

A PKI-BASED SECURE AUDIT WEB SERVICE

Wensheng Xu, David Chadwick, Sassa Otenko

Computing Laboratory, University of Kent,
Canterbury, CT2 7NZ, England

{w.xu, d.w.chadwick, o.otenko}@kent.ac.uk

ABSTRACT
For many applications, access control and other business
related information of all user transactions should be kept
in secure log files for intrusion and misuse detection or
system audit purposes. Because the log files may be
stored on or moved to an untrusted machine and may
attract attackers because of the large amounts of
potentially sensitive information contained in them, we
would like to guarantee that in the event an attacker gains
access to this machine, we can limit his ability to corrupt
the log files and we are able to detect any compromises
afterwards. We also may want to ensure that he can gain
little or no information from the log files. In this paper we
propose a secure audit web service (SAWS) which can
provide a secure audit trail service for multiple clients.
The secure audit trail generated by SAWS can be stored
on any untrusted machine and it is impossible to be
modified or destroyed without detection, and its integrity
can be validated by any client. Optionally, the audit file
can be encrypted, making it impossible for unauthorised
parties to read its contents.

KEY WORDS
Secure audit trail, Public Key Cryptography, Web
Service, secure hash, trusted computing base

1. Introduction

With the widespread use of the Internet, more and more
resources and services are available on the web. To better
help resource web sites improve their system security and
reliability, a history log or audit trail is usually necessary
to record all the accesses to the system, so that these can
be later inspected either daily or periodically during
system audits. An audit trail is especially important and
necessary for access control services as it forms a
significant part of the front-line defence for detecting
system misuse or intrusion attempts. Unfortunately, since
a large amount of sensitive information e.g. those related
to access control decisions, may be contained in the audit
trail, and the audit trail may be stored on or moved to an
untrusted machine, this may attract attackers to try to read
or alter the log records, e.g. remove traces of their actions
from it. We would like to guarantee, in the event that an
attacker does gain access to this machine, that although

we are unable to stop him altering or removing the log
records or the whole audit trail, nevertheless we are able
to limit his ability to undetectably corrupt the log files and
are able to detect the compromise afterwards. Optionally
and in addition, we can ensure that he will gain little or no
information from the log files by encrypting them prior to
storage. This secure audit trail capability is crucial for
many applications in order to prevent audit trails from
being tampered with undetectably. Whilst there are
already some secure auditing schemes for applications
Schneier and Kelsey [1] rely on a central trusted machine,
whilst Chong et al [3] rely on a Java iButton and their
system is only for Digital Rights Management. For a
virtual organization or distributed application which spans
multiple servers, multiple application components will
produce log records in different digital formats that
contribute to the whole system security analysis, in which
case a centralised secure audit trail system which provides
general auditing services may be required. In this paper, a
PKI-based secure audit web service (SAWS) is described
which records audit information for distributed
applications in virtual organizations.

The primary functionality of a secure audit service is
to provide permanent secure storage for log records, so
that it can reliably detect when tampering has occurred.
Schneier and Kelsey have developed a cryptographic
mechanism for securing the contents of an audit log
against unauthorised reading, which provides tamper
detection [1]. The mechanism relies on symmetric
encryption, with a central trusted server holding the
decryption keys. Reading and verification of the log
records is accomplished with the help of the central
trusted server. But because of this, when the central
trusted machine is not available, then it’s impossible for
users to read and verify the audit trails – this could cause
an inconvenience for users, a central point of failure, a
central point of attack, and potentially a bottleneck to
performance.

In this paper, we modify Schneier’s scheme by using
public key cryptography to enable independent reading
and verification of the audit logs, without the need for the
central trusted machine. We also use the recent
developments in Trusted Computing Bases (TCBs) [2] to
store the private and secret keys of the audit service, so
that the external central trusted server is no longer needed
for this either. The remainder of this paper is structured as
follows: In section 2, the requirements for our secure

audit web service (SAWS) are described. In Section 3, the
architecture of SAWS is presented. Section 4 describes
the security mechanisms adopted in SAWS. Section 5 we
present a discussion and summary of this paper.

2. Security Requirements for the Secure
Audit Web Service

User access requests and activities should be collected
and sent to SAWS, so that administrators can at a later
point in time know who did what, including who was
given access to which resources, and who was denied
access, for example when wanting to track down an
attacker. Since several applications may share the same
SAWS, this leads to the following basic security
requirements:

- Append mode of access: Only append mode of
access should be allowed, so that users or applications
cannot rewind the audit file and delete or modify
information that has already been stored there

- Authorised writing: Only authorised parties
should be able to append log records to the audit trail.
Though unauthorised applications or attackers may gain
access to the audit trail and try to append fake log records
to the audit trail, or modify or remove the audit trail, this
should be detected by the tamper detection mechanism.

- Timestamps: Every record in the audit trail
should be timestamped by SAWS to provide a trusted
record of when the audit data was received. We note that
if SAWS is trusted to record the audit data without
tampering with it, then it should also be trusted to append
the correct time to the data. Therefore we do not propose
to use a secure time stamping service. If this is
insufficient for some applications, then because the
format of the recorded data in each log record is
application-specific and is determined by the client
applications themselves, they may contain another
timestamp provided by the client for cross checking
purposes. However the use of the latter is application
dependent.

- Secure communication: The communications
between a SAWS client and the SAWS server should
ensure tamper resistance, data integrity and authorised
connection.

- Secure storage on untrusted media: Since an audit
trail may be stored on untrusted machines, the SAWS
security mechanism should ensure persistent and resilient
storage of the audit trail, and ensure detection of
tampering of the audit trail – modification, deletion,
insertion, truncation, or replacement. If tampering is
detected, SAWS should be able to notify the security
auditor.

- Support multiple simultaneous clients. SAWS
should be easily and conveniently accessible via a web
service interface, and it should be able to serve multiple
client applications simultaneously.

- Performance efficiency: The performance of
SAWS should be as efficient as possible. Since our initial

target client is the PERMIS authorisation system, and this
can make 500 access control decisions per second on a PC
[7], we made 500 records per second the minimum
performance requirement for SAWS on the same
platform.

- Contents transparency: SAWS should be able to
record any digital content coming from any SAWS client.

- Confidentiality and authorised reading: Since the
audit trail may contain sensitive information, then the
secure audit mechanism should optionally be able to
ensure that only authorised applications or people have
the privilege to read the audit trail.

Based on the above requirements, we propose the
following architecture and security mechanisms for
SAWS.

3. Architecture of the Secure Audit Web
Service

There are three types of application in the SAWS system
– the SAWS server, the audit trail viewing tool (VT), and
the SAWS client. The SAWS server is issued and
configured with two public/private key pairs – an
encryption/decryption public/private key pair and a digital
signing/verifying private/public key pair. Optionally, the
SAWS clients and the VT may all be issued with their
own encryption/decryption public/private key pairs. The
encryption/decryption public/private key pairs are used
for confidential transmission of information between the
different components, whilst the signing/verifying
private/public key pair is used by the SAWS server to
digitally sign the log file so that any application can verify
the integrity and authenticity of the log file by using the
SAWS server’s public key certificate. The structure of
SAWS is shown in Figure 1 (The VT is not shown in this
figure).

The core component in the SAWS server is the Java
Secure Audit Trail Service (J-SATS). J-SATS is
responsible for receiving log messages from SAWS
clients, for securing them (as described in Section 4) and
then writing the secured audit records into one or more
permanent audit log files on untrusted machines.

Three different client interfaces are provided for
SAWS to facilitate different application scenarios:

- a Java programmable interface, the J-SATS API,
- a direct SSL-TLS socket communication interface

for TCP based clients and
- a SOAP server over SSL interface for web service

based clients.
When the client is remote from the SAWS server and

is accessing it via the Internet, to ensure secure
communications between SAWS clients and the SAWS
server over the Internet, we adopt SSL to ensure mutual
authentication, message integrity and message
confidentiality. We did initially intend to use WS-Security
[6], but the performance of this only allowed us to process
2 records per second which was an order of magnitude
worse than SOAP over SSL (which was still an order of
magnitude worse than our performance target). To meet

our performance target of 500 records per second, we had
to use the Java API.

4. Security Mechanisms of SAWS

4.1 Secure Storage of the Audit Trail

To ensure secure storage of the audit trail on an untrusted
machine, the following measures are adopted.

1) When starting a new audit record file, the SAWS
writer generates a new random secret key RN, which is
then stored securely by SAWS so that only it can recover
it after a crash. RN is stored in the TCB and is also
encrypted with the public encryption key of the SAWS
server and stored as the first record of the new audit file.
RN will be used in the calculation of the secure hash
which is appended to the end of each log record, in order
to detect modification of a record’s contents before the
audit file is finally digitally signed and closed i.e. in the
case when SAWS prematurely crashes.

2) The SAWS server places the file name and digital
signature of the previous audit file as the second record in
the new audit file. This chains the log files together and
stops an attacker from completely deleting one or more
audit files without detection. The digital signature stops
an alternative authentic file being substituted for the
correct one by renaming it.

3) Each record is given a sequence number which
prevents records from being inserted or deleted in the
middle of the audit trail. To detect truncation of the file
from the end after a crash, the current sequence number of

the log record is stored in the TCB. This allows detection
of a truncation attack.

4) SAWS adds the authenticated name/ID of each
client to each record they submit before writing it to the
audit trail. This is to stop one client masquerading as
another in the data that it submits. SAWS uses its own ID
for each system record that it writes.

5) SAWS keeps a plain accumulated hash of the
entire audit file as the log file is built up. This is stored in
the TCB (along with the current sequence number) in
order to detect a replacement attack after a crash (i.e. an
attacker uses an old version of the audit trail to replace the
latest version of the audit trail after his intrusion into the
storage system).

6) When the audit file is complete, the plain
accumulated hash is written to the end of the file and the
plain accumulated hash is digitally signed with the
signing private key of the SAWS server. The signature
and public key certificates of SAWS are also written to
the file. Now anyone can verify the completeness of the
file with the verifying public key of the SAWS server.

7) Optionally the audit file can be stored in several
different computers in different locations to defend
against truncation and replacement attacks. This will also
allow recovery in cases where one or more (but not all)
copies are tampered with. Of course, the more copies
there are at different locations, the more chances there are
of compromise. But since our purpose is to detect
tampering rather than to prevent it, and to ensure that at
least one genuine copy is preserved for audit purposes,
then as long as not all the copies are attacked our system
is secure.

8) If confidentiality is required, optionally SAWS

SSL/TLS

Internet

Web Service Server

Java Secure Audit
Trail Service

J - SATS
API

SAWS
Client

J-SATS = Java Secure Audit Trail Service

SAWS = Secure Audit trail Web Service

SAWS Server

Untrusted
Storage

Untrusted
Storage

SAWS
Client

running over
SSL/TLS

Internet

TCB

Secured
Audit

Secured
Audit
Records

SSL Control

SAWS
Web Service

Client
over SSL/TLS

Internet

Figure 1. Architecture of the Secure Audit Web Service

can generate a random symmetric encryption key which is
subsequently used to encrypt the audit records. The key is
encrypted using the SAWS encryption public key and the
viewing tool public key and both copies are stored in the
audit file. Optionally the key can also be encrypted with
the public keys of all the SAWS clients, so that they can
each independently verify and view the audit log.

9) After every 1 second in the idle state, the SAWS
server writes a heartbeat record to the audit file, so if a
system crash happens at any time we can know the time
of the crash to the nearest second.

4.2 Log Record Format

The format of a SAWS log record is shown in Figure 2.
All log records in the log file use the same format. The jth
log record LRj is defined as:

LRj = Snj ||UIDj || STj || Tj || Lj-1 || Lj ||Encryptj || Mj || Hj

(1) Snj is the sequence number (4 bytes).
(2) UIDj is the User ID of this record; it indicates the

identity of the client that provided this log record. Every
SAWS client is assigned a unique user ID after
authentication, and this mapping is held in the
SysClientID record (see later). The UIDj = 0x00 is
reserved, and indicates that the log record is written by
the SAWS server itself (1 byte).

(3) STj is the log record type (1 byte).
(4) Tj is the timestamp of the jth log record in format

of a long integer (8 bytes).
(5) Lj-1 is the length of the last log record LRj-1 (4

bytes).
(6) Lj is the length of the current log record LRj (4

bytes).
(7) Encryptj is the encryption indicator for the

encryption method used for this log message. It could be
SymmetricEncryption (0x01),
AsymmetricEncryptionForSAWS (0x02),
AsymmetricEncryptionForVT (0x03),
AsymmetricEncryptionForClient (0x04), or
NoEncryption (0x00) (1 byte).

(8) Mj is the jth log message received from the
SAWS client or from the SAWS server itself (indefinite
bytes).

(9) Hj is the secure hash value for this record (20
bytes).

(10) || represents the concatenation operation.

Generally there are the following types of log

records in the audit trail: ClientLogData,
SAWSRandomNumber, SymmetricEncryptionKey,
SAWSLastFile, SAWSAccHash, SignatureRecord,

SAWSCert, SysSAWSStartup, SysSAWSShutdown,
SysHeartbeat, SysUnauthorisedConnectionAttempt,
SysAuditorNotification, SysClientID. For log records
coming from SAWS clients, their log record type should
be ClientLogData. The other log record types are for
holding SAWS support data for the audit trail.

4.3 Initialisation, Validation and Recovery of the
Secure Audit Trail

When the SAWS server first starts up it generates two
asymmetric key pairs – the SAWS encryption/decryption
key pair and the signing/verifying key pair. Both the
private keys will be written to and protected by the TCB
if this is available. In addition, the encryption/decryption
key pair is exported in PKCS#12 format for backup by the
administrator. The private signing key is never exported,
but if a TCB is not available, then it is stored in (and
recovered from) an encrypted file, using an administrator
supplied seed password and an internal key generation
algorithm. If an external certificate authority is available,
SAWS will attempt to get both public keys certified using
either CMC-PKCS#10 [4] or CMP [5]; otherwise self-
signed certificates are created. SAWS also generates a
secret random number and encrypts it using the SAWS
encryption public key, and saves it to the
SAWSRandomNumber record, so in the future, on
recovery, SAWS will be able to retrieve it. The secret
random number will be used to calculate the secure hash
that is appended to each log record for authenticity
checking purposes. If a configuration parameter requires
it, SAWS will optionally generate a symmetric encryption
key and encrypt it with the audit trail viewing tool (VT)
encryption public key and the SAWS encryption public
key, and save it to the audit trail as two
SymmetricEncryptionKey records, so that both the VT
and SAWS are able to retrieve this symmetric key at a
later time. Optionally, the encryption public keys of
SAWS clients may be used as well to encrypt the
symmetric key. This symmetric key will be used to
encrypt/decrypt the client log data to be stored in the log
file if confidentiality of the audit trail is required. (Note
that clients can independently send encrypted records to
SAWS if they want record level confidentiality.) The
administrator is prompted for the name of the previous
log file, SAWS opens this, validates it by checking its
digital signature, then stores the file name, the plain
accumulated hash and signature of the previous log file in
the SAWSLastFile record.

After initialisation, the SAWS server can then
receive SAWS client log messages, calculate the secure
hashes and the accumulated hash, optionally encrypt the

 Tj Lj-1 Lj STj Hj UIDj Snj Mj Encryptj

Figure2. Format of a Log Record in the Secure Audit Trail

log records, and save them as ClientLogData records in
the log file.

Every time the SAWS server restarts, it needs to first
perform validation of the current log file. This entails the
following operations:

- Recompute the plain accumulated hash of the
whole log file and check if the signature in the log file is
present and correct. If it is, this validates the entire log file.

- SAWS then confirms that the last sequence
number of the log file is equal to that stored in the TCB.
This can prevent a replacement attack of the entire log file.

If the signature validates, then SAWS will start a
new log file as described above. If any error is found, or
the signature is absent, this means that SAWS either
terminated prematurely or the system crashed. In this case
SAWS needs to validate the incomplete file. SAWS
retrieves the secure random number from the log file,
checks the secure hash on each record and checks the
sequence numbers. SAWS displays an error message for
each record whose secure hash does not validate correctly,
and for each pair of records whose sequence numbers are
not sequential. SAWS also displays the details of the last
audit file that is recorded in the current log. The
administrator can determine whether to subsequently
validate this or not, depending upon the outcome of the
current process. SAWS recomputes the accumulated hash
of the log file, and compares this and the last sequence
number in the log file with those stored in the TCB – if
they are the same, SAWS can be sure that the log records
in the current log file are authentic and complete, in
which case, SAWS adds the certificate record to the audit
file, writes the plain accumulated hash to the file, digitally
signs it, writes the signature record at the end of the file
and closes it. It then starts a new log file as above.

The validation of a complete audit file by any
application is straightforward. It can open the audit file,
recompute the accumulated hash of the whole log file, and
check the signature using the certificate inside the log file.

5. Summary and Conclusions

In this paper we have presented a secure audit web service
(SAWS) that can provide secure audit trail services to
multiple distributed applications. SAWS is able to receive
and save client log messages in a secure audit trail file,
which can be stored on an untrusted machine. Any party
can subsequently verify its authenticity and optionally
only authorised parties can read it. Any type of tampering
with the secure audit file, such as modification, deletion,
insertion, truncation, replacement or unauthorised
appending, can be detected. In addition, all the audit trail
files are chained together in order to detect the loss of one
or more complete files. Whilst SAWS does not directly
prevent intrusion or misuse of web resources, nevertheless
it can aid the detection of intrusions or misuses by
providing tamper resistant evidence of them after the fact.
SAWS combined with a trusted computing base (TCB),
or other physical tamper-resistant hardware can form the
basis for highly trusted auditing capabilities. SAWS is

designed to be general purpose, and any application can
make use of its services for logging and audit purposes.
Compared with Schneier’s method [1], the basis of trust is
shifted from the central trusted machine in Schneier’s
method to SAWS’s own trusted store and optionally, an
external Certification Authority. This simplifies and
reduces the security requirements for the trust basis, thus
it can bring more convenience and flexibility to SAWS
applications and SAWS administrators.

6. Acknowledgements

The authors would like to thank both UK JISC for
partially funding this work under the DyCom project and
the EC for partially funding this work under the
TrustCoM project.

References
[1] B. Schneier, J. Kelsey. “Secure audit logs to support
computer forensics”. ACM Transactions on Information
and System Security, 2(2), 1999, 159-176.
[2] http://www.trustedcomputinggroup.org/
[3] C. N. Chong, Z. Peng, P. H. Hartel. “Secure audit
logging with tamper-resistant hardware”. Proceedings of
18th IFIP TC11 Int. Conf. on Information Security,
Security and Privacy in the Age of Uncertainty. D.
Gritzalis, S. De Capitani di Vimercati, P. Samarati and S.
K. Katsikas (eds.) , published by Kluwer Academic
Publishers, Boston, Massachusetts, held in Athens,
Greece, May, 2003, pp 73-84.
[4] M. Myers, X. Liu, J. Schaad, J. Weinstein. “Certificate
Management Messages over CMS”. RFC 2797, April
2000.
[5] C. Adams, S. Farrell. “Internet X.509 Public Key
Infrastructure Certificate Management Protocols”, RFC
2510, March 1999.
[6] OASIS. “Web Services Security: SOAP Message
Security 1.0 (WS-Security 2004)”. OASIS Standard
200401, March 2004.
[7] D. Chadwick, O. Otenko. “A Comparison of the
Akenti and PERMIS Authorization Infrastructures”, in
Ensuring Security in IT Infrastructures, proceedings of the
ITI First International Conference on Information and
Communications Technology (ICICT 2003) Cairo
University, Editor Mahmoud T El-Hadidi, pp5-26, 2003

