server 
provides the initial user with a PAC that 
contains one of more embedded Protection 
Values (PVs) that can be used for 
subsequent delegation. A PV is a hash of a 
secret Control Value (CV).  The user is 
separately issued with the corresponding 
CVs. When a user wishes to delegate 
authority to another user or server, the latter 

is provided with the PAC and the 
appropriate CV (sent confidentially, of 
course). The delegate then presents the PAC 
to the target along with the CV. The target 
validates that the hash of the CV 
corresponds to a PV in the PAC, and if so 
allows the delegate to have the appropriate 
delegated access on behalf of the user. 
Different delegates can be given different 
CVs which authorize different subsets of the 
privileges contained in the PAC to different 
sets of target resources.  The EC SESAME 
project [8] implemented a subset of ECMA 
Standard 219 and this was eventually rolled 
out into several commercial products from 
the project’s partners. The disadvantage of 
the ECMA scheme is that the user has to 
know in advance of requesting the PAC 
what delegation is required, since this is 
built into the PAC at the time of its issuance. 
 
ECMA Standard 219 supports both 
symmetric and asymmetric encryption for 
protection of the PACs, since it supports 
both Kerberos V5 [10] and digital signatures 
for user authentication to the authentication 
server prior to contacting the PA-Server. 
Interestingly, X.509 decided to standardize 
on only asymmetric encryption for its 
certificates, whereas Microsoft Windows 
decided to adopt Kerberos and symmetric 
encryption for its tokens when allowing 
users to gain access to multiple Windows 
services. 
 
The Simple Public Key Infrastructure 
(SPKI) [11] IETF working group, whose 
work eventually merged with the Simple 
Distributed Security Infrastructure (SDSI) 
[12] of Ron Rivest, defined three types of 
certificate which mapped names, 
authorizations and group names respectively 
to public keys. Authorization certificates can 
be further delegated, and this is indicated by 
a Boolean flag set by the issuing delegator. 
The delegator can set the Boolean as 



desired, except that if the Boolean is already 
false in the authorization certificate 
delegated to him/her then it cannot be 
switched back to true and be trusted. It 
therefore would be easy to apply the DIS 
concept and service to SPKI using the PMI 
mode deployment model, i.e. where the DIS 
is delegated an authorization certificate with 
the Boolean set to true. However it would 
break the theory of SPKI to implement 
either of the two PKI mode deployment 
models since these require the 
issuedOnBehalfOf extension to be present in 
the delegatee’s certificate, and this would 
mean that the certificates are no longer 
simple according to SPKI’s definition. 
 
One feature included in SPKI that is not 
formally in the X.509 standard, is a rights 
language for expressing authorization 
policies. Consequently PERMIS defined its 
own policy language, written in XML [7]. 
SPKI uses S-expressions. X.509 has left it to 
other standards, e.g. the ISO Rights 
Expression Language [20] to specify the 
policies. This means that the policy rules by 
which a DIS operates are not specified in 
X.509.  
 
Proxy certificates, defined initially by the 
Globus grid software developers, and later 
published as an IETF proposed standard 
[13], use a different model for delegation of 
authority. In this model a user, who is the 
subject of a public key certificate (and 
defined as an end entity by the X.509 
standard), issues his own PKC (called a 
proxy certificate) to the public key of his 
grid job which has previously generated its 
own key pair. Validating the proxy 
certificate of course breaks the standard 
X.509 certificate path validation rules, since 
an end entity is not allowed to act as a CA. 
To rectify this, a critical extension 
(proxyCertInfo) is added to the proxy 
certificate to indicate the fact. The extension 

can also carry information about which 
privileges are being delegated, i.e. none, all 
or a subset, the latter being defined in an 
application specific way. Grid applications 
and users could use the DIS framework 
described here as an alternative to the latter, 
and ask the DIS to issue ACs to their grid 
jobs that contain a subset of the privileges 
contained in the user’s AC. We plan to 
demonstrate this feature in due course, since 
PERMIS is already integrated with Globus 
toolkit [14]. 
 
More recently the work on Shibboleth [15] 
has implemented a limited mechanism for 
delegation of authority. In this case a target 
site delegates to the user’s home site the task 
of authenticating and assigning attributes to 
the user. The user’s privileges are returned 
to the target site in the form of a SAML 
Attribute Statement [16] signed by the home 
site. In research described in another paper 
at this conference [17], we have extended 
the Shibboleth delegation model by 
integrating it with PERMIS and X.509 ACs. 
The DIS will then be able to be used by 
home sites to delegate privileges even 
further. 

7. Further Work 
As indicated above, a protocol for 
interactions between an AA and a DIS will 
need to be standardized so that requests to 
issue ACs can be made in a standard 
manner. This request-response protocol may 
be similar to the PKIX CMP protocol, but it 
need not be, since proof of possession of the 
private key is not essential (indeed one of 
the motivations for having a DIS is that the 
users may not have their own key pairs). In 
many scenarios AAs may not be PKI users, 
but rather may use Kerberos, biometrics or 
symmetric tokens for authentication. In this 
case the AAs are computationally unable to 
issue X.509 ACs so will need to use the 
services of a DIS to issue the ACs on their 



behalf. But they will be unable to sign those 
requests to the DIS. In this case a web 
services interface like the one we propose to 
use may be more appropriate, with the AA 
using a web browser to interact with the DIS 
via a web server, and perhaps authenticating 
with a username and password over an SSL 
link. Whatever protocol is standardized, it 
will need to be flexible enough to cater for 
the different environments in which it may 
be used. 
 
Practical experience of working with X.509 
PMIs is only just beginning. Most 
organizations who are experimenting with 
PMIs use them internally initially. They 
define their own privilege attributes and 
therefore the relying parties and SoAs have 
a common understanding of both the 
semantics and syntax of these privilege 
attributes. However, as organizations move 
towards role based or attribute based access 
controls, and federations between 
organizations, including the formation of 
virtual organizations, they will find that the 
attributes and roles they have defined are 
different from those in use by their 
federation partners. When this starts to 
occur, organizations will not want to re-
issue ACs to users from the federated 
organizations, but rather will wish to 
understand and use the ACs that have 
already been issued. This will require cross 
certification between PMIs, the mapping of 
role allocation policies between 
organizations and constraints on what 
foreign users may asserts in home domains. 
It is anticipated that this work will form the 
bulk of the standardization activity for the 
sixth edition of X.509. 

Acknowledgements 
The authors would like to thank the UK 
JISC for funding this work under the 
DyVOSE project, and the NIST PC 
members who robustly reviewed this paper 

and made some constructive comments that 
helped to improve it. 

References 
[1] ISO 9594-8/ITU-T Rec. X.509 (2000) 
The  Directory:  Public-key and attribute 
certificate frameworks 
[2] ISO SC 6 N12596 “Proposed Draft 
Amendment on Enhancements to Public-
Key and Attribute Certificates”, Geneva 
output, March 2004 
[3] C. Adams, S. Farrell. “Internet X.509 
Public Key Infrastructure Certificate 
Management Protocols”. RFC 2510, March 
1999 
[4] Kaliski, B., "PKCS #10: Certificate 
Request Syntax, Version 1.5." RFC 2314, 
March 1998. 
[5] D.W.Chadwick, A. Otenko, E.Ball. 
“Role-based access control with X.509 
attribute certificates”, IEEE Internet 
Computing, March-April 2003, pp. 62-69. 
[6] ITU-T Recommendation X.680 (1997) | 
ISO/IEC 8824-1:1998, Information 
Technology - Abstract Syntax Notation One 
(ASN.1): Specification of Basic Notation 
[7] D.W.Chadwick, A. Otenko. “RBAC 
Policies in XML for X.509 Based Privilege 
Management” in Security in the Information 
Society: Visions and Perspectives: IFIP 
TC11 17th Int. Conf. On Information 
Security (SEC2002), May 7-9, 2002, Cairo, 
Egypt. Ed. by M. A. Ghonaimy, M. T. El-
Hadidi, H.K.Aslan, Kluwer Academic 
Publishers, pp 39-53. 
[8] T.Parker, D.Pinkas. “Sesame V4 
Overview”, Issue 1, Dec 1995. Available 
from 
https://www.cosic.esat.kuleuven.ac.be/sesa
me/html/sesame_documents.html 
[9] Standard ECMA-219 "Authentication 
and Privilege Attribute Security Application 
with Related Key Distribution Functions" 
Parts 1, 2 and 3, December 1994. 
[10] J. Kohl, C. Neuman. “The Kerberos 
Network Authentication Service (V5).” RFC 



1510, Sept 1993. 
[11] C. Ellison, B. Frantz, B. Lampson, R. 
Rivest, B. Thomas, T. Ylonen. “SPKI 
Certificate Theory”. RFC 2693, Sept 1999. 
[12] Ron Rivest and Butler Lampson, "SDSI 
- A Simple Distributed Security 
Infrastructure [SDSI]", See 
<http://theory.lcs.mit.edu/~cis/sdsi.html>. 
[13] S. Tuecke, V. Welch, D. Engert, L. 
Pearlman, M. Thompson. “Internet X.509 
Public Key Infrastructure (PKI) Proxy 
Certificate Profile”. RFC3820, June 2004. 
[14] David W Chadwick, Sassa Otenko, Von 
Welch. “Using SAML to link the GLOBUS 
toolkit to the PERMIS authorisation 
infrastructure”. Proceedings of Eighth 
Annual IFIP TC-6 TC-11 Conference on 
Communications and Multimedia Security, 
Windermere, UK, 15-18 September 2004 
[15] Scot Cantor. “Shibboleth Architecture, 
Protocols and Profiles, Working Draft 02, 22 
September 2004, see 
http://shibboleth.internet2.edu/ 
[16] OASIS. “Assertions and Protocol for 
the OASIS Security Assertion Markup 
Language (SAML) v1.1”. 2 September 
2003. See http://www.oasis-
open.org/committees/security/ 
[17] David Chadwick, Sassa Otenko, 
Wensheng Xu. “Adding Distributed Trust 
Management to Shibboleth” presented at 
NIST 4th Annual PKI Workshop, 
Gaithersberg, USA, April 19-21 2005 
[18] Knight, S., Grandy, C. “Scalability 
Issues in PMI Delegation”. Pre-Proceedings 
of the First Annual PKI Workshop, 
Gaithersburg, USA, April 2002,  pp67-77 
[19] Charlie Lai, Seema Malkani. 
“Implementing Security using JAAS and 
Java GSS API” Presentation from 2003 Sun 
JavaOne conference. See 
http://java.sun.com/security/javaone/2003/2
236-JAASJGSS.pdf 
[20] ISO/IEC 21000-5:2004, “Information 
technology — Multimedia framework 

(MPEG 21) — Part 5: Rights Expression 
Language [REL]”. 2004 


