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Abstract

We study decentralised low delay degree-constrained
overlay multicast tree construction for single source
real-time applications. This optimisation problem is
NP-hard even if computed centrally. We identify two
problems in traditional distributed solutions, namely
the greedy problem and delay-cost trade-off. By of-
fering solutions to these problems, we propose a new
self-organising distributed tree building protocol called
MeshTree. The main idea is to embed the delivery tree in
a degree-bounded mesh containing many low cost links.
Our simulation results show that MeshTree is compara-
ble to the centralised Compact Tree algorithm, and al-
ways outperforms existing distributed solutions in delay
optimisation. In addition, it generally yields trees with
lower cost and traffic redundancy.

1. Introduction

This paper considers the problem of constructing
“good” distribution trees for real-time applications such
as audio/video conferencing and live webcasting from a
data source. For these applications, low-latency deliv-
ery is of paramount importance. To accommodate large
member populations, a cost-effective delivery mecha-
nism such as multicasting is necessary. Since IP multi-
cast has not been widely available, we consider the prob-
lem in the context of application layer multicast (ALM).

ALM implements multicast functions such as mem-
bership management and packet replication directly at
the end systems. The end systems are organised into
a logical overlay network, and multicast data using the
overlay edges which are unicast tunnels. Hence ALM
bypasses the need for network layer multicast support.

Creating an efficient overlay multicast tree is a chal-
lenging task. First, routing on top of the overlay results
in redundant data traffic and prolonged end-to-end de-
lay [8]. Secondly, end systems lack knowledge of the
underlying topology, which is the key to building effi-

cient overlays. As end systems often have limited pro-
cessing power and available bandwidth, a degree con-
straint must be enforced in the delivery structure. In
addition, the overlay structure is highly dynamic as it
is formed by end systems that are prone to failures and
may join/leave the session at will.

The above challenges and the requirement of low de-
lay delivery in the real-time applications considered sug-
gest that a solution must exhibit the following features.

• Scalability. This requires a decentralised scheme
which imposes little protocol overhead (in terms of
messages used to infer the node-to-node distances
and to exchange the state information between the
nodes).

• Optimised Structure. The overlay tree must be
degree-bounded while providing low latency from
source to receivers. This however, is an NP-hard
optimisation problem [19].

• Adaptability. The solution must be able to re-
act quickly to changes in the overlay membership
(join/leave/failure) and network conditions.

We propose MeshTree, which fulfils the above prop-
erties in the following manner. First, MeshTree con-
structs overlay trees in a self-organising and fully dis-
tributed manner. The process uses limited network mea-
surements and limited coordination between the nodes,
hence has low overhead. MeshTree follows a mesh-
based approach where the degree-bounded delivery tree
is derived from a mesh. The mesh structure is inspired
by the greedy problem and delay-cost trade-off (to be
explained shortly) observed in distributed delay optimi-
sation. We believe the structure offers a solution to the
problems, and hence has low latency property. A mesh
is also adaptable and provides good robustness.

We show by simulation experiments, MeshTree is
comparable to the centralised Compact Tree algorithm
[19]. In addition, it always performs better than a dis-
tributed scheme proposed by Banerjee et al. [5] —
which we have previously shown [20] to outperform



s s

To other 

To other 
children of y

To other 
children of s

To other 
children of y

(a) Sample Configuration (b) A Better Configuration

z z

yy

x x

children of s

Figure 1. The greedy problem

switch-trees [11], HostCast [13], TBCP [14], HMTP
[25] and AOM [23] in delay optimisation. MeshTree
also offers quick failure recovery and is very responsive
to changes in group membership.

Problems in Distributed Delay Minimisation: Intu-
itively, a good solution to the delay optimisation prob-
lem can be achieved with a delay-centric approach
where nodes are placed as close as possible to the root.
However, in a distributed environment where the degree-
bounded nodes need to make decisions based on limited
coordination using little knowledge about the topology,
this approach can result in a greedy problem.

We explain this problem by using two existing de-
centralised protocols, i.e. switch-trees and HostCast. In
these protocols, every node (except the root) maintains
the delay from the root via the overlay tree to itself. Pe-
riodically, a node will try to improve its on-tree posi-
tion by finding a better parent, i.e. a non-descendant
node that provides a lower delay to the root. However,
when a node has reached its degree bound, it will re-
ject any new request from potential children. This can
force nodes that are ideally placed near to the root to be
placed far from the root. For example, Fig. 1(a) shows
nodex which is topologically close to the root,s, is po-
sitioned underz that is far from the root. Asy (as well
as other children ofs) has found the best possible parent
(the root), it will greedily stick tos. This may prevent a
better configuration (e.g. see Fig. 1(b)) from happening.

The configuration in Fig. 1(b) suggests that the
greedy problem can be avoided if the end systems are
connected based on their relative position in the under-
lying topology, i.e. if nodes close by are connected to-
gether. As the aim is to construct a tree, we can view this
as the minimum spanning tree problem with the delay
between two nodes as the cost function. First, creating a
degree-bounded minimum spanning tree is an NP-hard
problem [12]. In addition, a low cost tree often results
in high end-to-end delay [20]. Our proposed mesh struc-
ture addresses the above two problems.

In the next section, we position MeshTree with sev-
eral related works. Section 3 describes MeshTree along
with some evaluation results. Section 4 concludes the
paper.

2. Related Work

In general, ALM protocols can be classified as ei-
ther tree-based or mesh-based [9]. Several distributed
tree-based protocols also attempt to create optimised de-
livery trees. Most notably, HMTP constructs low cost
trees; HostCast, on the other hand, creates low delay
trees; AOM attempts to achieve a balance between cost
and delay; TBCP and switch-trees define generic tech-
niques which can be adapted to different metrics, e.g.
cost and delay. Our previous study has shown that the
Banerjee at al. scheme that we use to compare with
MeshTree, has superior delay performance to the above
protocols. Yoid [10], another tree-based protocol, in-
cludes additional links to improve the tree robustness.
However, these additional links are added without con-
sidering the degree constraint — hence, may not be use-
ful in degree-bounded tree restoration. In addition, Yoid
does not focus on overlay optimisation. NICE [4] and
ZIGZAG [22] use a hierarchical cluster-based approach
to construct overlay trees for large-scale applications.
However, the resultant overlays are not degree-bounded
based on a individual node’s capacity constraint.

Several projects also consider the mesh-based ap-
proach for overlay construction. Narada [8] and Gos-
samer [7] run the path-vector protocol over a mesh over-
lay to derive a source-specific tree for each node, which
is more suitable for many-to-many applications. Scribe
[6] and CAN-multicast [16] build trees on top of the
mesh overlay built with the distributed-hash table (DHT)
techniques (i.e. Pastry [18] and CAN [15] respectively).
However the DHT-based overlays provide scalable and
robust data distribution at the expense of added difficul-
ties in achieving a tree-wide optimisation [17]. The Hy-
perCast project [3] studies the use of overlays based on
geometric properties of logical graphs, e.g. hypercube
and Delaunay triangles. The performance of these over-
lays depends highly on the mapping between the under-
lying network metrics and the geometric space.

3. MeshTree

MeshTree addresses the greedy problem and the
delay-cost trade-off based on two simple ideas:

1. To solve the greedy problem, the overlay structure
must contain a low cost tree which connects nodes
that are topologically close together. The tree is
called the backbone tree, and is rooted at the source
node,s.

2. To improve the delay property of the backbone tree,
shortcut links are added on top of the tree.



Essentially, this results in a mesh overlay. To fulfil the
degree constraints, the mesh is degree-bounded based
on each individual node’s capacity limitation. The low
delay tree can then be obtained from the mesh as the
shortest path tree rooted ats.

Indeed, one could use more flexible overlay recon-
figuration operations to improve upon switch-trees and
HostCast performance. Banerjee et al. [5] provide such
a scheme. Simulation results (Section 3.2) show that
our approach achieves better performance than their so-
lution.

The next subsection describes the high-level work-
ing of the MeshTree protocol. We refer readers to [21]
for a detailed treatment of the operations. Section 3.2
presents our simulation results.

3.1. Distributed MeshTree Overlay Construction

The main objective of the MeshTree protocol is to
obtain the desired overlay structure: a degree-bounded
mesh that contains a low cost backbone tree with short-
cut links. The data delivery tree can then be obtained
from the mesh as a reverse tree rooted ats using a path-
vector routing protocol [8].

To achieve the overlay structure in a scalable man-
ner, MeshTree uses the incremental improvement strat-
egy typically used by distributed tree building proto-
cols. First, the overlay grows when newcomers join
in the session. Newcomers are randomly attached to
the overlay. Thus, the initial overlay is unoptimised.
Then, every MeshTree node (except the source,s) peri-
odically tries to improve its own local overlay structure.
Each improvement process involves adding/deleting
links to/from the overlay using only the topology knowl-
edge at the nodes involved.

The following discussion sketches the working of the
improvement process. In the overlay, every node main-
tains a set of overlay neighbours (within their capacity
constraint). A unicast connection (i.e. overlay link) is
formed between each pair of neighbours. Basically, the
overlay links can be classified into three groups:

• Backbone tree links. These are links included in
the backbone tree.

• Delivery tree links. These are links included in the
delivery tree. Note that a backbone link can also be
a delivery tree link, and vice versa.

• Pure mesh links. These are links that are neither in
the backbone nor the delivery tree.

In the improvement process, a node periodically tries
to locate and add a new overlay link that provides sub-
stantial performance gain. If adding the link will result

in a degree violation to the nodes involved (i.e. the two
end points of the link), an existing link may be dropped.
To achieve the above, a node sayx needs to: (i) identify
a potential neighbour; and (ii) establishing the overlay
link to the potential neighbour.

Identify a potential neighbour First,x forms a candi-
dates list. The candidates are selected from nodes within
a small overlay distance ofx, and other non-neighbour
members acquired with a gossip-style node discovery
(see [21]). Nodex then performs distance measurements
to the candidates. From the measurements,x will pick
the node that gives the most reduction in the backbone
tree cost. If no such node exists,x will pick the node
that most improves the delivery tree delay. Otherwise, a
node is randomly picked from the list. Sayy is picked
as the potential neighbour.

Establish the overlay link Nodex needs to initiate a
peering request toy. An overlay link will be created
if x andy can reach a common consensus about their
neighbouring relationship, i.e. whether the new link is a
backbone tree and/or delivery tree or a pure mesh link.

The main consideration aty is its capacity constraint.
It will acceptx if it still has spare capacity. Otherwise, it
will determine if an existing neighbour can be dropped
in favour ofx, using a set of local rules. The rules make
sure that the dropped neighbour will not: (i) partition
the delivery tree; (ii) increase the backbone tree cost;
and (iii) increase the delivery tree delay.

3.2. Performance Evaluation

We conduct simulation experiments on a set of
Transit-Stub topologies generated using the GT-ITM
topology generator [2] as well as the power-law topolo-
gies generated by the Inet generator [1]. We report rep-
resentative results obtained from a 10100 nodes transit-
stub network. (Similar performance trends were ob-
served in the power-law topologies.)

We first compare the quality of the delivery trees built
by MeshTree against the following two schemes.

• Compact Tree Algorithm (CPT)[19]: CPT is a cen-
tralised greedy heuristic to create minimum delay
degree-bounded trees.

• Banerjee et al.’s scheme[5]: This is a distributed
iterative overlay tree improvement scheme. It has
been shown to outperform several other distributed
protocols: switch-trees, HostCast, HMTP, AOM
and TBCP in the delay property [20]. The scheme
defines a set of local transformations such as par-
ent switching and swapping to reconfigure nodes



within two levels of each other. Nodes also per-
form random swapping with low probability so as
to avoid local minima.

The quality of the overlay tree is judged by the fol-
lowing metrics: (i)RMP and RAP; (ii) tree cost ratio
(TCR); and (iii) link stress. RMP and RAP are two vari-
ants of relative delay penalty [8]. RMP (RAP) is the
ratio between the maximum (average) overlay delay and
the maximum (average) delay using unicast froms to
all other nodes. Hence, RMP represents our optimisa-
tion objective, while RAP indicates the average delay
observed by the receivers; Tree cost [25] is defined as
the sum of delays on the tree’s links. It provides a sim-
plified view of the total network resource consumption
of a tree. TCR is the ratio of the cost between an overlay
tree and the corresponding network layer multicast tree;
Finally, link stress is defined as the number of copies of
an identical packet sent over a single link.

In the experiments, all members randomly join in the
session within the first 50s. The first member automat-
ically becomes the data source. The out-degrees of the
overlay nodes are uniformly distributed between 2 and
10. Both MeshTree and Banerjee et al.’s scheme use an
improvement period of 30s, and the results are collected
after the trees converge.

In terms of delay performance (RMP and RAP as in
Fig. 2(a) and (b)), we can see that MeshTree always
outperforms Banerjee et al.’s scheme. For group sizes
from 32 to 256, it produces trees with lower RMP and
similar RAP compared with CPT. For larger group sizes
where we expect a centralised approach to be unsuitable,
MeshTree still shows reasonably good delay properties.

Fig. 2(c), (d) and (e) depict the worst-case and aver-
age link stress, and the TCR performance. We can now
observe that CPT produces low delay trees at the ex-
pense of high traffic redundancy and network resource
usage. The fact that its worst-case stress grows rapidly
also suggests that it is not suitable for larger group sizes.
MeshTree shows a much lower maximum stress perfor-
mance, which is close to that of the Banerjee et al.’s
scheme. In addition, it always shows the lowest aver-
age link stress and tree cost properties.

We also conducted experiments where the source
uses a direct unicast connection to each of the receivers.
Obviously, this has the best delay performance. How-
ever, it overloads the source node, and results in a worst-
case stress that is as high as the group size. It also in-
curs much higher resource usage, for example, its TCR
is about 16.5 for a group size of 1024 members — an
order higher than the ALM solutions.

In Fig. 2(f), we examine the convergence property
of MeshTree. The figure shows the evolution of the
TCR of the backbone tree, the RAP and RMP of the

delivery tree, for a 1024-node overlay. We can see that
these values increase quickly as nodes are joining the
overlay. This is because the initial overlay is randomly
connected. In the experiment, each receiver has a im-
provement period of 30s. We can see that the RAP
and RMP values rapidly decrease to a value less than
2 within the first 200s, i.e. less than 10 improvement
rounds per node. This indicates that MeshTree can con-
verge very quickly. The result also shows that MeshTree
can achieve low backbone tree cost ratio, which suggests
that the overlay contains a lot of short links between the
members. This helps to reduce the delivery tree cost and
link stress, as observed previously.

The high delay and cost at the early stage is obviously
undesirable. While not shown here, we have found that
this can be greatly improved by using a larger number
of joining targets. For example, we can achieve a 50%
improvement by using two initial join targets per node.

We also investigate several other properties of
MeshTree (The results are omitted due to space consid-
eration). In our experiments with overlays up to 1024
nodes, we found that the protocol overhead observed per
overlay node is reasonably low, i.e. less than 1kbps. We
also study the tree restoration speed when nodes depart
from the overlay. The results show that MeshTree can
quickly reconstruct the delivery tree following failure
faster than the schemes studied in [24].

4. Concluding Remarks

This paper presents MeshTree, a distributed delay-
optimised degree-bounded overlay multicast tree con-
struction protocol. Using simulation experiments, we
show that the trees built with MeshTree have delay prop-
erties comparable with (and sometimes better than) a
centralised algorithm, and always have lower delay than
a decentralised scheme. Both alternative schemes com-
pared have previously been shown to perform well in
their class. In addition, trees constructed with MeshTree
consume fewer network resources. MeshTree also ex-
hibits some properties that are important as a distributed
solution, i.e. low protocol overhead, fast convergence
and fast failure recovery speed.
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