
Automated Decomposition of Access Control Policies 
 

Linying Su1, David W Chadwick1, Andrew Basden2, James A Cunningham2 
1Computing Laboratory,University of Kent, UK,  

2Information Systems Institute,University of Salford, UK 
[L.Su-97][d.w.chadwick]@kent.ac.uk, [A.Basden][J.A.Cunningham]@salford.ac.uk 

 
 

Abstract 
 

Modern dynamic distributed information systems 
need access control policies to address controlling 
access to multiple resources that are distributed. The 
resources may be considered as a single abstract 
hierarchical resource. An access control policy at a 
high level should be able to define who is allowed to 
use the resources. At lower levels, the policy will 
address controlling access to concrete resources. By 
modelling the resource hierarchy, it is possible that 
low level policies can be automatically produced from 
the high level policy. These low level policies can then 
be distributed to the concrete resources that use an 
existing policy based access control decision system so 
that the high level policy can be enforced throughout 
the system. In this paper a model for representing and 
refining high level policies is presented. Other relevant 
issues and examples for demonstrating the capability 
of the policy decomposition (refinement) process are 
also presented.  
 
1. Introduction 
 

Some, but not all, of the security requirements of 
Internet applications can be addressed via access 
control policies [1]. Access control policies are 
concerned with the definition of access control rules 
i.e. who is allowed to do what to which resources. This 
paper presents an approach to defining access control 
policies for use by multiple resources in a dynamic 
distributed environment. Such policies are different 
from resource specific policies because they have to 
deal with multiple resources that may conceptually be 
regarded as a whole. 

Policy based access control systems can be built 
today for distributed applications by using a 
centralised policy decision point (PDP) with a common 
policy that is used by each resource (see Figure 1). 
Such a system is available today for Grid applications 
using Globus Toolkit v3.3 onwards, the GGF SAML 

Authorisation specification [8] and the PERMIS 
authorisation infrastructure [2]. This sort of access 
control infrastructure allows co-ordination between the 
multiple resources that are being accessed. For 
example, it would be possible to stop a user from 
accessing more than 3 GB of store throughout the 
distributed application. The disadvantage of this 
configuration is that it is a bottleneck to performance 
because every request needs to be diverted to the 
central PDP. 

 

Standalone
PDP

GT3.3 GT3.3GT3.3

Common policy

Distributed application
Site 1 Site 3Site 2

SAML
responseSAML

decision
requestSAML

decision
request

SAML
decision
request

SAML
response SAML

response

Figure 1. Common policy for today’s 
distributed applications 
 

Alternatively, each site can have its own PDP and 
the common policy can be distributed to each site 
based PDP. This approach will increase the 
performance of the access control decision making, but 
it lacks co-ordination throughout the distributed 
application. We envisage that tomorrow’s access 
control systems will be programmable and will 
distribute copies of resource specific policies to each 
resource, whilst the PDPs will be linked together to co-
ordinate their decision making. This will increase the 
performance of the decision making and will allow co-
ordination between the local PDPs (see Figure 2). A 
common high level policy for the application can be 
decomposed (refined) into site specific policies, which 
are then distributed to each site and only contain policy 



information relevant for controlling access to that site. 
In this case, the new site specific policies will become 
much simpler than today’s common policy. In this 
infrastructure co-ordination between the different 
decision making systems is needed, although this 
aspect is not addressed in this paper. We concentrate 
here solely on the policy decomposition process. 

 

Local PDP

GT4 GT4

Decision
Request

Decision

GT4

Decision
Request

Decision
Request DecisionDecision

Site specific policies

Local PDP
Local PDP

Distributed Application

Site 1 Site 3
Site 2

Co-ordinationCo-ordination

Common Policies

 
Figure 2. Tomorrow’s access control for 
distributed applications 

 
In this paper, we introduce the concepts of abstract 

resource types, concrete resource types, resource type 
hierarchies, resource instances, policy hierarchies and 
policy decomposition rules. 

The multiple resources of a distributed application 
can be seen as having a hierarchical structure. Policies 
are needed to control access at each of the levels. At 
the highest level, the policy is concerned about 
controlling access to a single abstract resource, for 
example a particular Grid application. At the lowest 
level, the policy addresses controlling access to 
specific concrete resources, such as servers and file 
stores which make up the abstract resource. 
Intermediate levels are possible, for example, a 
computer cluster or a distributed database. We would 
like to show that policies at any level for whatever 
abstract or concrete resources can be automatically 
produced from the high level policy based on policy 
decomposition rules and resource type hierarchies. 

Resource type hierarchies describe how the high 
level abstract resources are constructed from their 
lower level concrete and abstract resources. Resource 
type hierarchies also say what actions (or methods) 
each of the resources support.  A resource instance is 
an instance of a resource type hierarchy. Multiple 
instances of the same type hierarchy can occur. 

Policy decomposition rules define how high level 
policies transform into their low level ones so that the 

policy decomposition (refinement) is realized based on 
these rules and a resource type hierarchy. 

By means of policy decomposition, see Figure 3, 
existing access control decision systems such as 
PERMIS and Akenti [3] are able to be applied to 
multiple distributed resource applications. 

Based on an access control policy P for an abstract 
resource R, which is a distributed resource, a group of 
low level policies p1-p6 for each component of R can 
be produced. To do so, we need to establish 
relationships between the resources. In the example 
shown in Figure 3, the resource R contains six sub-
resources, which may be decomposed further into 
other sub-resources (not shown). This process will be 
carried out recursively until all sub-resources become 
site specific concrete resources, where the low level 
policies are then able to be used to control access to 
them. This resource decomposition and low level 
policy production defines a simple policy refinement 
process. 

“Policy refinement is the process of transforming a 
high-level, abstract policy specification into a low-
level, concrete one.” [4]. Here we propose this policy 
refinement process should be one that is able to 
produce a policy for any resource at any level and 
ensures that each stage of the decomposition is correct 
and consistent. 

 
Figure 3. Producing low level policies P1-P6 
from a high level policy P 

 
In order to achieve this policy refinement, 

languages that can describe high level policy 
specifications, resource type hierarchies, and 
decomposition rules are required. These can then be 
fed into an inference engine for the low level policies 
to be inferred. The policy specifications consist of 
policy components, which describe subjects, resources, 
actions and conditions. In the refinement process, the 
policy specifications and resource instances are 
regarded as facts; the decomposition rules and resource 
type hierarchy are inference rules. The inference 
engine can then infer the low level policies based on 
the facts.    

Hierarchical/Distributed
 Resource  (R)High Level Policy (P)

p1

p2 p3 p4

p6p5



We have developed such an inference engine in the 
form of a Java API. This engine uses the OWL 
language [6] to specify the policies and resource type 
hierarchies and is independent of any policy-based 
access control application. For example, we use 
Protégé [5], an ontology and knowledge-base editor, to 
create the high level access control policies and 
resource type hierarchies. The low level policies for 
concrete resources that are inferred may then be 
transformed into an application specific language such 
as XACML [7]. 

The rest of this paper is structured as follows. In 
section 2 we describe the resource type hierarchy and 
resource instances in detail. In Section 3 we present the 
proposed policy specification model which covers the 
data structures used in the policy components. Section 
4 presents the policy refinement process and the 
decomposition rules. This describes how to refine the 
high level policy into a set of low level policies 
according to the decomposition rules and a given 
resource type hierarchy and resource instance. Section 
5 discusses implementation issues. In section 6 an 
example of a high level policy specification and its low 
level policies are given. Finally section 7 presents 
some conclusions and directions for future work. 
 
2. The Resource Type Hierarchy 
 

We use the Directed And/Or Graph (DAOG) as the 
main structure to define a resource type hierarchy. This 
describes the hierarchy of resource types and actions.  

A restricted DAOG is denoted by G 
G={I,J,O,E} 

where I is a set of terminal nodes whose Out Bound 
Degree (OBD=0) is zero; J is a set of internal nodes 
(OBD>0); O is a set of origins of the graph; and E is a 
set of edges. Each origin is a node denoted as N (N∈O 
and O⊆I∪J) with zero as its In Bound Degree 
(IBD=0). If there is an edge from node A to B, where 
A ≠ B, then we use <A, B> to represent this edge.  

Some restrictions, as follows, are applied to the 
graph. A DAOG cannot be empty; therefore, it 
contains at least one node (i.e. O contains a single 
origin). For any k∈I ∪J,  k is either an  And node or an 
Or node exclusively.  Interpretation of an And or an Or 
node is determined by what the graph is used for. 
Distinguishing And nodes from Or nodes is significant 
only when the graph is used for co-ordination between 
local PDPs (as in Figure 2). For any k1, k2 ∈ I ∪J, if 
there exists the path Pk1k2 then the graph can not 
contain the path Pk2k1. This restriction prevents the 
graph from containing a loop. Any node in the graph is 
reachable from an origin. A path Pk1k2 defines a series 

of edges: <k1, t1>, < t1, t2>, …, < tn-1, tn>, < tn, k2>. This 
restriction ensures we can establish containing (or 
contained) relationships in definite steps. 

 
2.1. Application of DAOG to Resource Type 
Hierarchies 

 
A DAOG can be used to represent a resource type 

hierarchy. Any set of nodes in a resource type 
hierarchy may have one or more instances. The 
relationships between these instances are implied by 
the corresponding relationships in the resource type 
hierarchy (see figures 9 and 10 for an example).  

For a resource type hierarchy, each internal node in 
the DAOG denotes an abstract resource type and the 
nodes in the set O indicate the most abstract types. 
Each terminal node represents a concrete resource 
type. The nature of a resource type (being abstract or 
concrete) may change if the DAOG is modified e.g. if 
new nodes are added or existing nodes removed. The 
modification of a DAOG reflects the dynamic changes 
in a multiple resource system, such as removing and/or 
adding resources types, or spawning tasks in a Grid 
job. The edges indicate relations of “has part” or “has 
alternative” between two resources. If an abstract 
resource type node is an And node, it denotes that the 
resource comprises all its immediate children i.e. all 
the edges from that node are “has part”. If an abstract 
resource type is an Or node it denotes the resource has 
alternatives i.e. all the edges are “has alternative” (e.g. 
separate data stores). 

When access control decision making takes places, 
co-ordination is needed between the resource instances 
of the descendants of an Or node, but not between the 
descendants of an And node. This is to enforce 
restrictions such as “no more than 2GB of storage may 
be used” (regardless of which alternative store is used). 
 
2.2. Resource Containment Relationship 

 
The resource type hierarchy in a DAOG defines 

resource containment relationships between those 
abstract and concrete resource types. Both the “has 
part” and “has alternative” relation indicate the 
containment relationship. Given a DAOG and one of 
its nodes R, all its contained nodes can be found by 
traversing the graph from the node R down to the 
terminal nodes. For example, if there is a path PRT in 
the graph and R≠T then T is a contained node of R. If 
A contains B, we say the type (or action) associated 
with A is a containing type (or action) of the type (or 
action) that is associated with B. In other words, the 
type (or action) associated with B is a contained type 



(or action) that is associated with A. 
Using a graph rather than a tree to represent a 

hierarchical structure, allows the structure to define 
resource sharing. For example, as shown in Figure 4, 
the computing resource instance R is distributed to 
three units (S1 to S3), where two of them share the 
same (remote) printing device Printer. Based on the 
DAOG, a policy, such as “you are allowed to use the 
distributed computing facility R”, can be refined into 
“you are allowed to use Pcs 1 to 5, the scanner and the 
printer”. 

Figure 4. An example DAOG 
  
Regarding the abstract resource instance R in 

Figure 4, it has ten descendants: sites S1, S2, S3, a 
Printer, a Scanner, and Pc1 to Pc5. The node Printer is 
shared by sites S2 and S3. This results in two different 
paths from R to Printer, which are <R, S2, Printer> and 
<R, S3, Printer>.  These two paths indicate that actions 
on the Printer are implied by actions defined on sites 
S2 and S3. Due to the fact that a node could be shared 
by different internal nodes, it is possible that different 
policies for the node could be produced.  This may 
cause a policy conflict. We propose a unified policy 
refinement approach, which solves the problem of 
policy conflicts, by creating an access control policy 
for the shared node that is the conjunctive connection 
of all its immediate higher level policies. An example 
is presented in section 5.  

  
2.3. Resource Ontology 

  
Each resource type hierarchy is constructed 

according to a resource ontology. This ontology 
provides the rules and vocabulary for creating resource 
type hierarchies. A resource ontology defines such 
things as: 

- the resource containment rules. These state which 
abstract resource types or actions can contain which 
other abstract and concrete resource types or actions.  

- the allowable set of attributes that each resource 
may have.  

 
 

2.4. Attributes 
 

A resource type hierarchy and a resource instance 
can be described using a set of attributes. These can be 
simple attributes, which describe a property of the 
resource, or complex attributes which describe the 
hierarchical structure of the resource (i.e. its contained 
lower level resources) and what actions (along with 
their parameters) can be performed on the resource. 
Each attribute comprises 3 components: its name, its 
value (it may have multiple values) and the data type 
of the value. E.g. the location of a resource can be 
represented as a simple attribute with the name 
“location”, with a value giving the location e.g. 
“Maxwell building” and the data type is string.  

The type and action attributes are mandatory for 
each resource in a resource type hierarchy. The type 
attribute has values of data type string. The action 
attribute has values of data string which comprise the 
action along with an optional set of parameters (where 
each parameter is represented as a string). Each non 
leaf node in a resource type hierarchy must also have 
the “has part” or the “has alternative” hierarchical 
structure attribute. Additional attributes may be present 
in resource instances, but these are ignored if present 
in the resource type hierarchy. 

The hierarchical structure attributes have a much 
more complex data type, which actually contains 
embedded attributes. Conceptually these represent the 
set of child nodes in the DAOG beneath the parent 
node, and the embedded attributes are the attributes 
contained in the child nodes. If a child node also has 
children then the embedded attributes in the parent will 
themselves be complex attributes with the attributes of 
the grandchildren embedded in them. In this way the 
entire DAOG can be represented in the attributes of the 
origin nodes (an example is presented in section 4.1.2). 
Note however it is often simpler to represent the 
DAOG as a set of nodes with simple attributes in each 
node (as in section 6). 

 
2.5. Action Hierarchy in a Resource Type 
Hierarchy 
 

A resource type hierarchy not only describes the 
hierarchical type relationships but also the hierarchical 
relationships between the actions. For example, the 
action drive on a containing resource of type car 
implies the action start on the contained resource of 
type engine, the action open on the contained resource 
door, and the action switchOn on the contained 
resource stereo-system. 

R

S1
S2 S3

PrinterPc1 Scanner Pc2 Pc3 Pc4 Pc5



If superior actions associated with a node imply 
different subordinate actions e.g. drive car and ride in 
car would not both imply start engine, an appropriate 
action hierarchy can be achieved in the following way. 
The resource node that has a multiple value action 
attribute is split up into a set of new nodes. Each new 
resource node is given a subset of the action values 
which imply the same subordinate actions. A further 
splitting on a subordinate node may also be required 
when its actions only imply a subset of the actions 
defined in its subordinate nodes.  

Figure 5 gives an example resource type hierarchy, 
which models both the resource and action hierarchy. 
In this example the action drive (taxi) implies the 
following actions, start (engine), open and lock/unlock 
(door) and switchOn/listen (stereo). The actions 
lock/unlock (door) imply lock/unlock (lock), whilst the 
latter imply use (key) and use (remote control). 
However the action ride (taxi) only implies open 
(door) and listen (stereo). In figure 5 the nodes in 
shadow are And nodes whilst the clear nodes are Or 
nodes (ignoring the terminal nodes since they do not 
have any subordinates). 

 
Figure 5. An example DAOG, which also 
models action hierarchies 
 
3. Policy Specification 
 

An access control policy states who is allowed to 
do what actions to which resources under which 
conditions. These elements can be specified as a set of 
filters on all possible subjects, actions, resources, and 
operational and environmental parameters. If subjects 
and resources are each described by a set of attributes, 
then the filters can be used to adopt an Attribute Based 
Access Control (ABAC) infrastructure [7]. Applying 
the appropriate filter to the attributes of a subject or 
resource will find the subject or resource (abstract or 
concrete) that meets an application’s security policy.  

An Arithmetic and Logical Expression Tree 
(ALET) can be used to describe these filters and policy 
conditions. 

3.1. ALET 
 

An ALET is used to model an arithmetic or logical 
expression, and these are used to describe subject and 
resource filters. All these filters are then combined into 
one ALET using AND nodes.  A non-leaf node of the 
ALET tree is either an arithmetic operator {+, -, *, /}, 
an extended relational operator {=, ≠, >, <, ≥, ≤, ⊃, ⊂, 
⊇, ⊆, ∈, ∉} a logical operator {AND, OR, NOT, 
XOR}, or a function name. An attribute can be 
considered to be a function where the attribute name is 
the function name, the attribute value is the function 
value, the type of the attribute value is the function 
type, and the function parameter is the object which 
has the particular attribute. For example, if the location 
attribute of resource X is Manchester, then the function 
location (X) has the value Manchester. 

A leaf node of an ALET could be a constant or a 
variable. A constant has a type, which can be a string, 
an integer, a float, a Boolean or a set containing such 
constants. For example, “student” is a constant with a 
type of string. A variable has a name, type and value. 
The value of a variable is set by the user in his access 
request, or by the underlying system (e.g. time of day). 
There are four categories of variable: subject variables, 
resource variables, environment variables and 
operational (or action parameter) variables, involved in 
access control policies. A subject variable refers to 
somebody (e.g. the subject who has role “student”) 
who intends to use a resource. Resource variables 
represent the resources that are going to be used, for 
example, the resource that is of type printer. 
Environment variables are system settings such as 
time, date, disk quota, etc. Operational variables refer 
to action parameters set by the user in their requested 
access e.g. name of file to be opened, or amount of 
storage requested. 

OR

AND =

>
=

student role
18

lecturerrole

S

S

age

S
 Figure 6. An example ALET 

 
By supporting operational variables in the ALET, 

we provide a way of addressing the proportion of a 
resource to be allocated to various users. For example, 
the relational expression, Memory < 128, states a 



restriction on the computer memory that can be 
requested, where Memory is an operational variable.  

Figure 6 presents an ALET, which describes “an 
over 18 student or a lecturer” (i.e. role(S) = student 
AND age(S) > 18 OR role(S) = lecturer). 

 
3.2. Policy Ontology 

  
Each policy is created according to a policy 

ontology. This ontology provides the rules and 
vocabulary for creating access control policies. A 
policy ontology defines such things as: 

- the policy creation rules. These state how an 
access control policy is created i.e. a policy is an 
ALET, which has a root.  

- the type of an ALET node (e.g. constant, variable, 
arithmetic operator, logical operator, relational 
operator and function). 

-the relation between the nodes (e.g. an ALET node 
may have children). 

- the attribute of an ALET node (e.g. has integer 
data type,  has function name). 
 
3.3. Policy Component Representation 
 

An access control policy is represented as an 
ALET, which is a filter to describe subjects or 
resources of the policy. The resource description 
includes resource type, actions on the resource, action 
parameters and other conditions of access.  Every 
policy must contain this component i.e. 
action(R)=X∧type(R)=Y, where X denotes a specific 
action that can be performed on the resource Y. When 
an access control decision request is sent to a PDP, the 
policy filters are used to make the decision. If the 
given subject, action, parameter, resource and 
environment information can pass the corresponding 
filter, then this request is granted. Otherwise, it is 
denied. Literally, the access control policy is a logical 
expression, which may evaluate to true or false against 
the given information. If it evaluates to true the request 
is granted, otherwise the request is denied. 

Normally, an access control policy contains parts as 
subject filters and resource filters. For example, a 
subject filter is written as an ALET (e.g. 
role(S)=student∧age(S)>18) and describes who is the 
subject of the policy. A resource filter written as an 
ALET is an action, parameter (operational variable), 
resource and environmental filter, which defines what 
type of resources are controlled by this policy, what 
type of actions are allowed on the resources, what type 
of parameters go along with the actions and what 
environment settings are required. For example, 

(type(R)=car∧action(R)=drive) ∧ (¬(type(R)=stereo ∧ 
action(R) =switchOn)) describes a policy for any car 
resource which can be driven but the stereo cannot be 
switched on. R is a resource variable. 

The default of a subject filter or resource filter is 
the constant true, which indicates that any subject can 
access the resource or the subject can perform any 
action on any resource.  

  
4. Policy Refinement 
 

In order to refine a high level policy into low level 
policies and then to distribute them to specific sites, we 
need a process that can manipulate a given overall 
(high level) policy and transform it into the low level 
policy for a less abstract or concrete resource type. 
This new policy then can be further refined for a 
specific resource instance of the resource type by 
repeating the refinement process again. Given any 
node in a DAOG resource instance its policy can be 
produced in these two steps. It is worth mentioning 
that if a resource type is subordinate to several superior 
resources (e.g. as in figure 7) then this could lead to a 
policy conflict for the subordinate resource. The 
conflict is resolved by making the policy for this 
resource type the conjunctive connection of those 
policies that are produced based on its immediate 
higher level policies (see section 5 for an example). 

The nature of the above policy refinement process 
ensures that any low level policy for a resource type 
conforms to its higher level policies. That means, 
given a specific resource, its higher level policies also 
evaluate to true when its low level policy evaluates to 
true.  

 
4.1. Operations Related to Policy Refinement 

 
In this section we define two operations that are 

required by the refinement process. 
  

4.1.1. Evaluation of relational expression. Given a 
set of attributes inf from a resource (type or instance) 
and a relational expression E, inf⇒E denotes an 
operation that evaluates E against inf. The relational 
expression E can evaluate to true, false or 
indeterminate.  

inf⇒E can be accomplished in the following two 
steps: 

(1) Substitute function subtrees which are 
accountable for the evaluation, by the corresponding 
attribute values from the resource. Functions involved 
in the expression which are not accountable for the 
evaluation, are indeterminate.  



The accountable functions (i.e. attributes) are the 
resource type and action attributes when refining 
policies for a resource type hierarchy, and are all the 
attributes when refining the policy for a resource 
instance. 

(2)  Evaluate the expression.  The result of the 
evaluation can be true or false if all the elements in the 
expression are determinate. Otherwise the expression 
returns indeterminate.  

When a relational expression evaluates against 
multiple attribute values, it evaluates to false if none of 
the value combinations makes it true.  

When a relational expression evaluates against an 
attribute value that is not present in the resource type 
then the relational expression evaluates to 
indeterminate.  

Here we present examples to show how this 
calculation is carried out. Given a set of attributes 
{type:printer, action:print {FileName, Copies}, 
manufacturer:UK} and relational expressions  

(a) action(R)=print  
(b) type(R)=scanner  
(c) size(R)>1 

then (a) evaluates to true because action(R) is replaced 
with the attribute value print and print=print is true; (b) 
evaluates to false because type(R) is replaced with 
printer and printer=scanner is false; (c) evaluates to 
indeterminate because size(R) is not known at this 
time. 
 
4.1.2. Replacement of containing type and action.  
Given a resource type hierarchy, a particular resource 
node N and a relational expression in the form of 
action(R)=A or type(R)=T, A or T can be replaced 
with the action or type attribute value of the resource 
node N if the resource N is contained by the resource 
R. This is because a containing action or type implies 
the contained action or type. 

If the action attribute associated with the resource 
node N has multiple values, then action(R)=A will be 
replaced with an ALET, which is 
action(R)=X1∨action(R)=X2∨…∨action(R)=Xn. Xi 
(i=1..n)  is one of the action value of the resource N. 

Whether the resource R contains the resource N 
can be determined based on the resource type 
hierarchy. For example, given a resource type 
hierarchy for a resource type car as a set of attributes,  
{type:car, action:drive{}, hasPart:{type:engine, 
action:start}, hasPart:{type:stereo, action: {switchOn, 
switchOff}}, hasPart:{type:door, action:open}} 
then for a concrete resource type door and a policy of 
action(R)=drive, drive can be replaced with open 
because the resource type car contains the resource 

type door. Therefore, the action drive implies the 
action open. 
 
4.2. Policy Refinement Rules 

 
The policy refinement process, which manipulates 

a high level policy based on a resource type hierarchy 
produces the low level policies for any resource type 
by following the refinement rules. After the policy for 
a resource type has been produced, these rules may be 
used again to produce the policy for an instance of this 
resource type, by using the policy produced for the 
resource type as the input policy to this (second) 
refinement process. Note that a policy for a resource 
instance can never be the policy input into the 
refinement process. 

Given a high level policy P, a resource type 
hierarchy R and a particular resource type node N in R 
as input, then in order to get the output, the refined 
policy PN, for the given node N, we apply the 
following rules in series to the policy PI,, where 
initially PI= P and having applied the rules, PI will 
become the refined policy for the node N in R. 
 
4.2.1. Make all types and actions within the policy 
specific to the node N if possible. For each type or 
action value {a1, a2, ..., an} that is explicitly mentioned 
in the policy PN and the type or action value {type:b1, 
action:b2} associated with the node N, if, by traversal 
of R we infer that a type or action aj (j=1..n) in the 
policy PN is a containing type or action of the type b1 
or action b2  associated with N, then we replace aj in 
PN with the contained type or action (b1 or b2). In the 
special case where there are multiple actions associated 
with the node N then we replace each specific 
relational expression in the form of action(R) = aj 
mentioned in PN with the ALET action(R) = 
b21∨…action(R) = b2m, where b2 denotes the action 
attribute, which contains the multiple values b21,…,b2m. 

The reason to do this when producing a refined 
policy PN for the node N is that we want the types and 
actions mentioned in PN to be specific to the node N if 
possible. 

If the policy addresses contained types or actions 
then we cannot replace them with the containing types 
or actions from node N since we have not yet reached 
the contained nodes in the hierarchy. The contained 
type and action must be preserved for evaluation lower 
down the DAOG. 

This rule is not applicable when producing the 
policy for a resource instance from the policy for its 
resource type, because the actions are already specific 
to this node. 



  
4.2.2. For Instance Refinement, evaluate all 
relational expressions not involving an action or a 
type. For each relational expression f(x, y) (e.g. x = y) 
not involving an action or a type in the policy PN we 
determine if the expression evaluates to true, false or 
indeterminate. If the expression f(x, y) evaluates to true 
or false then we replace that expression in PN with the 
corresponding value TRUE or FALSE.  

Any relational expressions which do not indicate an 
action or type can be replaced with a TRUE/FALSE 
value since they will always evaluate to that value 
under all run time circumstances (e.g. 
location(R)=UK).  

A relational expression that evaluates to 
indeterminate must be preserved because during 
refinement we do not know what value it will take at 
run time.   

 
4.2.3. Evaluate all relational expressions involving 
an action or type. For each relational expression f(x, 
y) that involves an action or type in the policy PN we 
determine if the expression evaluates to true, false or 
indeterminate. If f(x, y) evaluates to false then we 
replace that expression with the corresponding value 
FALSE. The evaluation of contained actions or types 
in the policy PN is indeterminate because we do not 
know any information about the contained actions or 
types at this time.  

Replacing an action or type relational expression 
that evaluates to false with FALSE is due to the fact 
that the relational expression need never be evaluated 
at run time. 

If the expression evaluates to true we leave the 
expression in the policy because it will be needed for 
run time evaluation by the PDP. 
 
4.2.4. Simplify the policy PN to produce the refined 
policy for the node N. We now simplify the policy PN 
according to the following simplification rules. These 
rules may be applied iteratively until no more changes 
take place. 

The simplification rules address how Boolean 
constants can be removed from the ALET, how a 
tautology or contradiction is identified, and how 
redundant expressions can be removed from the 
ALET. By transforming a logical expression into a 
Disjunctive Normal Form (DNF), these simplifications 
can be achieved easily. If any term in the DNF 
contains operational variables, which are not supported 
by any action in the term, then the term is removed 
from the DNF. This is because the term always 
evaluates to false under all circumstances.  

The policy PN is now the refined policy for the type 
node N. The policy for a concrete resource instance 
can then be produced from its resource type policy by 
following the above refinement process a second time. 

 
5. Implementation 

 
We have developed a java API, which defines all 

the necessary classes and methods for creating high 
level policies and resource type hierarchies and 
producing various low level policies. This API can be 
used independently for developing policy-based 
systems. Users are free to develop their own policy 
editors for inputting high level policies or to develop 
backend compilers for translating the produced low 
level policies into policies written in their existing 
access control policy languages.  

The low level policy for a concrete resources type 
can be produced by applying the high level policy to 
the specific resource type straightway. Alternatively, it 
can be obtained recursively by successive refinement 
of the policy down the resource type hierarchy. The 
following example presents the two ways.  

Given the resource type hierarchy in Figure 7 and 
the high level policy as action(R)=use∧type(R)=a (i.e. 
allowed to use resource of type a), if we apply the 
policy to the type nodes A, B, C and D, then we can 
get the following new policies 

action(R)=use∧type(R)=a, 
action(R)=read∧type(R)=b, 
action(R)=write∧type(R)=c, 
action(R)=seek∧type(R)=d, 

respectively. The same policy for D can also be 
obtained via B and C by using that nodes policy as the 
high level policy.  

If we have a high level policy such as, 
action(R)=use∧type(R)=a∧ 
¬(action(R)=write∧type(R)=c) 

(i.e. “allowed to use resource of type a but not write to 
c”), then when the policy for D is derived straightaway 
from this high level policy it is FALSE because it is 
simplified from 
action(R)=seek∧type(R)=d∧¬(action(R)=seek∧ 
type(R)=d).  If the policy for D is derived recursively 
via C it is also FALSE because the policy for C is 
FALSE. However, if the policy for D is derived via B 
it becomes action(R)=seek∧type(R)=d. However, 
according to the policy conflict resolution strategy of 
conjunctive connection we get the final policy for D as 
the logical expression action(R)=read∧ 
type(R)=b∧FALSE, which evaluates to FALSE. 



  . 

A

B C

D

type:a
action:use

type:b
action:read

type:c
action:write

type:d
action:seek

 
Figure 7. A simple resource type hierarchy 

 
Although the above high level policy specifies the 

access control for a hierarchical resource type, the 
policy itself is independent of the resource’s 
hierarchical structure. This means that the above policy 
could also be applied to other resource hierarchies. For 
example, if we apply the same policy to another 
resource hierarchy depicted in Figure 8, we get the 
policy for node D as action(R)=get∧type(R)=d and the 
policy for node E as FALSE.  

A

B C

D

type:a
action:use

type:b
action:read

type:c
action:write

type:d
action:put

E type:e
action:get

 
Figure 8. A revised resource type hierarchy 
 

At the moment, we use Protégé as the policy editor, 
which uses OWL as the policy language to define the 
high level policies and resource type hierarchies. The 
OWL language is adequate for this due to the fact that 
the ALET and DAOG can be implemented 
straightforwardly in OWL. We use OWL classes to 
define the various ALET and DAOG nodes, and use 
OWL properties to describe the relationships between 
those nodes. The relationship is a parent-child 
relationship or a having-an-attribute relationship. By 
creating instances of the OWL classes and linking 
them through the OWL properties, a particular access 
control policy or resource type hierarchy can be 
created. 

 
6. An Example 
 

In this section we demonstrate the ability of our 
approach to produce a set of low level policies for both 
resource types and resource instances. 

 
6.1. Resource Type Hierarchy and High Level 
Policy 

 
Let VO (Figure 9) denote a resource type hierarchy 

for a virtual organisation type resource, which consists 
of organisation type resources which may donate 
various concrete resources such as printers, filestores, 
scanners, PCs, and web access to the VO. The VO 
resource type has one action use with no parameters, 
whilst the organisation resource type has the action 
access with no parameters. The low level concrete 
resource types, their associated actions and parameters 
are: Pc(use), Web (browse{URL}) , Printer (print 
{FileName, Copies}), Scanner (scan{Destination}), 
and FileStore (write{FileName, Mode, Size}).  

 
Figure 9. The resource type hierarchy for the 
VO abstract resource 

 
The complete resource type hierarchy specification 

for the VO resource is defined in the following 
attributes:  

Att(VO)={action:use, type:vo, hasPart:Att(OR)}.  
Att(OR)={action:access, type:or, hasPart:Att(Pc), 

hasPart:Att(Prt), hasPart:Att(Web), hasPart:Att(Sc), 
hasPart:Att(FS)} 

Att(Pc)={action:use, type:pc} 
Att(Prt)={action:print{Filename,Copies}, 

type:printer } 
Att(Web)={action:browse{URL}, type:web} 
Att(Sc)={action:scan{Destination}, type:scanner} 
Att(FS)={action:write{Filename, Mode, Size}, 

type:filestore} 
Figure 10 represents a VO instance comprising 

organisations whose owners are the Universities of 
Oxford, Cambridge and Manchester. Oxford donates a 



PC located in the UK and a printer located in France to 
the VO. Cambridge donates web access and a filestore, 
both located in the UK, whilst Manchester donates a 
filestore and a scanner, both located in the UK. Note 
that the type and action attributes are not shown, but 
are inherited from the type hierarchy. 

 

 
Figure 10. A VO resource type instance 

 
The complete resource instance specification for 

this VO resource is defined in the following attributes:  
Att(VO)={action:use,type:vo, hasPart:Att(OU), 

hasPart:Att(CU), hasPart:Att(MU)}  
Att(CU)={action:access, type:or, owner:cam, 

hasPart:Att(Pc), hasPart:Att(Prt)}. 
 Att(OU)={action:access, type:or, owner:oxford, 

hasPart:Att(Web), hasPart:Att(FS1} 
Att(MU)={action:access, type:or, owner:man, 

location:UK, hasPart:Att(Sc), hasPart:Att(FS2)} 
Att(Pc)={action:use, type:pc, location:uk }, 
Att(Prt)={action:print{Filename, Copies}, 

type:printer, location:Fr} 
Att(Web)={action:browse{URL}, type:web, 

location:UK } 
Att(FS1)={action:write{Filename, Mode, Size}, 

type:filestore, location:UK } 
Att(Sc)={action: scan{Destination}, type:scanner, 

location:UK } 
Att(FS2)={action:write{Filename, Mode, Size}, 

type:filestore, location:UK } 
 
Given a high level access control policy for the 

virtual organisation of say “During 9:00-18:00, any 
student can use any virtual organisation resource 
located in the UK except they cannot print more than 2 
copies on printers or write files greater than 1MB to 
filestores which belong to Manchester University,” this 
can be represented as, 

role(S)=student∧location(R)=UK∧ 

action(R)=use∧type(R)=vo∧ 
(¬(action(R)=print∧type(R)=printer∧print{Copies}
>2))∧(¬(action(R)=write∧owner(R)=man∧ 
 type(R)=filestore∧write{Size}>1MB))∧ 
Time≥9:00∧Time≤18:00. 
 

6.2. Policies for Resource Types and Instances 
 

The policy for the VO type remains the same as the 
initial high level policy because type(R)=vo  and 
action(R)=use evaluate to true; location(R)=UK, 
owner(R)=man, Copies>2, Size>1MB and 
Time≥9:00∧Time≤18:00 are all indeterminate, whilst 
action (R)=print (or write) and type (R)=printer (or 
filestore) evaluate to indeterminate (according to 
4.2.3). The policy for the OR type is  

role(S)=student∧location(R)=UK∧ 
action(R)=access∧type(R)=or∧ 
(¬(action(R)=print∧type(R)=printer∧print{Copies)
>2))∧(¬(action(R)=write∧owner(R)=man∧ 
 type(R)=filestore∧write{Size}>1MB))∧ 
Time≥9:00∧Time≤18:00. 

since, according to 4.2.1 we replace the containing 
type (vo) and action (use) in the policy with the 
contained type (or) and action (access). 

The policies for the OR instances owned by Oxford 
and Manchester are refined to become 

role(S)=student∧action(R)=access∧ 
type(R)=or∧Time≥9:00∧Time≤18:00. 

This is because action(R)=print (or write) and 
type(R)=printer (or filestore) evaluate to false, and so 
¬ evaluates to true. 

The policy for the OR instance owned by 
Cambridge is refined to become 

role(S)=student∧location(R)=UK∧ 
action(R)=access∧type(R)=or∧ 
Time≥9:00∧Time≤18:00 

for the same reason as above except in this case the 
location is indeterminate. 

 The policy for the printer type is 
role(S)=student∧location(R)=UK∧action(R)=print

∧ 
type(R)=printer∧¬( print{Copies)>2)))∧ 
Time≥9:00∧Time≤18:00. 

This is because we simplify the expression 
action(R)=print∧type(R)=printer∧(¬(action(R)=print∧ 
type(R)=printer∧print{Copies)>2)) to the one above, 
and owner(R)=man is false so this sub-expression 
evaluates to true. The policy for the printer instance is 
FALSE because its location is not the UK. 

The policies for type filestore can be produced 
from the high level policy 



role(S)=student∧location(R)=UK∧ 
action(R)=write∧type(R)=filestore∧ 
(¬(owner(R)=man∧ write{Size}>1MB))∧ 
Time≥9:00∧Time≤18:00. 

The policy for the filestore instance at Oxford is 
role(S)=student∧action(R)=write∧ 
type(R)=filestore∧Time≥9:00∧Time≤18:00. 

Whilst the policy for the filestore instance at 
Manchester is 

role(S)=student∧action(R)=write∧ 
type(R)=filestore∧ 
(¬(write{Size}>1MB))∧Time≥9:00∧Time≤18:00. 

We hope it is obvious to the reader what the policies 
for the remaining types and instances will be. 
 
7. Conclusion and Future Work 
 

By considering the multiple resource types of a 
distributed application as a single abstract resource 
type, it is possible to write a resource type hierarchy to 
describe how the abstract resource type is comprised of 
the multiple distributed resource types. A resource type 
hierarchy can then be used to describe a resource 
instance. Policy decomposition is achieved by refining 
an overall high level policy into a set of low level 
policies for the concrete resource types and then by 
refining the policy for a resource type into the policy 
that is specific to a resource instance. 

The proposed policy refinement approach is 
appropriate because it ensures that the low level 
policies are in compliance with the high level policy 
and are simpler than the high level policy in terms of 
the number of policy components contained in them. 

We suspect that the current policy simplification 
process is still incomplete because we can only 
identify syntactically identical expressions in order to 
remove redundancy from a refined policy.  

At the moment, we use Protégé as the policy editor, 
which uses OWL as the policy language to define the 
high level policies and resource type hierarchies. A 
backend compiler is proposed, which will translate the 
generated low level policies in the ALET into current 
PDP policy languages such as XACML and PERMIS. 

A distributed access control infrastructure needs to 
distribute the refined policies to specific PDPs, and to 
co-ordinate decision making when the concrete 
resources are alternatives for each other. The next 
steps are to define and implement the distribution and 
co-ordination protocols and integrate these into an 
existing policy based access control system such as 
PERMIS.  

 

8. References 
 
[1] J. Mendling, M. Strembeck, G. Stermsek, and G. 
Neumann, “An Approach to Extract RBAC Models from 
BPEL4WS Process”, Proceedings of the 13th IEEE 
International Workshops on Enabling Technologies: 
Infrastructure for Collaborative Enterprises (WET ICE 
2004), Modena, Italy, 14–16 June 2004, pp. 1-6. 
[2] D.W. Chadwick and A. Otenko, “The PERMIS X.509 
Role Based Privilege Management Infrastructure”, Future 
Generation Computer Systems, Elsevier Science 
Publishers B. V., Feb. 2003, pp. 277-289. 
[3] W. Johnston, S. Mudumbai and M. Thompson, 
“Authorization and Attribute Certificates for Widely 
Distributed Access Control,” IEEE 7th Int Workshops on 
Enabling Technologies: Infrastructure for Collaborative 
Enterprises (WET ICE), Stanford, CA. June, 1998,  pp. 340 -
345 (see also http://www-itg.lbl.gov/security/Akenti/) 
 [4] A.K. Bandara, E.C. Lupu, J.  Moffett, and A. Russo, “A 
Goal-based Approach to Policy Refinement”, Proceedings of 
the Fifth IEEE International Workshop on Policies for 
Distributed Systems and Networks (POLICY’04), Yorktown 
Heights, New York, 07 – 09 June 2004, pp. 229-239. 
[5] N. F. Noy, M. Sintek, S. Decker, M. Crubezy, R. W. 
Fergerson, and M. A. Musen, “Creating Semantic Web 
Contents with Protege-2000”, IEEE Intelligent Systems, 
2001, 16(2), pp. 60-71. 
[6] M. Dean, D. Connolly, F. Harmelen, J. Hendler, I. 
Horrocks, D.L.McGuinness, P.F. Patel-Schneider, L.A. 
Stein, “OWL Web Ontology Language 1.0 Reference”, W3C 
Working Draft, 29 July 2002. 
[7] S. Godik and T. Moses, “eXtensible Access Control 
Markip Language (XACML) Version 1.0”, 18 Feburary 
2003, http://www.oasis-
open.org/committees/download.php/2406/oasis-xacml-
1.0.pdf 
[7] J. Park, X. Zhang, and R. Sandhu, “Attribute Mutability 
in Usage Control”, IFIP TC11/WG11.3 Eighteenth Annual 
Conference on Data and Applications Security, Sitges, 
Catalonia, Spain, 25-28 July, 2004, pp.15-29. 
[8] V. Welch, F. Siebenlist, D. Chadwick, S. Meder and L. 
Pearlman. “Use of SAML for OGSA Authorization”, June 
2004, Available from https://forge.gridforum.org/. 
 

 
 
 

 
 


