
Development of a Flexible PERMIS Authorisation 
Module for Shibboleth and Apache Server 

Wensheng Xu, David Chadwick, Sassa Otenko  

Computing Laboratory, University of Kent, Canterbury, England, CT2 7NZ  
{w.xu, d.w.chadwick, o.otenko}@kent.ac.uk 

Abstract. This paper describes the development of a flexible Role Based 
Access Control (RBAC) authorisation module – the Shibboleth and Apache 
Authorisation Module (SAAM) which is based on the PERMIS privilege 
management infrastructure. It explains how the module can work with the 
Apache web server, with or without Shibboleth. We argue that this can 
effectively improve the level of trust and flexibility of access control for the 
Shibboleth architecture and the Apache web server, as well as provide a finer 
grained level of control over web resources.  

1  Introduction 

Shibboleth [1] is a cross-institutional authentication and authorisation architecture for 
single sign on and access control over web resources. It is specified by the Internet2 
middleware architecture committee and many universities in the USA and Europe 
have started to build experimental services based on it. Shibboleth can allow 
distributed users belonging to different institutions to share web resources 
conveniently and safely while respecting the users’ privacy. What makes the 
Shibboleth architecture especially attractive is that authentication of a user is carried 
out by the home site (i.e. where the user originates from) whilst authorisation for a 
user to access specific web resources is carried out by the resource website. Such 
separation of authentication and authorisation functions eases the creation and 
management of federations of resource providers and users. 

Shibboleth defines a protocol for carrying authentication information and user 
attributes from the user’s home site to the resource site. The resource site can then use 
the user attributes to make the access control decision about the user’s request. A user 
only needs to be authenticated once by the home site in order to visit other Shibboleth 
protected resource sites in the federation, as the resulting authentication token is 
recognised by any member of the federation. In addition to this, protection of the 
user’s privacy can be achieved, since the user is able to restrict what information 
about him will be released to the resource providers from the user’s home site.  

Shibboleth’s functionality is achieved by a simple trust relationship between the 
resource site and the user’s home site. To put it simply, the resource site trusts the 
origin site to authenticate the user and to provide the correct set of attributes for the 
user, and the home site trusts the resource site to give access to users with the correct 



set of attributes. If a finer grained trust relationship is required to allow for distributed 
management of user attributes and dynamic delegation of authority, then a more 
sophisticated authorisation infrastructure than that provided by Shibboleth is required. 
For example, if the resource site trusts specific managers/authorities to allocate 
specific attributes to different groups of users, this cannot be conveyed via Shibboleth 
since there is a single attribute authority (AA) at each home site. Furthermore, the 
security of the source of the user attributes at the home site might be of concern to the 
resource site, both because of how the attributes are stored, and because of the user’s 
dynamic pseudonymity1. Finally, the access control decision making based on these 
attributes is simplistic in its functionality, and the management of the access controls 
is mixed together with web server administration at the resource site. Therefore the 
flexibility of setting the access control policy is adversely affected.  

These limitations in Shibboleth can be alleviated by integrating a policy controlled 
Privilege Management Infrastructure (PMI) into it. PMIs are described in the 2001 
edition of X.509 [3]. PERMIS [2] is an implementation of an X.509 PMI, and uses 
the Role Based Access Control (RBAC) [10] paradigm. PERMIS is built in 
accordance with the ISO 10181-3 standard [15] and incorporates a sophisticated 
policy controlled application independent RBAC decision engine, or policy decision 
point (PDP), in its software suite. Roles are stored in X.509 attribute certificates 
(ACs), and since these are digitally signed for integrity protection, it can support the 
distributed management of roles between multiple AAs. Other experimental RBAC 
implementations have been developed, for example by Ferraiolo et al [12] and 
Sandhu et al [13, 14], but PERMIS is the first one to use X.509 ACs to store roles. 
PERMIS has already been successfully applied in several applications, and more 
recently has been integrated with the Globus Toolkit [4]. By developing and 
integrating a RBAC authorisation module into Shibboleth – the PERMIS SAAM 
(Shibboleth-Apache Authorisation Module) – a highly improved authorisation 
capability can be achieved for distributed web resource access control.  

The rest of this paper is organised as follows. Section 2 describes Shibboleth, and 
lists its main features and limitations. Section 3 analyses how Apache [7] 
authentication and authorisation works, how Shibboleth interacts with this, and the 
approach that needs to be taken to replace Shibboleth authorisation by PERMIS 
authorisation. Section 4 presents the PERMIS SAAM system structure and the 
Apache directives that control it. Section 5 describes the interactions between the 
PERMIS SAAM and Shibboleth. Section 6 describes how the PERMIS SAAM can 
be integrated with the Apache web server without Shibboleth. Finally Section 7 gives 
the conclusions.  

                                                           
1  Dynamic pseudonymity, provided by Shibboleth, allows the user to have a different 

pseudonym each time she contacts the resource site. Whilst this provides better user privacy 
(the user cannot be profiled by the resource site), it reduces the strength of the association 
between the user and her attributes. Furthermore, if multiple attribute authorities (AAs) issue 
attributes to the user, it will be difficult to facilitate that all of them dynamically re-issue the 
attributes each time the user’s identity changes.  



2 Main Features and Limitations of Shibboleth 

As a middleware layer Shibboleth uses SAMLv1.1 [5] for encoding some of its 
messages. When a user contacts a Shibboleth-protected resource site (target site) with 
the browser, requesting access to a particular URL, the user is required by the 
Shibboleth Indexical Reference Establisher2 (SHIRE) to go to a WAYF (Where Are 
You From) site to pick his/her home site (origin site), and their browser is redirected 
to their home site’s authentication server where the user is invited to log in. After the 
user is authenticated by the origin site, the browser is redirected back to the target site 
along with a handle package which includes an assertion that this user has been 
successfully authenticated by a particular means (e.g. username/password, Kerberos 
or digital signature), a unique handle generated by the Handle Service for the user 
(the user’s pseudonym), and the Attribute Authority (AA) location at the origin site 
where the user’s attributes may be obtained from. Then the Shibboleth Attribute 
Requester (SHAR) at the resource site returns the handle to the AA of the origin site 
and gets a set of attributes of the user from the AA. The messages between the target 
site and origin site are encoded in SAML and are embedded as a browser cookie, so 
the user observes only redirections between the sites.  
 

Authentication

point

User Origin Site Resource Target Site

SHIRE

HTTP 

Request 

WAYF

Handle Service 
User Handle Package

SHAR

Attribute 
Authority 

User handle

Attribute request

Attributes
Attributes

Authentication System 

User 

ShibAuthzAuthorisation
point

HTTP Response 

mod_shib 

 

Fig. 1.  The Shibboleth Authentication and Authorisation Process  

The user attributes are then passed to the Shibboleth authorisation function - 
ShibAuthz, which will make an access control decision based on these attributes. The 
SHIRE, SHAR and ShibAuthz are all included in the Shibboleth Apache module 

                                                           
2 In this article we refer to Shibboleth version 1.2 and its related documentation. At the time of 

writing Shibboleth architecture undergoes significant changes, whereby some of the 
components of the system will be regrouped and renamed. 



called mod_shib3.  The web server will then give a response back to the user browser 
based on the decision result. The whole Shibboleth authentication and authorisation 
process is shown in Fig. 1.  

Because user authentication and authorisation are taking place at different 
locations, namely at the origin site and the target site respectively, Shibboleth allows 
for a different pseudonym (the handle) for the user’s identity to be invented by the 
origin site every time. Both the origin site and the user can have control over the 
release of the user’s attributes, so the user’s privacy can be well protected. On the 
other hand, because authentication and authorisation are performed by different sites 
and the user’s name is not provided to the target site for privacy reasons, the target 
site’s access control is only based on the user’s attributes without the need to know 
who issued them, whether they are still valid, or whether they are even the correct 
attributes for the particular user, so the safety of the target site heavily relies on 
trusting the origin site to return the correct attributes.  

The messages carrying these attributes are digitally signed by the SAML authority 
at the origin site, so the security of these messages is ensured, but the security of the 
source of the attributes is not guaranteed. In many sites a back end LDAP [11] server 
is the authoritative source for both authentication and attribute information. These 
attributes in the LDAP server are not digitally signed, so it is relatively easy for these 
attributes to be tampered with compared to for example digitally signed X.509 
attribute certificates (c.f tampering with passwords compared to tampering with 
X.509 public key certificates). Furthermore Shibboleth doesn’t cater for multiple 
attribute authorities at the home site. There is only one AA that creates the 
cryptographically protected SAML tokens. The AA must query the attribute 
repository (e.g. LDAP server) to collect the user’s attributes that are typically stored 
there as plain text. Even though the repository can be managed by multiple 
administrators, we would like to argue that this may not be secure enough, as it is 
difficult to ensure that an administrator does not exceed their authority. Because the 
security of the attributes in the repository is essential to the whole Shibboleth system, 
origin sites typically have a single administrator centrally managing the attributes of 
the users. This reduces the flexibility of the attribute assignments and inhibits the 
distributed/devolved management of them.  

Another limitation of the Shibboleth infrastructure is that it provides only a basic 
access control decision making capability. The authorisation decision made by the 
target site is based on the attributes received from the origin site, and the access rules 
that are defined by Apache directives in the Apache configuration file. The directives 
can only express basic simple access control rules based on regular expressions, for 
example “users with attribute ‘staff’ can have access to location A” or “users with 
attribute ‘senior member’ can have access to location B”, but it can not express 
conditional rules (e.g. access if time is between 9am and 5pm), complicated rules (e.g. 
ones with multiple conditions based on the parameters of the user’s request) or RBAC 
features such as separation of duties or role hierarchies. This is acceptable for simple 

                                                           
3 This is correct from the functional perspective. In the Shibboleth implementation however, 

the SHAR's actual function is implemented by an independent module which communicates 
with mod_shib by internal socket communications. 



applications, but for advanced applications this is a weakness for resource site 
administrators.  

Because the basic access control rules are defined in the Apache configuration file 
and the authorisation function is carried out by the Shibboleth Apache module, then 
every time the target site needs to change its access rules, it needs to redefine the 
directives in the Apache configuration file and restart the Apache server. This means 
that the administrator of the Apache web-server has to manage the access control 
rules, and there is no way for the owner of the resources to directly specify the access 
control rules without going via the Apache administrator. This limits the resource 
owner’s flexibility for management of access control over his resources. 

From the above discussion we can see that the Shibboleth target site makes access 
authorisation decisions after it receives user attributes from the Shibboleth origin site. 
We want to improve Shibboleth so that: 

(1) If the attributes at the origin site are digitally signed by a relevant AA, then the 
trust between the origin and target sites no longer solely relies on the security of the 
origin attribute repository, e.g. LDAP server, as the attribute certificates (ACs) are 
tamper-proof themselves. Consequently the security level for the whole system can be 
effectively improved; for example, X.509 ACs can be adopted as user attributes and 
they can be stored in the origin site’s LDAP repository and be released to the target 
site for access control decision making;  

(2) When the target site receives the attributes or ACs from the origin site, at this 
point a sophisticated RBAC decision engine (e.g. PERMIS) can be used to make 
access control decisions instead of Shibboleth’s own simple authorisation function. 
This will help to implement sophisticated access control features such as separation of 
duties and role hierarchies, so a finer grained and more refined access control 
mechanism can be deployed at the target site.  

Once Shibboleth and PERMIS are integrated, both the security and flexibility of 
the Shibboleth infrastructure can be effectively improved. An in-depth discussion of 
the trust models and different approaches to the integration of Shibboleth and 
PERMIS can be seen in [9]. But for any of these models, two common problems need 
to be solved for integrating Shibboleth and PERMIS. Firstly, how can PERMIS 
replace Shibboleth’s original authorisation functionality and make decisions based on 
attributes without the need to modify Shibboleth at the source code level. Secondly, 
how can ACs replace attributes and be stored and transferred by Shibboleth. The first 
question is addressed below and the second question is discussed in Section 5.  

3 Analysis of Apache and Shibboleth authentication and 
authorisation functions 

3.1 How Apache performs Authentication and Authorisation 

Apache [7] is a popular open-source HTTP server that is widely used in universities 
and institutions to provide a web resource sharing service. How does the Apache 



server handle HTTP requests? The Apache server breaks down HTTP request 
handling into a series of processing phases, including:  

− URI to Filename translation;  
− Authentication identity check: to check who the user is; 
− Authorisation access check: to check if the user is authorized here; 
− Module-specific access checks: to check if there is any restriction from this 

module upon the requested resource; 
− Sending a response back to the user; 
− Other phases, unrelated to this article. 
The basic functionality of the Apache web-server can be extended by adding so-

called modules to it, and each module can handle one or several processing phases. 
(The authorisation phase at a Shibboleth target site is handled by one such Apache 
module - mod_shib.) When an Apache module is written, it must contain code to 
register specific handlers (functions) that are to be called for specific phases. Each of 
the above phases is processed sequentially by the Apache server and each registered 
handler (handling function) is called once for each phase, unless a preceding module 
completes the phase processing (see later). In Apache 1.3, the order in which the 
modules are called is fixed for all the phases, and depends upon the order in which 
the module is loaded. In Apache 2.0, a certain amount of flexibility has been 
introduced into the calling order, as each module can indicate its priority (FIRST, 
MIDDLE, LAST) for each phase.  If two or more Apache modules have handling 
functions for the same processing phase, then these handling functions will be 
executed one after another according the order in which they were loaded. A 
simplified HTTP request handling process in the Apache server 1.3 is illustrated in 
Fig. 2. 
 
 

Apache 
module 1 

Apache 
module 2 

Apache 
module 3 

URI to 
Filename 
translation 

phase 

Authentication 
identity check 

phase 

Authorisation 
access check 

phase 

Module- specific 
access check 

phase 

Response  
phase 

Handling 
function A 

Handling 
function B

Handling 
function E

Handling 
function D

Handling 
function F

Handling 
function C

Handling 
function G 

HTTP request 

HTTP response 

 

Fig. 2.  HTTP Request Handling Process in the Apache Server 1.3 



For the authentication and authorisation access check phases in the HTTP request 
handling process, the Apache server looks at a succession of Apache modules in 
sequence to match and invoke the corresponding handling functions. If a relevant 
module handling function is invoked by the Apache server for a phase, there may be 
three possible results: 
− If the request is handled successfully, a magic integer constant OK will be returned 

to the Apache server and the subsequent Apache modules will not be invoked in 
this phase;  

− If the module handling function finds an error in the user’s request for whatever 
reason, one of the HTTP error codes will be returned, such as FORBIDDEN or 
HTTP_UNAUTHORIZED. This will also terminate the handling of the request, 
only this time the subsequent Apache modules will not be invoked for this phase or 
subsequent phases, and the user will be informed of the error by the browser ac-
cording to the HTTP error code; 

− If the module handling function declines to handle this phase, then the magic 
integer constant DECLINED will be returned to the Apache server. In this case the 
Apache server will continue to look at the rest of the modules in order to find a 
handling function to serve this phase. Usually DECLINED is returned by modules 
when the request is not applicable, like in cases when the requested location is not 
protected by the module (e.g. the AuthType directive is missing or specifies a type 
of authorisation that is not supported by this module).  
The first two results above are “definite”, i.e. there can be no other opinion about 

the request. The third result is “indefinite” and means that the handling function of a 
module cannot make a decision. So only when the preceding Apache module 
handling function returns the constant DECLINED, can the subsequent Apache 
modules be invoked for this phase, otherwise the rest of the Apache modules are 
skipped as if they didn’t exist.  

3.2 Shibboleth Integration with Apache 

The Shibboleth Apache module is called mod_shib, and it provides the access control 
service and single sign-on capabilities. Mod_shib is invoked at the target site during 
two phases of the Apache HTTP request handling process: the Authentication phase 
and the Authorisation phase. The SHIRE and SHAR are invoked during the 
Authentication phase and ShibAuthz is invoked during the Authorisation phase. 
During the Authentication phase the SHIRE redirects the user’s browser to the user’s 
home site for authentication if it is the first time for the user to access a federated 
target site in this session. Both the Shibboleth origin and target sites are issued with 
X.509 public key certificates and these certificates are configured into mod_shib. 
After a user is authenticated at the origin site, a digitally signed handle package is 
sent back to the SHIRE at the target site. The SHIRE checks the signature on the User 
Handle Package to validate that the handle package is really coming from a trusted 
origin site. In this way, the Shibboleth target site trusts that the user has been reliably 
authenticated. The SHAR then collects attributes of the user from the AA at the origin 
site via the attribute query communication. On subsequent access requests in the same 



session, the SHIRE and SHAR simply check the user’s cookies and retrieve the 
attributes from there. In the Authorisation phase ShibAuthz is invoked to make the 
access control decisions based on the attributes of the user.  

Our aim is to allow mod_shib at the target site to perform normal Shibboleth 
authentication and attribute collection in the Authentication phase, but to override its 
authorisation mechanism in the Authorisation phase with our PERMIS RBAC policy-
controlled PDP instead. So the design of the PERMIS authorisation module is 
straightforward. It should be invoked before the mod_shib authorisation code in the 
Authorisation phase, and obtain the attributes that Shibboleth has already retrieved 
from the AA in order to make a decision in accordance with the PERMIS 
authorisation policy. 

4 System Structure of the PERMIS SAAM 

Based on the above analysis, we developed the PERMIS SAAM authorisation 
module to work in conjunction with Shibboleth to provide a generic authorisation 
function based on RBAC and the PERMIS Privilege Management Infrastructure. The 
SAAM works as an Apache module and provides an authorisation handling function 
called during the Apache authorisation phase. By proper construction of the Apache 
configuration file, SAAM can be loaded and registered before the Shibboleth module, 
and can take the responsibility for making authorisation decisions thereby bypassing 
the Shibboleth authorisation function, without disturbing the rest of the functionalities 
of Shibboleth. 

4.1 Functions of PERMIS 

The PERMIS infrastructure comprises a privilege allocation (PA) component, a 
privilege verification (PV) component, a policy decision point (PDP) and a policy 
management GUI. The PERMIS PA component is responsible for allocating 
privileges to users in the shape of roles stored in X.509 attribute certificates (ACs). 
The PA component may be distributed and used by many managers to give roles to 
their subordinates. The role ACs are then stored in one or more LDAP directories for 
subsequent use by the PV component. After a user is authenticated, the PERMIS PV 
component can access these LDAP directories to retrieve the role ACs for the user 
(the pull mode of operation). Alternatively, the ACs can be given to the PV 
component by the caller for instant validation (the push mode of operation).  

The PERMIS infrastructure is driven by a PERMIS policy that comprises a Role 
Allocation Policy (RAP) and a Target Access Policy (TAP) (see later). This may be 
created using the policy management GUI. 

The role ACs are verified against the RAP by the PV component and all valid 
roles/attributes are passed to the PDP. The PDP then makes its access control 
decision for the user’s request based on the TAP and the valid attributes. The PDP 
returns a granted or denied response to the caller according to the policy in force at 
that time.  



In the integration of Shibboleth and PERMIS, authentication is carried out by the 
Shibboleth system. Shibboleth is responsible for providing PERMIS with the user 
name as it appears in the X.509 Attribute Certificates. Shibboleth may push the X.509 
ACs into PERMIS, otherwise PERMIS may pull them from LDAP directories.  

Note that Shibboleth has to provide the name of the user (as held in the X.509 
ACs). Whilst this may decrease the user’s privacy somewhat, it does not have to 
seriously undermine it, as the name used by the system does not have to be the user’s 
real name. To maintain user privacy, which is a core consideration in Shibboleth, 
pseudonyms can be adopted as holder names in X.509 ACs, just like pseudonyms are 
adopted as user names in Shibboleth. The X.509 pseudonym can be a distinguished 
name string, or it can be the hash of the user’s public key (although this requires the 
user to be PKI enabled, which many are not today). The main difference between the 
Shibboleth and X.509 pseudonyms is that the former ones are dynamic whilst the 
latter ones are static, which means that the target site can still build up a profile of the 
static pseudonymous user. If even this is too sensitive, then the PERMIS SAAM can 
adopt the simple Shibboleth trust model and transfer (unprotected) attributes attached 
to an anonymous handle, in which case X.509 ACs are not needed. In this scenario 
we would use the PERMIS PDP as a substitute for the original Shibboleth access 
control decision-making functionality, in order to benefit from its superior decision 
making functionality without sacrificing any of Shibboleth’s privacy protection 
features, but conversely, we do not take advantage of the distributed role management 
functionality that X.509 ACs provide. Ultimately, the quality of user privacy can be 
determined by the origin site/application, but it is a trade off with the (loss of) 
trustworthiness and flexibility in the binding between a user and his/her attributes. 

4.2 PERMIS RBAC policy 

The PERMIS RBAC policy is the basis for access control of resources. It is written in 
XML and is kept in an X.509 Attribute Certificate, digitally signed by the Source of 
Authority (SoA), who is typically the resource owner. This serves the dual purpose of 
separating the policy specification from system administration of the Apache web-
server, and makes the policy tamperproof. This policy AC is the root of trust for the 
access control decision making. A hierarchical RBAC model is adopted by PERMIS 
to specify the authorisation policy for the whole domain of resources controlled by 
one SoA. One PERMIS RBAC policy is able to control access to all resources in a 
domain by the same set of rules.  

In the PERMIS RBAC policy there are two main sub-policies: the RAP and the 
TAP. The RAP is responsible for defining a list of trusted AAs, the set of attributes 
they are trusted to assign, and the groups of users they can be assigned to4. When the 
PERMIS PV component is passed a set of attribute certificates, it can retrieve the 
valid and trusted attributes from them according to the RAP and discard the invalid 
and untrusted attributes5.  

                                                           
4 This is where the user name is used by PERMIS.  
5 Note that since the RAP is defined at the Target site, the validity and trustworthiness of the 

user attributes is controlled by the resource owner. 



The TAP is responsible for defining the set of targets that are protected by this 
policy, the associated actions that can be performed on them, the attributes that a user 
needs in order to be granted the actions, and the restraints/conditions that apply to 
granting access. After the PERMIS PDP gets the attributes of the user from the PV 
component, then it can make access decisions for the user based on the TAP.  

Beside the RAP and TAP, the PERMIS RBAC policy also includes the following 
sub-policy components: 
− The subject sub-policy specifies the subject domains, i.e. only users from these 

subject domains may be authorised to access resources covered by the policy; 
− The role hierarchy sub-policy specifies the different roles and their hierarchical 

relationships to each other; 
− The Source of Authority sub-policy specifies which SoAs are trusted to allocate 

roles, and permits the distributed management of role allocation to take place; 
these are, in effect, the multiple AAs at the Origin sites who are trusted by the Tar-
get;  

− The target sub-policy specifies the target domains covered by this policy; 
− The action sub-policy specifies the actions (or methods) supported by the targets, 

along with the parameters that should be passed along with each action, e.g. action 
GET with parameter Filename; in the Shibboleth-PERMIS integration scenario the 
actions should be the HTTP methods defined by RFC2616: GET, PUT, POST, 
DELETE, etc [8]. 
A full description of the PERMIS RBAC policy can be found in [6]. By adopting 

and enforcing the PERMIS RBAC policy, flexible fine grained access controls can be 
achieved.  

4.3 Structure of the PERMIS SAAM  

Based on the PERMIS infrastructure and the Shibboleth system architecture, the 
system structure of the PERMIS SAAM is shown in Fig. 3. All the components of 
SAAM are enclosed by dashed round-cornered rectangles and the rest of the 
components in the figure are Shibboleth. As in PERMIS, there are three sub systems 
in the PERMIS SAAM: the PERMIS PA sub system which is distributed to the 
various origin sites, and the PERMIS PV/PDP sub system and Policy Management 
sub system which are entirely located within the target site. The PV/PDP sub system 
is responsible for validating the ACs and making access control decisions, while the 
PA sub system at the origin site is responsible for assigning privileges to users.  The 
Policy Management sub system at the target site is responsible for defining the RBAC 
policy and digitally signing it and storing it to the policy LDAP repository (denoted 
as “Policy LDAP” in Fig.3). If PERMIS is working in pull mode, the PERMIS PV 
fetches the user attribute certificates directly. Note that this requires the PV at the 
target site to be able to access the LDAP directories at the AC storage sites directly. 
Multiple AC LDAP directories are supported by SAAM in pull mode. If PERMIS is 
working in push mode, then Shibboleth is responsible for fetching the user attributes 
or ACs from the origin site and passing them to the PERMIS PV at the target site.  

 



 
User

User Origin Site

                        

Resource Target Site 
SHIRE

HTTP request

WAYF

Handle 
Service 

Handle 
package

SHAR

Attribute 
Authority 

User handle

Attribute 
request

Attributes 
and ACs

Authentication 
System 

Attributes
and ACs

ShibAuth

Origin 
LDAP GetCreds 

SoA 

ACs 

Retrieving attributes and 
ACs (in push mode) 

Policy 
management 
sub system 

JNI connector

Decision 
PV/PDP sub system 

SoA 
Policy 
management 
GUI 

PERMIS 
RBAC 
policy 

Policy 
LDAP 

Retrieving ACs  
(pull mode) 

mod_permis

Attributes
and ACs

HTTP 
response 

AC LDAP

Privilege
Allocator

Attribute certificates

PERMIS
PA sub 
system SoA

AC
Storage Site

PERMIS 
PV 

PERMIS PA sub 
system 

PERMIS 
PDP 

Attribute 
certificate 
manager 

RAP 
TAP 

 

Fig. 3.   Structure of Shibboleth-PERMIS SAAM Integration   

The PERMIS PV/PDP sub system consists of four parts: an Apache module - 
mod_permis which is written in C++, the PERMIS PV and PDP which are written in 
Java, and a Java JNI (Java Native Interface) connector which is written in C. The 
PERMIS PV and PDP can be called by mod_permis via the JNI connector. 
Mod_permis interfaces with Apache and Shibboleth to collect all the information 
necessary for making a decision and passing this information to the PERMIS PV and 
PDP. The PERMIS PDP which is based on RBAC makes a decision and passes it 
back to mod_permis, which translates it into “OK” or “HTTP_UNAUTHORIZED” 
error codes. Apache will either send the requested resource or an error information 
page back to the user browser depending on the result. Note that since PERMIS 
returns a “definite” result when the PERMIS SAAM is active, Shibboleth 
authorisation is not invoked. To ensure that PERMIS is called before Shibboleth 
authorisation, mod_permis should appear before the Shibboleth Apache module 
(mod_shib) in the Apache 2.0 6  configuration file. (Since Apache 1.3 loads its 
modules in reverse order, mod_permis should appear after mod_shib in Apache 1.3.) 
Each location 7  in the Apache configuration file may use a different form of 
authorisation. The PERMIS SAAM is active only if the PermisAuthorisaton directive 
is present for the location (see below). If it is not present, mod_permis always returns 

                                                           
6  Because mod_shib is already set as FIRST in Apache 2.0, we have no way to give 

mod_permis a higher precedence other than the order in which it is loaded. 
7 As indicated by the Apache <location> directive. 



“DECLINED”, so that Shibboleth or any other configured authorisation module will 
be invoked in this case. 

In the implementation of the integration of Shibboleth and the PERMIS SAAM, 
several global configuration directives are needed in the Apache configuration file 
(see below). Two local directives are also used for each protected location to indicate 
that the PERMIS SAAM is being used for this target resource, thereby bypassing the 
authorisation function of Shibboleth. 

4.4 The PERMIS SAAM Apache Directives 

The PERMIS SAAM is configured using the following directives in the Apache 
http.conf file: 

PermisPolicyIdentifier – this holds the unique number for the PERMIS policy to 
be used 

PermisPolicyIssuer – this holds the LDAP distinguished name of the SoA who 
signed the policy 

PermisPolicyLocation – this contains the URL of the LDAP directory holding the 
policy 

PermisAuthorisation – this is inserted into every <Location> that is to be 
controlled using PERMIS authorisation. (Note, in the absence of the PermisPullMode 
directive the AuthType for this <Location> must be set to Shibboleth.)  

PermisPullMode (optional) – this is inserted into every <Location> that is to pull 
ACs from LDAP repositories pointed to by the PermisACLocation directives. When 
this directive is not present, the default mode of operation is the push mode 
(Shibboleth gets the Attribute Certificates from the Origin, then mod_permis pushes 
them to the PDP).  

PermisACLocation (optional) – this contains a URL of an LDAP directory from 
where user ACs may be pulled (this directive may be repeated as often as required) 

5 Interactions between Shibboleth and the PERMIS SAAM 

According to the different trust models adopted by the Shibboleth target and origin 
sites [9], the PERMIS SAAM can work in different modes with X.509 ACs - either 
push mode or pull mode. Furthermore, either plain attributes or X.509 ACs can be 
pushed to the PERMIS SAAM by Shibboleth. These are described in the following 
subsections. 

5.1 PERMIS SAAM in push mode with X.509 ACs 

If the origin site wishes to distribute attribute assignments to different managers, and 
perhaps implement dynamic delegation of authority, and the target site is willing to 
trust different attribute authorities at the origin site, then the origin site should store 
digitally signed attribute certificates in its LDAP repository (denoted as “origin 



LDAP” in Fig. 3). Alternatively, if either the target and/or the origin do not trust the 
origin site’s attribute repository to securely store unsigned attributes, then the origin 
should assign ACs to users and store these ACs in its LDAP repository. In these cases, 
SAAM should work in push mode and accept ACs from Shibboleth.  

In this mode of operation, one user attribute (the user’s distinguished name) and all 
user ACs (attributeCertificateAttribute;binary) should be configured for release to the 
target by the origin AA server. The user’s DN and the role ACs should be retrieved 
by Shibboleth and passed to the PERMIS PV/PDP for validation and making access 
control decisions for the user’s requests. For the PERMIS PV to validate that these 
are the correct ACs, the user’s DN should be available to match with the holder name 
in the ACs. The PV uses the RAP in the PERMIS policy to decide who is trusted to 
assign which attributes to whom. As discussed in [9], supplying ACs and user DNs in 
the integration of Shibboleth and PERMIS doesn’t necessarily compromise a user’s 
privacy since pseudonyms can be used as the DN and the AC holder name. On the 
other hand, some applications actually require the user’s DN to be present in order to 
perform correct access controls, and so passing the user’s DN in these cases is 
actually beneficial. 

The interactions between Shibboleth and the PERMIS SAAM are as follows. 
(1) When a user contacts a Shibboleth-protected resource site with the browser, 

requesting access to a Shibboleth-PERMIS protected URL, the user is redirected by 
the SHIRE to the WAYF site. 

(2) After the user selects his/her home (origin) site at the WAYF site, the browser 
is redirected to the origin site’s authentication server and the user is authenticated 
there. 

(3) After successful authentication, the browser is redirected back to the SHIRE 
along with a handle package. 

(4) The SHAR at the target site gets the handle and sends the handle to the AA of 
the origin site for attributes query. 

(5) The AA retrieves the user’s DN and the role ACs of the user from the origin 
LDAP directory, base-64 encodes the attribute certificates, and sends them back to 
the SHAR.  

(6) The SHAR puts the attributes in the Apache HTTP headers whose names can 
be defined and configured in the Shibboleth Attribute Acceptance Policy (AAP). This 
is the last step of the authentication phase. 

(7) In the authorisation phase in the HTTP request handling process, mod_permis 
is first invoked by the Apache server. 

(8) If the location being requested by the user is not being protected by PERMIS, 
then mod_permis returns DECLINED and the Shibboleth authorisation function 
ShibAuthz will subsequently be invoked, otherwise the user’s DN and role ACs are 
acquired by mod_permis from the HTTP headers. 

(9) Mod_permis calls the PERMIS PV and PDP to make an authorisation decision, 
which is based on the user’s DN, the role ACs, the target resource that the user is 
requiring, the action to the target resource (i.e. the HTTP method) and the current 
RBAC policy incorporating both the RAP and TAP. 

(10) After the PERMIS PDP makes the granted/denied decision, the decision is 
returned back to mod_permis; 



(11) Mod_permis returns the decision result to the Apache server, and the user can 
be granted or denied access to the target resource according to the decision result.   

From the above interactions between Shibboleth and the PERMIS SAAM we can 
see that in this mode the only difference between normal Shibboleth and this 
integrated Shibboleth is that ACs are retrieved and passed by Shibboleth instead of 
plain text attributes. Since ACs are stored in the LDAP as digitally signed binary 
attributes and normal Shibboleth cannot retrieve binary attributes8, Shibboleth needed 
to be slightly modified to handle them. On the origin side one Java class for retrieving 
attributes from LDAP - JNDIDirectoryDataConnector.class - was modified by us and 
another new Java class - Base64ValueHandler.class - was developed by the 
Shibboleth developers. The latter encodes the ACs into Base64 plain text (in Step 5 
above). Now the encoded ACs can be transferred as plain text attributes from the 
origin to the target site, where they are decoded into normal binary ACs before being 
passed to the PERMIS PV/PDP (in Step 9 above), for use by the RAP and TAP in 
decision making.  

If a user possesses multiple roles, then multiple ACs can be assigned to the user 
and stored in the LDAP directory at the origin site. Shibboleth will retrieve all the 
role ACs at the origin site, encode them and then join them with semicolons, before 
passing them to the target site as a multi-valued attribute (in Step 5 above). After 
mod_shib puts the combined text encoded AC into the HTTP header (in Step 6 
above), mod_permis will retrieve it and restore it into separate encoded ACs which 
can then be passed to the PERMIS PV/PDP for access control decision making (in 
Step 7 above). In this way multiple ACs can be handled and utilised in access control 
decision making in Shibboleth.  

5.2 PERMIS SAAM in push mode with plain attributes  

If the target site trusts the origin’s attribute repository and the origin as a single AA, 
then the origin will store plain attributes in its repository, and pass them in digitally 
signed SAML messages to the target. This is the standard Shibboleth mode of 
operation. In this mode, the interactions between Shibboleth and the PERMIS SAAM 
are nearly the same as in Section 5.1 except that it is the user’s attributes, not the 
user’s DN and role ACs, that are passed by Shibboleth and used by the PERMIS 
PV/PDP to make decisions. In this case SAAM works in push mode, by pushing the 
attributes which were retrieved by Shibboleth, to the PERMIS PV/PDP.  

The Shibboleth origin site can be configured to append a scope domain to each 
released attribute. Scope domains are used to distinguish between different attribute 
issuers at the origin site, for example some attributes could have a scope domain of 
“salford.ac.uk”, while others could have a scope domain of 
“computing.salford.ac.uk” (note that the same attribute cannot have multiple scope 
domains, which effectively precludes dynamic delegation of authority). When the 
PERMIS PV is being passed “scoped” attributes instead of digitally signed ACs, the 
scope domains take the place of the AC signers (i.e. the SoAs). In order to validate 

                                                           
8 This is true as of version 1.2 of Shibboleth. However the Shibboleth developers have said that 

binary attributes will be supported in a future release. 



“scoped” attributes, the PERMIS RAP should specify the scope domains as SoAs in 
place of AC issuer DNs. We have reserved a special URL “shib:<scope domain 
name>” for this. In the above example there would be two corresponding SoAs 
identified in the RAP by the special URLs: “shib:salford.ac.uk”, and 
“shib:computing.salford.ac.uk”9. If scope domains are not being used by an origin site, 
then SAAM inserts the name of the origin site as the scope domain for all the 
attributes. The scoped attributes can now be validated against the RAP by the 
PERMIS PV in the same way as X.509 AC issuers, except that cryptographic 
validation cannot be performed. Thus there is no proof who actually issued the 
attributes as “scoped” attributes don’t have digital signatures. 

The other difference from the scenario in Section 5.1 is that the user’s LDAP DN 
is not provided (since they have a pseudonym dynamically generated by the origin 
site). Therefore the PERMIS Subject Domain sub-policy should include the null DN 
(meaning any DN is allowed) and the RAP should refer to this subject domain when 
specifying whom the attributes can be assigned to. Otherwise the attributes of the 
pseudonymous users (users with a null DN) will not be valid and all access will be 
denied to them. 

5.3 PERMIS SAAM in pull mode 

If the target trusts different attribute authorities based at the origin site and elsewhere, 
and wishes to authorise users based on these, then the origin site may not always be 
able to push all the attributes to the target site. In this case the PERMIS SAAM 
should work in pull mode to fetch the ACs itself. An example might be: a graduate is 
issued with a degree certificate by a university, a doctor is issued with a “clinician” 
certificate by the General Medical Council, and an engineer is issued with a “certified 
MS engineer” by a Microsoft accredited agency. In this case various distributed 
LDAP repositories (denoted as “AC LDAP” in Fig. 3) may sit in various places other 
than the origin site, and should be accessible by the PERMIS PV. The PERMIS PV 
can operate in pull mode and fetch all the needed ACs from the LDAP repositories. In 
this working mode, only one attribute of the user - the user’s DN, should be 
configured and stored in the origin LDAP repository. The user’s DN denotes the 
holder identity of the ACs in the various LDAP repositories and this DN will be 
retrieved and passed by Shibboleth to the PERMIS PV, so that the PV can know 
which ACs to retrieve from the various LDAP repositories. Once the ACs have been 
retrieved by the PERMIS PV, the PV will use the RAP to determine which ACs are 
trusted, and the PDP will use the TAP to determine if the user has the necessary 
attributes to access the resource. 

The interactions between Shibboleth and the PERMIS SAAM are as follows. 
(1) A user contacts a Shibboleth-protected resource site with the browser, is 

redirected by the SHIRE to the WAYF site, is authenticated at the origin site; then the 
browser is redirected back to the target site along with a handle package. The SHAR 

                                                           
9 The PERMIS policy syntax has been extended to allow URLs as SoA identifiers instead of 

LDAP DNs. Thus ‘<SOA ID=”Salford” URL=”shib:salford.ac.uk”/>’ defines an SoA that is 
identified by the Shibboleth scope domain “salford.ac.uk” in the plain-text attributes. 



at the target site gets the handle and sends the handle to the AA of the origin site with 
an attributes query. (the same as Step 1 to Step 4 in Section 5.1) 

(2) The AA retrieves the user’s DN from the origin LDAP repository and sends 
this back to the SHAR.  

(3) The SHAR passes the user’s DN to the Apache HTTP header. 
(4) In the authorisation phase in the HTTP request handling process, mod_permis 

is first invoked by the Apache server, and the user’s DN is acquired by mod_permis 
through the HTTP header.  

(5) Mod_permis calls the PV and passes the user’s DN to the PV. The PV retrieves 
the user’s ACs from the various LDAP repositories according to the user’s DN, then 
validates them against the RAP. Finally the PDP makes an authorisation decision 
based on the user’s validated attributes, the target resource, the action being requested 
and the current RBAC policy. 

(6) After the PDP makes the decision, the decision is returned back to mod_permis. 
(7) Mod_permis returns the decision result to the Apache server, then the user can 

be granted or denied access to the target resource according to the decision result.    

6 PERMIS SAAM with Apache and without Shibboleth 

Since the PERMIS SAAM can work in pull mode and the PV is able to directly fetch 
ACs from LDAP repositories elsewhere, we can integrate the PERMIS SAAM with 
other Apache authentication systems without requiring Shibboleth to provide 
authentication or the user’s attributes. This will provide us with a PERMIS 
authorisation service for web based resources, provided the user’s DN can be passed 
from the authentication system to SAAM. The PV can then use the user’s DN to fetch 
the user’s ACs from the various LDAP repositories and make access control 
decisions based upon them. 

6.1 System structure  

In this section we describe how the PERMIS SAAM is configured to work with the 
Apache server where the Apache module mod_auth_ldap is used as the authentication 
module. The system structure is shown in Fig. 4. There is only one major difference 
between Fig. 4 and Fig. 3: in Fig. 3, the authentication service is performed by the 
Shibboleth system which is distributed between two computer systems (the origin and 
the target), while in Fig.4 the authentication service is performed by mod_auth_ldap 
which is an Apache module located in the same (target) computer system as the 
PERMIS SAAM. Note that the LDAP AC repository in Fig.4 doesn’t necessarily 
need to sit in the same computer system as the PERMIS SAAM - it may sit 
somewhere else as it does in Fig. 3.  



 Resource Web Site

HTTP request 
mod_auth_ldap

User 

User 
DN

mod_permis

PERMIS PA and Policy
management sub system 

JNI 
connector

PERMIS PV/PDP subsystem 

SOA

PERMIS 
RBAC 
policy 

AC LDAP Policy LDAP 
ACs

Returned 
response 

Authentication
LDAP

GetCreds

Decision

PERMIS 
PV

PERMIS 
PDP 

Retrieving ACs 
(pull mode)

RAP 
TAP 

Policy 
management 
GUI

Attribute 
certificate 
manager

 

Fig. 4.   Structure of Apache-PERMIS SAAM Integration 

6.2 Interactions between SAAM, the authentication module and the Apache 
server  

The interactions between SAAM, the authentication module (mod_auth_ldap) and the 
Apache server are as follows.  

(1) When a user contacts an Apache web server, requesting access to a URL which 
is protected by mod_auth_ldap and mod_permis, the user is prompted by 
mod_auth_ldap to enter their username and password in order to be authenticated. 

(2) Mod_auth_ldap authenticates the user by searching in the authentication LDAP 
server and locating the correct entry which matches the username and password, then 
retrieves and puts the user’s DN in the Apache HTTP header. 

(3) During the authorisation phase in the HTTP request handling process, 
mod_permis is invoked by the Apache server, and the user’s DN is acquired by 
mod_permis through the HTTP header. 

(4) Mod_permis calls the PV and passes the user’s DN to it, the PV retrieves the 
user’s ACs from the configured LDAP servers and validates them.  The PDP then 
makes an authorisation decision based on the valid attributes and this is returned back 
to mod_permis. 



(5) Mod_permis returns the decision result to the Apache server, and the user is 
granted or denied access to the target resource according to the decision result.   

In our implementation, the Apache module mod_auth_ldap has been slightly 
modified so as to output the user’s DN to the HTTP header during authentication10.  

7 Conclusions 

The PERMIS SAAM module has been successfully developed and integrated with 
Shibboleth to replace the authorisation function in Shibboleth without modifying the 
Shibboleth source code. The flexibility, functionality and granularity of Shibboleth’s 
authorisation decision making capabilities have been improved by adding PERMIS’s 
policy controlled hierarchical RBAC implementation. When additional RBAC 
functionality, such as dynamic delegation of authority and separation of duties are 
added to future PERMIS releases, these will be automatically inherited by Shibboleth. 
Although the PERMIS SAAM was originally targeted at Shibboleth and was 
integrated with Shibboleth and the Apache server, an unexpected benefit is that it can 
work perfectly well with other Apache authentication modules without requiring 
Shibboleth to be present. By deploying the SAAM module, flexible, distributed, fine 
grained and more functional access control can be achieved by Apache web sites as 
well.  

8 Acknowledgements 

The authors would like to thank UK JISC for funding this work under the SIPS 
project. 

References 

1. S. Cantor. Shibboleth Architecture, Protocols and Profiles, Working Draft 02. 22 September 
2004, see http://shibboleth.internet2.edu/ 

2. D. W. Chadwick, A. Otenko, E. Ball. Role-based access control with X.509 attribute 
certificates. IEEE Internet Computing, March-April 2003, pp.62-69. 

3.  ISO 9594-8/ITU-T Rec. X.509 (2001). The Directory: Public-key and attribute certificate 
frameworks 

4. D. W. Chadwick, A. Otenko, V. Welch. Using SAML to link the GLOBUS toolkit to the 
PERMIS authorisation infrastructure. In Proceedings of Eighth Annual IFIP TC-6 TC-11 
Conference on Communications and Multimedia Security, Windermere, UK, September 15-
18, 2004, pp.251-261. 

5. OASIS. Assertions and Protocol for the OASIS Security Assertion Markup Language (SAML) 
V1.1, 2 September 2003. 

                                                           
10 Note that if other authentication modules are to be used with PERMIS, they also need to be 

modified to publish the authenticated DN in the HTTP headers of the request. 



6. D.W.Chadwick, A. Otenko. RBAC Policies in XML for X.509 Based Privilege Management. 
In M. A. Ghonaimy, M. T. El-Hadidi, H.K. Aslan, editors, Security in the Information 
Society: Visions and Perspectives: IFIP TC11 17th Int. Conf. On Information Security 
(SEC2002), May 7-9, 2002, Cairo, Egypt. Kluwer Academic Publishers, pp.39-53. 

7.  The Apache Software Foundation. http://httpd.apache.org/ 
8.  http://www.w3.org/Protocols/rfc2616/rfc2616.html 
9.  D. W. Chadwick, A. Otenko, W. Xu. Adding Distributed Trust Management to Shibboleth. 

In Proceedings of 4th Annual PKI R&D Workshop: Multiple Paths to Trust, NIST, 
Gaithersburg, MD, April 19-21, 2005. 

10. R. Sandhu, D. Ferraiolo, R. Kuhn. The NIST Model for Role Based Access Control: 
Towards a Unified Standard. In Proceedings of 5th ACM Workshop on Role-Based Access 
Control, Berlin, Germany, July 2000, pp.47-63. 

11. M. Wahl, T. Howes, S. Kille. Lightweight Directory Access Protocol (v3), RFC 2251, Dec. 
1997. 

12. D. Ferraiolo, J. Barkley, and R. Kuhn. A role-based access control model and reference 
implementation within a corporate internet. ACM Transactions on Information and System 
Security, vol.2, no.1, February 1999, pp.34-64. 

13. S. P. Joon, R. Sandhu, and G. Ahn. Role-based access control on the web. ACM 
Transactions on Information and System Security, vol.4, no.1, February 2001, pp.37-71. 

14. J. S. Park, R. Sandhu. RBAC on the Web by smart certificates. In Proceedings of 4th ACM 
workshop on role-based access control (RBAC ’99, Fairfax, VA, Oct. 28-29, 1999). ACM, 
New York, NY. 

15. ITU-T Rec X.812 (1995) | ISO/IEC 10181-3:1996. Security Frameworks for open systems: 
Access control framework. 


