A Heterogeneous Network Access Service based
on PERMIS and SAML

Gabriel Lopez!, Oscar Canovas®, Antonio F. Gomez-Skarmeta', Sassa Otenko?
and David W. Chadwick?

1 University of Murcia, Spain
2 University of Kent, United Kingdom
gabilm@dif.um.es, ocanovas@ditec.um.es, skarmeta@dif.um.es,
o.otenko@kent.ac.uk, d.w.chadwick@kent.ac.uk

Abstract The expansion of inter-organizational scenarios based on dif-
ferent authorization schemes involves the development of integration so-
lutions allowing different authorization domains to share, in some way,
protected resources. This paper analyzes different emerging technolo-
gies. On the one hand, we have two XML-based standards, the SAML
standard, which is being widely accepted as a language to express and
exchange authorization data, and the XACML standard, which consti-
tutes a promising framework for access control policies. On the other
hand, PERMIS is a trust management system for X.509 attribute cer-
tificates and includes a powerful authorization decision engine governed
by the PERMIS XML policy. This paper presents a sample scenario
where domains using these technologies can be integrated allowing, for
example, the use of attribute certificates in a SAML environment and
the utilization of the PERMIS authorization engine to decide about the
disclosure or concealment of attributes. In order to design this scenario
we have based our work on a Credential Conversion Service (CCS) which
is able to convert ACs into SAML attributes, and a User Attribute Man-
ager (UAM) which controls the disclosure of credentials. These modules
are governed by policies defining the conversion process (the Conversion
Policy) and the disclosure of attributes (the Disclosure Policy).

1 Introduction and Rationale

Nowadays, authorization systems are more and more complex. They span do-
mains of administration, depend on many different authentication sources, and
the management of permissions and policies can be as complex as the system
itself. Worse still, while there are many standards defining authentication mech-
anisms, the standards for authorization systems are less widely adopted and
accepted, and tend to work only within homogeneous systems.

Today we often experience inconvenience and inefficiency like this: a professor
of University A visiting University B is not allowed to use the latter’s network
even when there is an existing collaboration by means a research project between
the two institutions. The main reason might be the use of different formats

for representing the authorization information (credentials, policies, requests,
etc.), and this could occur despite an existing service level agreement (SLA), a
high level collaboration, between the two universities. Therefore, heterogeneity
restricts the development of standard management tools and toolkits that serve
common policy needs.

Authorization in a distributed system often requires cooperation among sep-
arate and autonomous administrative domains. Maintaining a consistent autho-
rization strategy requires each system to maintain at least some knowledge of
its potential collaboration with other domains. Therefore, any authorization de-
cision that spans several authorization domains requires each party to be able
to produce, accept and interpret authorization information from a group of po-
tentially heterogeneous peers. This property can be achieved by establishing an
agreement on protocols, syntax and semantics of shared pieces of authorization
data to be exchanged.

In this paper we present a case study where we demonstrate how a PER-
MIS [6] based administrative domain can be integrated with a network access
service based on SAML [13] attributes and XACML [9] policies. Our aim is to
provide a feasible scenario allowing the PERMIS users to make use of the foreign
network implementing a network access control mechanism based on the AAA
(Authentication, Authorization, Accounting) architecture and SAML attributes
[12], hereafter the NAS-SAML domain. This integration, which will be based on
existing proposals like the Credential Conversion Service [7], illustrates that we
can build an interdomain environment from separate and autonomous domains,
which constitutes a valuable step towards the required interoperability between
multiple existing authorization environments.

As we will show, while Role Based Access Control (RBAC) is an increas-
ingly important component in distributed systems, it is one that is often hard to
support in heterogeneous environments. In our proposal, this leads to the defini-
tion of loosely coupled multidomain environments, where a predefined set of role
mappings to mediate interdomain accesses is defined. This approach requires
the constituent systems to indicate the level of sharing they want to allow and
to establish a consistent set of mediation rules for interdomain accesses. As we
stated before, SAML is one example of a protocol that provides a framework for
secure assertion of authorization data across domains, and it will be used in our
proposal since it constitutes a key element of the Credential Conversion Service.

The main idea behind this paper can be summarized as follows. A PERMIS
user willing to make use of the NAS-SAML domain has to demonstrate that he
has gained the required X.509 attribute certificates. Those certificates should
be provided by the PERMIS domain, and they must be translated into SAML
credentials before processing the network access request. Therefore, from the
architectural point of view, we have to define the entities (pertaining to the home
and target domains) that will be involved in the integration process. From an
operational point of view, we have to establish the way the attribute certificates
will be disclosed and exchanged, and how they will be converted into equivalent

SAML attributes. As we will see, several design alternatives (push and pull
based) are provided.

One central issue that our design addresses is the management of attributes
and the circumstances under which a PERMIS attribute authority should dis-
close the user’s attributes to another site. We define some simple rules about
when and to whom the attributes may be revealed. Although this idea has been
widely explored in the literature [15,3], our approach tries to minimize the im-
pact of adding an overloading privacy management system to the PERMIS home
domain. As we show, that privacy system will be built using the PERMIS tech-
nology itself, adapting the PERMIS policy to produce a disclosure policy that
can be enforced using the PERMIS ADF (Authorization Decision Function).
In this way, we make our infrastructure resilient in defence against security at-
tacks such as data-mining, that is, the unauthorized gathering of information
for improper use. Consequently, we designed a system that allows the PERMIS
domain to have full control over the private information being disclosed. That
is, administrators are given the opportunity to decide the kind of information to
share with the foreign network provider.

Finally, we also present a simple conversion policy based on XACML that
will be used to translate X.509 attribute certificates into SAML Attribute State-
ments. That conversion policy will be managed at the destination site (the NAS-
SAML domain) and will be expressed in terms of the object identifiers related to
the attributes, attribute values, SAML attribute designators, etc. XACML con-
stitutes an appropriate tool to express these kinds of policies, as we will show in
the following sections.

The rest of this paper is structured as follows. Section 2 provides an overview
of the two different authorization scenarios involved in this paper, the PERMIS
project and the SAML-based network access service. Section 3 describes the
architectural elements, the disclosure policy and the conversion policy. Then,
Section 4 presents the two different design alternatives based on pull and push
models. Next, Section 5 includes the related work that informed our research.
Finally, we conclude the paper with our remarks and some future directions.

2 Authorization systems

This section provides an overview of the two different authorization scenarios
that have been integrated in this paper.

2.1 SAML-based network access service

In [12] we present a network access control approach based on X.509 identity
certificates and authorization attributes, which addresses some of the challenges
derived from the integration of existing authentication systems with a flexible,
scalable and manageable authorization system. The proposal is based on the
SAML and the XACML standards, which will be used for expressing access con-
trol policies based on attributes, authorization statements, and authorization

protocols. Authorization is mainly based on the definition of access control poli-
cies including the sets of users pertaining to different subject domains which
will be able to be assigned to different roles in order to gain access to the net-
work of a service provider, under specific circumstances. The starting point is a
network scenario based on the 802.1X standard [14] and the AAA (Authentica-
tion, Authorization and Accounting) architecture [8|, where we centralize all the
operations related to authentication, authorization, and accounting.

The system operates as follows. Every end user belongs to a home domain,
where he was given a set of attributes stating the roles he plays. When the
end user requests a network connection in a particular domain by means of a
802.1X connection, the request is obtained by the AAA server, and it makes a
query to obtain the attributes linked to the user from an authority responsible
for managing them. Finally, the AAA server sends an authorization query to a
policy decision point, and that element provides an answer indicating whether
the attributes satisfy the resource access policy. Furthermore, that policy can
also establish the set of obligations derived from the decision, for example some
QoS properties, security options, etc. This general scheme works both in single
and inter-domain scenarios, and using both push an pull based communications.

2.2 PERMIS project

PERMIS [6] is a trust management system. It uses X.509 Attribute Certificates
to specify subject attributes such as roles and permissions, and defines a hierar-
chical role based access control (RBAC) policy language in terms of those roles
and permissions. The PERMIS policy specifies who is to be granted what type
of action on which targets, and under what conditions. Policy based authoriza-
tion on the other hand allows the domain administrator (the SOA) to specify
the policy for the whole domain, and all targets will then be controlled by the
same set of rules. The policy is expressed in XML and comprises the following
components:

— SubjectPolicy: this specifies the subject domains, that is only users from a
subject domain may be authorized to access resources covered by the policy.

— RoleHierarchyPolicy: this specifies the different roles and their hierarchical
relationships to each other.

— SOAPolicy: this specifies which SOAs are trusted to allocate roles.

— RoleAssignmentPolicy: this specifies which roles may be allocated to which
subjects by which SOAs.

— TargetPolicy: this specifies the target domains covered by this policy. Each
domain is specified as an LDAP subtree or using URIs (Uniform Resource
Identifier).

— ActionPolicy: this specifies the actions (or methods) supported by the tar-
gets, along with the parameters that should be passed with each action.

— TargetAccessPolicy: this specifies which roles have permission to perform
which actions on which targets, and under which conditions. Conditions are
specified using Boolean logic and might contain constraints involving strings,
integers, dates, or boolean expressions.

On the other hand, the privilege verification subsystem is responsible for au-
thenticating and authorizing the remote user and providing access to the target.
The primary component is the application gateway. The functionality of this is
split into two components: an application-specific component termed the Access
Control Enforcement Function (AEF), and an application-independent compo-
nent termed the Access Control Decision Function (ADF). An application pro-
grammable interface (APIs) between the AEF and ADF has been defined based
on the AZN API [10].

3 Architectural elements and Policies

The integration of different authorization scenarios involves the definition of
new components which act as a bridge between the participating domains, hid-
ing from the rest of the components the knowledge of different authorization
mechanisms. Those new components must respect the already defined systems
and their components, and they should be able to interact in the most transpar-
ent way. Beside these components, it is necessary to define the policies used for
the disclosure and conversion processes. This section describes the components,
their functionality, and gives an overview of the needed policies.

The next figure shows an application scenario where two domains, using
different authorization mechanisms, exchange credentials to deny or grant access
to the required services.

r - N i A
PERMIS domain (NAS domain
3. give me use['s 2. obtain and
isi credentials ;
4 select visible Attribute [4+—— | Conversion convert credentials
attributes . <
Manager Service
N~ | PDP
\/
6. user's ACsf \j
PDP H 5. visible 7. conversion 8. SAl AAA & 9. a_ut_hZ
attributes process attrs decision
. J \ 7 /

1. network acceg$ attempt

PERMIS user
requesting
access ina

NAS domain

Figure 1. Credential Conversion Scenario

3.1 New components

Regarding the scenario described in Figure 1, several issues must be addressed.
On the one hand, the user’s home domain needs a module able to receive creden-

tial requests from an external domain, and to decide which of the user’s attributes
must be revealed. For example, in the proposed scenario, the PERMIS domain
needs a module able to manage the ACs requests from the NAS-SAML scenario.
On the other hand, the NAS-SAML domain needs a component responsible for
recovering from an external domain the user attributes, which are represented in
a source format (for example X.509 ACs), and for translating them into internal
credentials, represented in a target format, in this case SAML.

Those modules are the UAM (User Attribute Manager), used to deal with
the attribute requests received from an external domain, and the CCS (Cre-
dential Conversion Service), which is in charge of translating the authorization
credentials.

User Attribute Manager (UAM) One issue in distributed systems that
serve users from multiple communities is determining which organization a par-
ticular user is from and hence the organization whose attribute authority can
provide attributes regarding the user. This is often referred to as the Where are
you from? problem. Although this could be implemented placing a pointer to
the attribute authority in the user’s X.509 identity certificate, this solution re-
quires cooperation of the CA issuing the user’s identity credentials, which may
not always be available and also binds attribute information to the user’s iden-
tity credential, which may raise problems if the lifetimes of these two elements
differ. Our initial system implementation either assumes fixed UAM locations
dependent on the requester or discovery via an information service query to a
trusted source.

In the proposed scenario, the UAM is a module able to understand queries
expressed in SAML, and able to create authorization responses in that format.
Moreover, this module should return to the NAS-SAML domain only the visible
credentials specified by the disclosure policy. The UAM module is defined with
this intention, but its particular behavior will depend on the communication
model.

When the pull model is used, the UAM receives attribute queries from the
target domain, specifically from the CCS. The UAM obtains the user’s attributes,
for example, from an internal repository, and asks the local PDP (Policy Decision
Point) about the visibility of those attributes. This module enforces a disclosure
policy establishing which attributes will be revealed for that domain. Once the
decision is obtained, the UAM returns a response message to the CCS containing
the user’s attributes in source format, in this case, X.509 ACs.

In the push model, the UAM receives the attribute query directly from the
end user. Then, the UAM returns the allowed attributes, following the same
process as described before, to the end user. Once the user has validated the at-
tributes and, depending on the communication between entities, he may request
the UAM to forward the conversion query to the appropriate CCS module, or
he may present these attributes directly to the target domain. Different design
alternatives are described in Section 4.

Credential Conversion Service (CCS) The CCS [7] integrates external au-
thorization schemes (non SAML-based) into authorization scenarios which make
use of SAML as the main language for assertions. Our starting point is an end
user requesting access to a resource secured in a SAML environment. We do not
want the user authorities pertaining to non-SAML domains to issue SAML as-
sertions, since they were not designed to perform that task. In fact, what we need
is a service able to translate the external credentials into SAML assertions. CCS
defines the different architectural entities involved in that process and their re-
lationships. Moreover, it extends some standard SAML elements, such as SAML
assertions and queries, to provide the needed syntax and semantics.

The CCS module is located in the NAS-SAML domain and it receives at-
tribute conversion queries related to a foreign user.

In a pull model, where the user’s attributes must be obtained by the target
AAA server, it asks the CCS for those attributes, and the conversion process
will be responsible for obtaining and translating them into the internal format.
Following the described scenario, when the CCS receives an attribute query from
the local AAA server, it has to discover the user’s home domain, and the exact
location of the UAM module. Then, it forwards the query to the UAM module,
and waits for the user’s attributes in a source format. When the CCS gets these
attributes it has to use the Conversion Policy rules, which define how to translate
the external credentials into SAML attributes.

In a push model, where the user requests his authorization attributes before
accessing the target network, the CCS may receive the conversion query directly
from the UAM, or from its local AAA server, according to the push model
alternative selected. That is, when the user needs the authorization credentials
to get access to a target domain, first he asks the home domain for his attributes.
Then, attributes are forwarded to the CCS and hereafter the process is very
similar to the one described above.

These modules allow the interaction between domains based on different
authorization systems, and its corresponding behavior is completely based on
two integration policies. The next section describes those policies and gives the
guidelines about how they can be expressed.

3.2 Integration policies

In order to define how these new components work, it is necessary to intro-
duce the policies involved. The UAM module needs a policy specifying which
attributes can be revealed to which target domains, for example, depending on
the level of trust agreed with that domain. This policy is named the Disclosure
Policy. On the other hand, the CCS needs a policy describing how attributes
from the user’s home domain must be mapped into internal attributes, to be
used next by the PDP to obtain an authorization decision. This policy is defined
as the Conversion Policy.

Disclosure Policy. When two or more domains are involved in a trust re-
lationship, where users from one domain can request access to resources in the
others domains, it is necessary to define which user’s attributes could be revealed
to those domains. For example, if the domain requesting those attributes is a
highly trusted domain, due to a previously established very restrictive security
agreement, the home domain could reveal all the user’s attributes. Otherwise,
if the relationship established between the domains is not so trusted, the home
domain could decide to conceal some of them.

The Disclosure Policy identifies the allowed external CCSs (domains), assigns
specific roles to every domain based on the existing relationships between the
two domains, and defines the set of attributes that can be revealed and under
which conditions.

In the proposed scenario, we suppose the home domain is based on the PER-
MIS authorization infrastructure, that is, the use of Attribute Certificates to
represent the subject-attribute pair. This Disclosure Policy uses the resource
access control policy defined by PERMIS, which requires that every external
domain must have, at least, an internal AC defining the role played by that
domain.

The Disclosure Policy defines the following elements:

— Subjects: Set of external domains allowed to request internal user’s attributes.

— Roles: The set of roles that can be played by external domains. Those roles
might be organized hierarchically.

— SOA: Authorization Authority managing the ACs issued by the home domain
for external CCSs.

— Targets: The set of users whose attributes are to be disclosed (the user
requesting the access to the foreign network must be included here).

— Actions: Only disclose has been defined, and its parameter is the attribute
that is to be disclosed.

— TargetAccess: Defines which attributes assigned to a particular set of users
can be disclosed to which domains, and under which conditions.

Figure 2 represents a simple Disclosure Policy defined by o=PERMISDomain,
c¢=C. The SubjectPolicy element specifies that only the external domain ¢cn=CCS,
0=SAMLDomain, ¢c=C will be allowed to request attributes. As we explained
before, the NAS-SAML domain must have an attribute certificate issued by the
PERMISDomain SOA. This AC will contain the attribute type permisRole, with
value LongTerm-CCS, specifying the role played by this domain, in this case, a
stable and durable relationship is specified.

The TargetPolicy defines the set of PERMIS users who make use of external
resources, that is, only attributes assigned to those users can be revealed by the
UAM. There is only one allowed action, disclose, which uses an attribute type
and an attribute value as parameters. Finally, the TargetAccessPolicy defines
that only CCSs (Subjects) assigned to the LongTerm-CC attribute value will
have access to the attribute studentRole type, with value ERASMUS, assigned
to Students.

<X.509_PMI_RBAC_Policy OID="2.6.2004.24.1.2005"> </TargetDomainSpec>

<SubjectPolicy> <TargetDomainSpec ID="Professors">
<SubjectDomainSpec ID="SD_International_CCSs"> <Include LDAPDN="ou=Professors,
<Include LDAPDN=" ¢n=CCS, o=SAMLDomain,c=C "/> 0=PERMISDomain, c=C"/>
</SubjectDomainSpec> </TargetDomainSpec>
</SubjectPolicy> </TargetPolicy>
<RoleHierarchyPolicy> <ActionPolicy>
<RoleSpec Type="permisRole" <Action Name="disclose" Args="role value"/>
0OID="1.2.826.0.1.3344810."> </ActionPolicy>
<SupRole Value="ShortTerm-CCS"> <TargetAccessPolicy>
</SupRole> <TargetAccess>
<SupRole Value=" LongTerm-CCS "> <RoleList>
<SubRole Value="ShortTerm-CCS"/> <Role Type="permisRole"
</SupRole> Value="LongTerm-CCS"/>
</RoleSpec> </RoleList>
</RoleHierarchyPolicy> <TargetList>
<SOAPolicy> <Target Actions="disclose">
<SOASpec ID="PERMISDomain_UAM" <TargetDomain ID="Students"/>
LDAPDN=" cn=UAM,0=PERMISDomain,c=C "/> </Target>
</SOAPolicy> </TargetList>
<RoleAssignmentPolicy> <IF>
<RoleAssignment> <AND>
<SubjectDomain ID="SD_International_CCSs"/> <Substrings>
<RoleList> <Arg Name="role" Type="String"/>
<Role Type=" permisRole " <Constant Type="String"
Value=" LongTerm-CCS "/> Value="studentRole"/>
</RoleList> </Substrings>
<Delegate Depth="0"/> <Substrings>
<SOA ID="PERMISDomain_UAM"/> <Arg Name="value" Type="String"/>
<Validity/> <Constant Type="String"
</RoleAssignment> Value="ERASMUS"/>
</RoleAssignmentPolicy> </Substrings>
<TargetPolicy> </AND>
<TargetDomainSpec ID="All-Users"> </IF>
<Include LDAPDN="0=PERMISDomain, c=C"/> </TargetAccess>
</TargetDomainSpec> </TargetAccessPolicy>
<TargetDomainSpec ID="Students"> </X.509_PMI_RBAC_Policy>

<Include LDAPDN="ou=Students,
0=PERMISDomain, c=C"/>

Figure 2. Disclosure Policy example

When the UAM module receives an attribute query it must generate a request
message for each user attribute, specifying the target domain (subject and role),
the attribute requested (type and value) and the required action. This request
is sent to the PDP and it returns a response message indicating whether the
attribute can be revealed or not.

Conversion Policy. A target domain, which has to interact with a home do-
main based on a different authorization system, needs both to use the CCS mod-
ule and to define the conversion policy for each domain. Following the design
described in [12], this policy is based on XACML, and it defines the following
elements:

Subject: One or more subjects specifying the related home domains.

— Resource: The resource elements represent the credentials issued by the home
domain that need to be translated into internal credentials.

— Action: This policy contains only the translate action.

Obligation: Every permitted translation will imply an obligation, which spec-

ifies how to translate the credentials.

<PolicySet xmIns="urn:oasis:names:tc:xacml:2.0:policy:schema:cd:04"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

<Policy Policyld="urn:ccs:PERMISDomainSimplePolicy1"
RuleCombiningAlgld="...">

xsi:schemalocation=" access_control-xacml-2.0-policy-schema- <Target/>
cd-04.xsd" <Rule Ruleld="PERMISDomainSimpleRulel" Effect="Permit">
PolicySetld="GlobalConversionPolicy" PolicyCombiningAlgld="..."> <Target>
<Target> <Resources>
<Actions> <Resource>
<Action> <ResourceMatch Matchld="...:string-equal">
<ActionMatch Matchld="...:string-equal"> <AttributeValue DataType="...#string">
<AttributeValue DataType="...#string">translate studentRole
</AttributeVvalue> </AttributeValue>
<ActionAttributeDesignator Attributeld="..:action" <ResourceAttributeDesignator
DataType="...#string"/> Attributeld="...:resource-id"
</ActionMatch> DataType="...#string"/>
</Action> </ResourceMatch>
</Actions> <ResourceMatch Matchld="
</Target> <AttributeValue DataType="...
<PolicySet PolicySetld="PERMISDomainConversionPolicy" ERASMUS
PolicyCombiningAlgld="..."> </AttributeValue>
<Target> <ResourceAttributeDesignator
<Subjects> Attributeld="....value"
<Subject> DataType i
<SubjectMatch Matchld="...:string-equal"> </ResourceMatch>
<AttributeValue DataType="...#string"> </Resource>
cn=UAM,0=PERMISDomain,c=C </Resources>
</AttributeValue> <[Target>
<SubjectAttributeDesignator </Rule>
Attributeld="...:external:SOA" <Obligations>
DataType="...#string"/> <Obligation Obligationld="urn:ccs:Obligation1"
</SubjectMatch> FulfillOn="Permit">
</Subject> <AttributeAssignment DataType="...#string"
</Subjects> Attributeld="urn:saml:attribute:role:student">
<[Target> ERASMUS

</AttributeAssignment>
</Obligation>
</Obligations>
</Policy>
</PolicySet>
</PolicySet>

Figure 3. Conversion Policy example

Figure 3 shows a simple Conversion Policy composed by the set of policies
related to every home domain. For example, PERMISDomainConversionPol-
icy defines the whole set of attributes that can be translated from the domain
o=PERMISDomain,c=C. There is only one allowed action, translate. The home
domain is specified using the Subject element, and for each attribute of that
domain it is necessary to define a conversion policy. This specific policy, for
example the PERMISDomainSimplePolicyl, defines the Rule specifying the at-
tribute to be translated (type and value), and a Obligation element specifying
the internal target attribute. For example, the previous example defines that
the PERMISDomain attribute type studentRole with value FRASMUS must be
translated into the internal attribute type wrn:saml:attr:role:student, with value
ERASMUS. It is worth noting that the addition of home domains involves addi-
tional PolicySet elements, and more attributes per domain requires more Policy
elements.

When the CCS module receives a conversion query it must generate a policy
request message, specifying the home domain subject, the source user’s attributes
and the required action. This request is sent to the policy manager and it returns
a policy response message including whether that action over that resource has
been allowed, and the target user’s attributes as obligations elements. Then
the CCS module returns to the petitioner a conversion response in the internal
domain format.

4 Design Alternatives

Interactions among the different components described in the paper depend on
the requirements imposed by the user to gain access to the network. On the
one hand, the end user can follow a pull approach, which requires the minimum
overload and is more suitable for limited terminals, such as PDAs or mobile
phones. In this way, all the authorization tasks are performed by the system. On
the other hand, following a push model, the user can present a particular set
of attributes. The push model involves support for selecting and transporting
attributes from the end user terminal, representing a more intrusive approach.
In consequence, we provide solutions to these two different environments, includ-
ing three different alternatives. Beside the pull model approach, we present to
alternatives for the push model. In the first one the user obtains his credentials
using SAML, once the user AC’s are translated. In the second one, he directly
obtains his Attribute Certificates, which will be translated during the network
access attempt. In both ways, before request access to the AAA server, the user
selects which of them wants to present.

Independently of the selected approach, when the end user requests access in
a target domain, he should be authenticated, before starting the authorization
process, as described in [12], but it is out of the scope of this paper.

4.1 Design alternative 1: Pull model

This alternative provides to the user an authenticated and authorized connection
in a transparent way. The management of the authorization data, that is, the
conversion and validation process, are performed using a pull approach.

In this way, the first step is the authentication of the user, following the
process required by the network access technology. We suppose this authenti-
cation is based on public key certificates, therefore, the user must present one
of these during the authentication process and it must be validated by the tar-
get AAA server. In this scenario, the authentication is delegated, and might be
based on the existence of a previously generated cross-certification relationship
between both domains.

Once the user is authenticated, the authorization process starts. The AAA
server has to discover that the user belongs to a home domain which is not based
on SAML/XACML, and therefore his attributes must be converted. The user’s
home domain can be discovered using the DN attribute held in his certificate.

The AAA server sends the attribute query requesting the user’s attributes to
the CCS module. This request is formed by a SAMLRequest object containing
an AttributeQuery and indicating that the response must be encoded using the
AttributeStatement sentence. It also includes the name of the user (subject)
requesting the access and, optionally, the type of attributes expected.

Once the CCS obtains the request, it has to discover how to contact the
user’s home domain. This information is stored in the Resource Access Policy,
as described in [12], as additional information about the domains able to gain

Home SD Target SD
— — — — — — — — —
EU LDAP REE UAM { NAP 1 CCs AAA SA PDP
: }
1 \
X.509 PKC authenticate
user
LDAPQuU SAMLRequest ‘_SAMLReu —
getusgr ‘_ ' AttributeQuer
ACE subject
N~
K LDAPRes
Disclosure
— Quer
PERMIS Disclosure SAMLRe: N SAMLRequest
Disclosure Response WrappedSt v XACMLAuthZDecisionQ
Policy Attributes SAVLR XACMLRequest XACHL
_es. R
&/ ~ subject | environ. Aescoe rge
XACML = action awrs_yl_poli y
Gpnversior| [—— _/
Policy
SAMLResponse
XACMLAuthZDecSt.
XACMLResponse
result Iobhgs. ||
attributes
EAP-SUCCESS ranslate
NASREQ
v A\ 4 \ 4 \ 4 \ A A 4 W __ attributes v
C EAPOL) pmaveterear) PI
(EAP-TLS D
LDAP (SOAP D Pl)
PERMIS API | |

Figure 4. Pull model

network access. The contact point specified in that policy is the UAM module,
located in the user’s home domain.

The CCS signs and forwards the attribute query, changing the expected re-
sponse sentence to WrappedStatement. In this way, the CCS module indicates to
the UAM that the user’s attributes must be returned in the original format, but
encapsulated in this statement, to be translated at the target domain.

When the UAM receives the attribute query, it has to return only the at-
tributes allowed by the Disclosure Policy. To check this policy, the UAM obtains
from the internal LDAP repository all the ACs issued to this user, and the ACs
issued to the target domain. The first set of certificates contain all the user’s
attributes in his home domain, whilst the second one contains the roles played
by the target domain. The CCS public key certificate, included in the XML Sig-
nature object of the request message, can be used to authenticate the CCS and
obtain the target domain.

At this point, the UAM asks the PDP component, the decision point, for the
attributes that can be revealed. Using the above ACs, the UAM issues a request
per user’s attribute, specifying: the target domain (subject), the attributes as-
signed to that domain, the user attribute and its value, and the requested action
(disclose). These requests are sent using the PERMIS APIL.

Once the UAM knows the set of attributes that can be returned to the target
domain, it generates a SAMLResponse including a WrappedStatement sentence,
following the schema defined in [7]. This statement includes:

— WrappedData: The allowed user’s ACs.

— StatementType: URI describing the type of the wrapped data, for example,
z509ac.

— FEncoding: URI describing the encoded format, for example, Base6/.

Once the CCS module receives the response message, it must convert the
received attributes into internal understandable SAML attributes. To obtain
these, the CCS uses the Conversion Policy, described in section 3.2. The CCS
obtains the SOA identifier and each attribute type and value pairs needed to be
converted. All this information is included in the ACs. For each attribute type
and value pair, the CCS checks the policy and obtains the associated attribute
designator and value in internal format (SAML).

Once all the attributes are translated, the CCS sends a SAMLResponse mes-
sage including all of them as AttributeStatement sentences. When the AAA
server receives the user’s attribute it checks the Resource Access Policy as de-
scribed in [12], to grant or deny the required service.

The pull model provides strong authentication of users, and a transparent
authorization service based on ACs and SAML statements, avoiding the client
software being modified to support these high level authorization schemes. This
alternative has the disadvantage of providing no control to the user about the
type of service required, that is, the user can not select the set of attributes to be
presented during the network access request. In our opinion, this should not be
seen as a disadvantage in most of the existing environments where default access
is being provided or where the users do not want to get involved in authorization
issues.

4.2 Design alternative 2: Push model based on SAML Attributes

Using the push model, end users are able to present their authorization creden-
tials during the network access request. In this alternative, those authorization
credentials are expressed using SAML attribute statements containing the roles
played by the user. This model is based on two steps: first, the user has to re-
quest his attributes from his home domain, specifying the desired target domain
and service. This step involves the conversion process ending with the user hold-
ing the converted attributes. Then, the user presents those converted attributes
to the target domain, requesting, for example, network access. This steps in-
volves the authentication and the authorization decision processes. This section
describes the first step since the last stage is fully described in [12].

In this model, the user requests his attributes from his home domain, speci-
fying the desired target domain and service. The user directly accesses the UAM
module, for example, through a web browser. The UAM, once the user is au-
thenticated, follows the same procedure described in the pull model, only in this

case the user acts as a proxy for the target domain. First, the UAM retrieves
the user’s ACs from the LDAP repository, and then asks the PDP module about
the attributes that can be revealed to the target domain.

In this way, and following the push model described in [7], the UAM sends to
the CCS a ConversionQuery sentence including the WrappedStatement described
above. The ConversionQuery sentence contains the following elements:

— Assertion: Assertion including the WrappedStatement object.

— Recipient: Attribute defining the entity that will receive the assertions, for
example, the CCS.

— RespondWith: This element, including in the SAML Request message, is used
to specify type of SAML assertion that is expected to be generated, for
example, the AttributeStatement.

Home SD Target SD
S— — —
EU UAM LDAP PDP ccs L AAA
: 1
—m———— —pmmm——- -
H
X.509 RKC authenticate
user
—
——LDAPRes

Attributes Disclosure PEF M
Quer Discld sure
Poficy
Disclosure 7
Response
SAMLReq

-~

ConversionQuen
Wr‘éppedSt
Cred. c
XACML
SAMLRequest SAMLRes. Conversion
XACMLAuthZDecisionQ |‘ AttributeSt Policy
XACMLRegquest attrs
[¢ environ._[™| >
res. | action atrs.
v
v v v v v
(HTTPS (LDAP)
C PERMIS API)
(SOAP-TLS D
|

Figure 5. Push model based on SAML Attributes

The UAM waits for a SAMLResponse message including the converted at-
tributes. The location of the CCS could be previously configured in the home
domain, as part of the Disclosure Policy, or could be obtained from the CCS
public key certificate, as an authorizationInformationAccess X.509 extension.
The CCS module, after enforcing the Conversion Policy, returns the converted

attributes as an AttributeStatement to the UAM, which generates the XACM-
LAuthZDecisionQuery following the push model described in [12]. The user then
forwards this to the AAA server.

It it worth noting that absence of revocation mechanisms for SAML state-
ments, and its recommended usage for short-term sessions, suggests that the
SAML documents should not be cached in intermediate entities, like a certifi-
cate repository.

The main advantage of this alternative is that it provides to the end user
complete visibility and control of the authorization process, since he can select
the type of connection, security properties, quality of service, etc. Moreover,
he can provide personal information by means of references to some of his at-
tributes. On the other hand, the software used by the client (usually referenced
as supplicant) must be modified in order to deal with SAML statements during
the second step, as we can find in other existing proposals [12].

4.3 Design alternative 3: Push model based on Attribute
Certificates

In this alternative, authorization credentials, presented by the end user to the
AAA server, will be the user’s Attribute Certificates, obtained from the UAM
in the user’s home domain. This model is based on two steps: first, the user has
to request his ACs from his home domain, specifying the desired target domain
and service. Then, the user, after filtering those according to his privacy policy,
presents them to the target domain, requesting, for example, network access.
This last step involves the authentication, the credentials conversion, and the
authorization decision processes.

In this model, the user requests his attributes from his home domain, speci-
fying the desired target domain and service. The user directly accesses the UAM
module, for example, through a web browser. The UAM, once the user is au-
thenticated, retrieves the user’s ACs from the LDAP repository, and then asks
the PDP module about the attributes that can be revealed to the target domain.
The UAM returns the selected ACs to the end user.

Once obtained the user’s ACs, he requests network access connection in the
target domain, pushing those ACs according to his internal policy. The user initi-
ates the 802.1X authentication process with the foreign AAA server. In this case,
we are going to use the PEAP (Protected EAP) protocol [2], which defines how
to establish a TLS channel that can be used to authenticate the communicating
parties and to protect further messages related to the authorization process. For
example, the user’s ACs would be base64 encoded and sent as normal attributes.

The AAA server that receives the network connection detects the use of non-
SAML credentials, and sends a credential conversion request to the local CCS.
That is, a ConversionQuery sentence including the WrappedStatement described
above.

The AAA server waits for a SAMLResponse message including the converted
attributes. The CCS module, after enforcing the Conversion Policy, returns the

Home SD Target SD

— — — —— =— — —

EU LDAP PDP UAM AAA PDP

X.509 PKC

]
R LDAPRes

Disclosure
-
PERMIS 4
Disclosure Disclosure
Policy

X.509 ACs

get uspr
ACE

h 4

x

09 PKC + X.509 A¢s

h 4

SAMLReq > user

‘_ ConversionQuery —4

XACML Wrknopedst
donversio rappe
Policy Cred.

... rest of
SAMLRes. authorization XACML
AttributeSt

rocess ... Regource
attrs <JJ—>} A

cess

e Plolicy
v |v v v v \/ v v
(HTTPS C Pl PI D
C PEAPV2)
[, LDAP) [

PERMIS API

Figure 6. Push model based on Attribute Certificates

converted attributes as an AttributeStatement to the AAA server, which gen-
erates the XACMLAuthZDecisionQuery following the push model described in
[12].

This alternative presents the same advantages and disadvantages that the
alternative 2 previously described. The main difference is the transport of ACs
from the home domain to the target domain, where they need to be translated
by the CCS module.

5 Related work

Nowadays, due to the existence of several authorization schemes, their integra-
tion is becoming a common requirement in multi-domain scenarios. This section
describes some of the main current integration solutions which have informed
our work, including environments such as SAML, PERMIS or X-RBAC [11].
PERMIS is being used by other authorization schemes to improve the au-
thorization decision process and to allow users holding an Attribute Certificate
to interact with other environments, such as Shibboleth [4] or Grid Services [1].
Shibboleth defines an access control approach scenario for web environments,
which is composed of three main entities: service providers offering target re-
sources; identity providers maintaining the user’s identities; and the end users.
It offers user authentication and attribute-based authorization services based on

SAML, as well as a SSO service. It is based on a single Attribute Authority,
and has no generalized decision engine. One solution to improve Shibboleth is
the integration with PERMIS. During the SIPS project [16], PERMIS was inte-
grated to work with Shibboleth. There are two modes of operation: in one mode
PERMIS uses X.509 Attribute Certificates to make authorization decisions, and
in the other mode PERMIS uses plain Shibboleth attributes. The PERMIS team
had to develop a module similar to the conversion service discussed in this paper,
so that PERMIS would accept the plain-text attributes. The module that was
developed as the result is not a standalone service, rather it is an extension to
PERMIS that is invoked via the API. This only once again proves the necessity
for credential conversion for efficient interoperation of Privilege Management
Infrastructures.

PERMIS has also been extended to support the SAML standard for Grid
Services, as defined in [5]. This describes how PERMIS has been adapted in order
to integrate its authorization engine into the Globus Toolkit. This integration
is based only on the exchange of authorization decision queries and responses
between an authorization service acting as the Policy Decision Point (PDP),
based on X.509 ACs, and the Grid infrastructure. In this scenario, the decision
about the resource is taken by the PERMIS ADF module, following the PERMIS
policy syntax. In this way, it takes the advantage of the SAML standard for
integration purposes. It is also able to use the SAML extensions proposed by the
OGSA-Authz working group [17] for efficiency purposes.

Besides PERMIS, other scenarios describing the integration between different
authorization schemes are being defined. An interesting solution for the autho-
rization process in multi-domain environments, based on the RBAC model, is
described in [11]. Although this model does not propose an integration scenario,
because both domains are based on the same authorization scheme (X-RBAC),
it does propose a policy mapping users’ attributes from one domain to another.
This proposal does not need a conversion service but it clearly shows that the
relationship between the user’s attributes or roles from different domains must
be mapped in some way. In order to support mapping between different autho-
rization schemes, the proposed policy should be extended allowing the definition
of the source and destination authorization formats.

6 Conclusions

This paper proposes a solution to integrate two different authorization schemes,
PERMIS which is being widely used due to its powerful authorization engine, and
SAML which is becoming a de facto standard for authorization environments. We
have presented a particular application scenario, the network access service, to
demonstrate how the integration addresses, for example, authorization between
domains based on a RBAC scheme.

Beside the architectural elements needed by the integration process, this pa-
per presents the guidelines of the policies controlling the integration scenario, the
Disclosure and Conversion policies. These policies are defined using the different

authorization languages proposed by the two domains, the PERMIS XML autho-
rization policy and XACML. In this way, there is no need to include additional
authorization technologies to accomplish the integration process.

In order to offer a versatile solution, this paper presents three different RBAC
designs, which can be individually selected in order to implement the access
control service that is best suited for a particular environment. Authorization
can be performed in a transparent way, from the user’s point of view, using
the pull model. The two push model approach slightly overloads the system in
relation to the previous model, but it provides more options to the users.

As a statement of direction, although the proposed scenario is based on a
PERMIS home domain and a NAS-SAML target domain, it could be easily
adapted to work in reverse order, that is, based on a SAML home domain and
a PERMIS target domain.

7 Acknowledgements

Partially supported by IST-2001-32161 (Euro6ix) and IST-2002-001929 (SEINIT)
projects.

References

1. Globus Toolkit, February 2005. http://www.globus.org.

2. H. Anderson, S. Josefson, G. Zorn, D. Simon, and A. Palekar. Protected EAP
Protocol (PEAP), 2004. IETF Draft.

3. P. Ashley, S. Hada, G. Karjoth, and M. Schunter. E-P3P privacy policies and
privacy authorization. In WPES ’02: Proceedings of the 2002 ACM workshop on
Privacy in the Electronic Society, pages 103—109. ACM Press, 2002.

4. S. Cantor. Shibboleth ~ Architecture. Protocols and Profiles, February
2005. http://shibboleth.internet2.edu/docs/draft-mace-shibboleth-arch-protocols-
06.pdf.

5. D. W. Chadwick, S. Otenko, and V. Welch. Using SAML to link the GLOBUS
toolkit to the PERMIS authorisation infrastructure. In Proceedings of Eighth An-
nual IFIP TC-6 TC-11 Conference on Communications and Multimedia Security,
2004.

6. David W. Chadwick, Alexander Otenko, and Ed Ball. Role-based access control
with x.509 attribute certificates. IEEE Internet Computing, 7(2):62-69, 2003.

7. O. Canovas, G. Lopez, and A. F. Gomez. A Credential Conversion Service for
SAMUL-based scenarios. In Proceedings of 1st Furopean PKI Workshop, pages 297—
305, June 2004.

8. C. de Laat, G. Gross, L. Gommans, J. Vollbrecht, and D. Spence. Generic AAA
Architecture. Internet Engineering Task Force, August 2000. Request for Com-
ments (RFC) 2903.

9. S. Godik and T. Moses. OASIS eXtensible Access Control Markup Language
(XACML) Version 2.0, February 2005. OASIS Standard.

10. The Open Group. Authorization (AZN) API, January 2000.

11. E. Bertino J. B. D. Joshi, R. Bhatti and Arif Ghafoor. Access-Control Language
for Multidomain Environments. IEEE Internet Computing, 8(6):40-50, November
2004.

12

13.

14.

15.

16.

17.

G. Lopez, O. Canovas, A. F. Gomez, and R. Marin. A Network Access Control
Approach based on the AAA Architecture and Authorization Attributes. In Pro-
ceedings of International Workshop on Systems and Security Networks (SSNO5),
April 2005. To be published.

E. Maler, P. Mishra, and R. Philpott. Assertions and Protocol for the OASIS Secu-
rity Assertion Markup Language (SAML) V1.1, September 2003. OASIS Standard.
LAN MAN Standards Committee of the IEEE Computer Society. [IEEE Draft
P802.1X/D11: Standard for Port based Network Access Control. TEEE, March
2001.

K. Seamons, M. Winslett, and T. Yu. Limiting the Disclosure of Access Con-
trol Policies during Automated Trust Negotiation. In Proceedings of Network and
Distributed System Security Symposium, April 2001.

SIPS. Seamlessly Integrating PERMIS and Shibboleth, February 2005.
http://www.jisc.ac.uk.

V. Welch, R. Ananthakrishnan, F'. Siebenlist, D. Chadwick, S. Meder, and L. Pearl-
man. Use of SAML for OGSA Authorization, February 2005. GGF Draft (OGSA-
Authz WG).

