

Interactive Visualisation and Testing of Jini Services

Bruce Quig
Monash University

bruce.quig@infotech.monash.edu.au

Michael Kölling
University of Kent
mik@kent.ac.uk

John Rosenberg
Deakin University

johnr@deakin.edu.au

Phillip Steele
Monash University

phillip.steele@infotech.monash.edu.au

Abstract

Dynamic service-oriented architectures aim to provide
more flexible and robust systems that are able to handle
change over time. Their dynamic nature however,
provides extra challenges when understanding,
developing, testing and debugging them.

This paper identifies and discusses a number of issues
and difficulties that are faced in their development. It
discusses ways in which the building of such systems can
be supported by development tools, focusing particularly
on interactive testing and debugging mechanisms.

A prototype tool for monitoring and interactively testing
Jini services that has been developed to address, and
further investigate these issues, is then described.

1. Introduction

Distributed applications have numerous potential

advantages, such as increased reliability, performance and
maintainability. Building such systems however, is an
inherently difficult task. It requires developers to deal
with the unique characteristics of distributed systems such
as increased latency, bandwidth restrictions and
fluctuations, security implications and requirements, and
the increased risk of partial and complete failure of other
network nodes.

Networked systems are becoming more widespread,
divergent in bandwidth, mobile, and are being populated
by a widening variety of computing devices. There is a
growing recognition of the benefits of more flexible and
dynamic systems.

These systems need to:
• handle the arrival and departure of resources to the

network,
• allow for the discovery of required resources,
• allow resources to describe their capabilities,
• handle partial failure,
• allow for system evolution.
Dynamic service-oriented architectures such as Jini,

Salutation, UPnP and Web Services/WS-Discovery aim to

provide more flexible and robust systems than more
traditional distributed system architectures. In these
systems change and evolution are considered the norm
rather than the exception. Their dynamic nature however
provides extra challenges when understanding, testing and
debugging them.

In the following sections these issues are discussed at a
conceptual level and also more specifically, using Jini as
an example architecture. We discuss ways in which
development tools can support the development of
service-oriented systems, focusing particularly on
visualization techniques and interactive testing and
debugging mechanisms.

2. Issues

Many of the challenges faced in building dynamic
distributed systems result from their general
characteristics. In the following sections, we summarise
the main problems.

2.1. Inherent complexity

The promise of dynamic service-discovery based

systems is based upon their ability to handle what are
recognised as a range of difficult issues in developing
long running, robust, flexible and evolvable systems.
Whilst the use of middleware frameworks, abstraction and
re-usable libraries assist, the development process and end
goals are undeniably complex.

2.2. State and availability assumptions

Traditional distributed systems are usually based upon

the assumption that resources are known, stable and
available. If system components have known identities
and capabilities it is much easier to check their state and
availability during testing and debugging. The
transparency of the service discovery methods is an
advantage in terms of maintaining a loosely coupled
system, but can make debugging considerably more
difficult.

2.3. Dynamic system state changes

In addition, the dynamic nature of services and their
interactions means that over time there is no guarantee
that the service used previously will either be available or
be the most suitable service from the client’s perspective.

2.4. Difficulty creating services in isolation

While services may be part of a larger overall

application they are potentially difficult to test and debug
in isolation.

A number of unit test frameworks are available, such
as JUnit [1] for Java-based applications, to support
lightweight development processes and regression testing
for traditional applications.

To test services, it is currently necessary to develop
client code to use the remote services, and to test its
functionality. It is therefore necessary to either write extra
client code in the form of unit tests, or simultaneously
develop clients of these services to test their correctness.
This needs to be repeated at every iterative step in
development, discouraging developers from adopting a
fine-grained iterative approach to development.

Additionally if these objects do not perform correctly,
it is currently difficult to debug them without using some
form of driver program that can then be run using a
debugger. It would be beneficial if services could be
tested and debugged at a service level via direct
interaction mechanisms. The BlueJ programming
environment [2], is an example (at a non-distributed level)
of a tool that supports such interaction.

2.5. Understanding services

In an environment where service oriented architectures

are deployed there is likely to be a need (and intent) to re-
use existing services. Developers will use services written
by others. It is therefore important to be able to browse
repositories of existing objects and retrieve data about
them. Even more useful would be the ability to directly
interact with services. By this we mean the ability to
interactively call the methods of these services and
receive the results of these invocations.

2.6. Iterative development methodologies

There is a growing interest in highly iterative

development methodologies such as extreme
programming (XP), Crystal and Scrum. These are also
referred to as lightweight or agile development processes.
At the heart of these processes is the notion of developing
complex systems by a finely grained iteration of
developing prototypes that are constantly evolved, tested,

refactored, and enhanced. In such systems the roles of
unit testing and debugging are extremely important.

These tests are expected to be run often and need to be
relatively quick to run. This is made somewhat more
difficult when the configuration and management of a
dynamic distributed infrastructure can be quite complex
and resource intensive. Tests that are difficult or long
running may discourage the use of a highly iterative
approach.

Associated with these agile processes are endeavours
looking at how they affect software testing. A prominent
participant is the Context-Driven School [3], which place
great importance on the context of a test as to determining
its effectiveness. An exemplar of this is exploratory
testing [4]. Exploratory testing is similar to ad hoc testing,
where the tester chooses which tests to run and explores
the behaviour of the software. Proponents of this form of
testing assert that there is greater effectiveness in
designing and running a test that is based upon the results
of previous tests. In this way unexpected behaviour can be
explored and understood at the time that is encountered.
This type of testing is seen as a compliment to automated
testing procedures, rather than as an alternative.

Adopting this type of testing methodology when
testing a dynamic distributed system allows testers to be
able to respond to changes in service availability, and
other network conditions. To do this it would be
necessary to firstly provide some mechanism for a tester
to be able to monitor changes in the distributed network,
and secondly to be then invoke tests that are designed in
response to those changes.

2.7. Interactions between client and service are
not visible

The dynamic distributed system architectures that have

been mentioned focus on the provision and management
of the service discovery process. They do not necessarily
play any role beyond the hooking up of service consumers
and providers. In Jini for instance, a chosen proxy is
downloaded to the client in response to a search for a
service. This proxy can then use any supported protocol to
provide the service it represents.

This allows great flexibility in the types of services
that can be accommodated in a Jini system. However this
makes it harder to monitor and debug individual services
and applications.

3. Tool requirements

In the previous section we described a number of the

difficulties that are commonly encountered when
developing services that will operate in a dynamic
manner. In this section we will expand upon the

requirements of a tool to visualise and interact with Jini-
based services.

In systems that are designed to respond to a dynamic
network environment, it becomes important that such
changes can be recognised and understood by developers.
The use of a browsing tool that allows developers (and
potentially application administrators after deployment) to
investigate and interact with the current state of a
dynamic service-based system provides would seem to
provide a promising means of dealing with the issues
previously identified. The use of two related techniques,
visualisation and direct manipulation, appear to be well
suited to the problem domain.

3.1. Visualisation

Software visualisation is a well-recognised technique

to aid in the comprehension of software systems.
Hyrskykari [5] notes that empirical assessment of
program visualisation shows that it can be effective and
that a key determinant is identifying the most appropriate
types of graphical representations for a particular system.

3.1.1. Multiple, appropriate views

There is also evidence that there is likely to be more
than one appropriate way for available data to be
displayed. The provision of multiple views of the same
system has also been found to improve program
comprehension [6].

One of the commonalities between the different
service architectures is that they all provide a level of
implementation transparency, hiding details of the
network and other environmental details. A client asks for
services and receives responses about services that match
certain criteria. A corresponding service level view would
graphically show available services.

Whereas a service level view of an environment might
show services and probably hide more implementation
level details, there is also a need at some level to show the
concrete implementation level specifics of services and
other entities such as lookup services, devices and servers.

With the increased adoption of highly iterative
development processes this is likely to be of even greater
importance, as developers are more often changing the
focus of their activities through the various stages
development, testing, debugging and refactoring. The
appropriate visual abstractions of the system, and also
their granularity, could perceivably change during
different tasks.

3.1.2. Extensible architecture for additional views

As an emerging field, where services may represent a
wide variety of different services and devices it is also not
clear what the most appropriate abstractions will be for all
types of applications. These architectures may be used to
implement high volume, server-based computations or to

represent lightweight devices and services in a mobile, or
pervasive computing infrastructure. There is therefore a
requirement that a browsing tool should be extensible so
that additional views can be added that may more
appropriately support certain types of systems.

3.1.3. Dynamic updating of views

Additionally, the dynamic nature of the systems under
discussion mandate that the tool should dynamically
updated the representation of the system as the state of the
system changes.

3.1.4. Handling potentially large data sets

A common problem for any graphical representations
of data is that of handling potentially large amounts of
data. Any system that attempts to visualise a dynamic
network of services and their attributes will need to
potentially deal with large numbers of objects.

3.2. Interaction

Whilst static system visualisations may be beneficial,

the ability to use direct manipulation techniques upon the
graphical entities representing the system provides a
number of advantages [7]. Direct interaction of the
graphical entities provides a means to inspect their state
and behaviour.

An example of this is the BlueJ programming
environment [2]. BlueJ provides a number of means for
users to interact with Java programs. It provides a
graphical UML-style representation of Java classes
showing classes and their relationships. Users directly
interact with the graphical representations of the class to
open editors, instantiate instances and inspect their state
further. It allows users to experiment with code (compile,
run, test) at a very fine-grained level without the usually
associated overheads of writing driver programs or test
classes.

Whilst it should be noted that BlueJ has a specific
focus of providing visualisations and interactions aimed at
novice programmers, it has proven to be successful at
improving program comprehension, and has encouraged
users to prototype, experiment and test their code early
and often [8].

Interactively prototyping and testing services in a Jini
network, in a manner similar to the way that BlueJ allows
interaction at an object level, would provide a way for
developers to informally learn about existing services, and
enable them to test in an exploratory and context-driven
manner.

4. Prototype tool
In this section we describe a prototype interactive

browsing tool for Jini systems, Juniper, which was built
to fulfil the requirements identified.

4.1. Multiple, appropriate views

The main window of the Juniper browser is divided

into 4 main panes. The top left hand corner provides an
exploration pane, the top right shows the main
visualisation pane, the bottom left shows a filter pane
pane and the bottom right hand area provides a work
pane. Figure 1 shows Juniper’s main window and the
main four areas. The principle behind the browser is to
provide a mechanism to display information about the key
abstractions within a Jini system. The main abstractions
that we have identified are those of services, lookup
services and the local Jini system as a whole entity. There
are also secondary abstractions that represent the internal
state of these entities such as groups, attribute entries,
leases and interfaces. The third element is the connections
or relationships between these entities.

The exploration pane provides a tree-based mechanism
to traverse through available elements for a particular
view of the system. It is similar in concept to file system
browsers found on most graphical operating systems.
There are two main views of the system that represented
by tabbed panes. These represent a logical view (service
view) and a physical implementation view (lookup service
view). This separation of views is not new, it is also used
by the IncaX Service Browser [9]. Selecting entities
within these views will load the graphical views of this
entity into the visualisation pane. Each entity can possess
more than one graphical view, which appear as tabbed
panes within the visualisation pane.

Figure 1 shows the lookup service view with the root
tree node selected which represents the local Jini network
containing available Jini entities within multicast range.
The rectangular, orange entities represent available
lookup services, the round-edged, green entities represent
services, and the connections between them represent
registrations of the services with those lookup services.

Figure 1 Juniper main screen

The service view (Figure 2) provides a logical view

representing the services available in the network in a
view that is conceptually consistent with the view of
available Jini services as seen from a client’s perspective.

In a Jini client, the system is queried for services based
upon a query that normally uses interface type and
attributes to determine suitability. Physical location of the
service and lookup service from which it was found are
transparent to the client.

Juniper provides an extensible framework for
introducing additional views for the main Jini entities
(Jini network, Services and Lookup services). Creating a
new view of an entity simply involves subclassing an
abstract View class. The system registers views to entities
as part of its start up configuration and loads all
applicable views when entities are selected in the
exploration pane.

Figure 2 Service view

4.2. Extensible architecture for additional views
As an emerging field, where services may represent a

wide variety of different services and devices it is also not
clear what the most appropriate abstractions will be for all
types of applications. These architectures may be used to
implement high volume, server-based computations or to
represent lightweight devices and services in a mobile, or
pervasive computing infrastructure. There is therefore a
requirement that a browsing tool should be extensible so
that additional views can be added that may more
appropriately support certain types of systems.

4.3. Dynamic updating of views

Juniper registers itself as a listener for event

notification for services and lookup services. Events such
as the arrival and departure of services and lookup
services can then be passed on to relevant views.

4.4. Handling potentially large data sets

Juniper addresses the scalability issues of representing

graphical views in a number of ways. Firstly, like a
number of other Jini service browsing tools it is designed
to allow filtering operations. The filter pane provides the
ability to search and limit the resultant set of entities to
those that match the filter query. Queries can include
multiple parameters including service groups, interface
types, host, service ID and attributes.
The other strategy for managing scalability is the use in
zooming within a number of the views shown in the
visualisation pane. The graphical panes make use of the
JGraph visualisation library, which provides support for
the scaling of graphs, and also their automated layout.
Juniper allows users to zoom in and out of the main views
and also to select the automated layout strategy. Manual
layout of graph objects is also supported.

4.5. Interaction

Beyond the standard user interface selection and

interaction mechanisms found in the exploration and
visualisation panes, Juniper allows other interactions with
services. Services that are shown in the visualisation pane
possess a popup menu that allows users to choose to get a
service proxy. This process downloads a service proxy
object for the selected service from a lookup service and
places it upon the object bench located in the work pane.

Figure 3 shows a downloaded service proxy object
with its popup menu activated. This menu provides a list
of the available methods that this service object provides
as well as the ability to inspect the internal state of the
object. If a method is selected, it is invoked in a similar
manner to the way invocations occur in BlueJ except that
it can perform remote method calls as well as local
method invocations.

Figure 3 Object bench

From an implementation perspective this is achieved by
running a second debug-enabled Java virtual machine
(JVM) in which all objects on the object bench reside.
When the initial service proxy request is made, client
code to gain a remote service proxy is generated
dynamically, compiled, loaded and run on the second
VM. Upon successful completion of the call, a wrapper
object is placed upon the workbench. A similar process is
followed for any subsequent method invocation calls.

This allows full debugging capabilities to inspect the
internal state of each java object. Each internal field of an
object can be recursively interrogated for its state as well.

All of this is done without the need for any prior
exposure or availability of the Java class definitions for
the service. Even with RMI’s remote code downloading
capabilities, it is usually necessary to have a class
definition for the service interface required. Our
architecture, through the use of reflection and background
downloading of required classes, allows the interactive
use of services with no prior knowledge of their type
definition.

Invocation of methods that require parameters are
supported by generating method dialogs that allow the
setting of parameters in the same manner as BlueJ
(Error! Reference source not found.).

Methods that have non-void return types are caught
and represented in a result dialog (Figure 4). If the return
type is non-primitive (an object) it is possible to either
inspect it or to place it on the object bench as a target for
further invocations if required.

Figure 4 Method dialog
There is also the additional capacity to create objects

of any class type that is available on the environment’s
classpath. This allows us to create any objects that may be
need as parameters for further invocations.

Figure 5 Method result inspection

Many Jini services also expose interfaces that allow

them to be remotely administered. Within Juniper it is
possible to use these interfaces by downloading a service
proxy and invoking the service’s getAdmin() method
which is used to gain a reference to the administration
proxy for the service. Figure 6 shows an object bench
where firstly an Auction service proxy was placed upon
the object bench. Its getAdmin() method was then called
and the resultant administration object was also placed on
the object bench. These methods can then be invoked to
administer the service.

Figure 6 Service admin methods

5. Related Work

The Jini Starter Kit provides example code including a

rudimentary graphical browser that allows filtering of
services, administration of services and inspection of their
published attribute entries. The interface is implemented
as a Java Swing application. It does not attempt to provide
any visualisation of the entities or their relationships.

Inca X [9] is an IDE for developing Jini applications. It
also provides a service browser plug-in for their
environment. There are a number of similarities to our
environment, and it provided an exemplar for a subset of
the features we have identified. It provides some
graphical representation of Lookup services, and the
services that are registered with it. It does not however
provide a network level view where lookup services,
services and the registrations between them are easily
identified. The browser plug-in’s views are not extensible.

It provides some interaction with services by allowing
users to access the administration interfaces supported by
a service. It also supports any attached user interfaces that
support Jini’s ServiceUI standard.

6. Conclusions and Future Work

We have described many of the common challenges

faced in developing dynamic service discovery-based
systems. We have argued that software visualisation and
interactive runtime execution tools can provide additional
support in their development and identified requirements
for such. We have presented an integrated tool for
viewing and interacting with dynamic Jini services that
aims to then meet that criterion.

The resultant tool, Juniper, provides the following
features:

• It provides a number of complete system
visualisations not available in other tools.

• It provides a simple, extensible architecture for the
addition of additional views.

• It allows a form of exploratory and context-driven
testing which would not be otherwise possible
without writing additional driver code or access to
class definitions.

• It enables developers of service clients to interact
with existing services as a means of understanding
and reasoning about them, allowing developers to
experiment with their own and other services. This
includes services for which there is no prior
knowledge or availability of the service interface
classes.

6.1. Future work

One of the goals in building this prototype tool was to

provide a vehicle for more thorough investigation of the
problem domain, by providing the ability to apply
techniques that were previously unavailable for these
types of systems. Our experience with these techniques in
other fields, chiefly in the education and training of
programmers, has been extremely promising.

Part of the power of this tool is gained by the way in
which it integrates two traditionally separate tools, one
that provides visualisations of the system, and the other
that provides fine-grained interactive execution and
debugging capabilities. We found ourselves using it in
combination with a separate IDE that could more easily
configure the launch and development of services.
Integrating the tool with an IDE such as Inca X or Eclipse
would make it even easier to incorporate the use of the
tool within the chosen development methodology.

Juniper makes it easy to perform exploratory testing on
any available Jini service. This is a complementary
activity to automated testing. Exploratory testing does
require discipline on the part of the tester when repeating
tests. Further integration with a unit test framework could
be useful to provide a means of selective recording an
interactive testing session as an automated test.

7. References

[1] JUnit, "JUnit, Testing Resources for Extreme Programming,"
http://www.junit.org, accessed 20 September, 2003, 2002

[2] M. Kölling, B. Quig, A. Patterson, and J. Rosenberg, "The
BlueJ system and its pedagogy," Computer Science Education,
Special issue on Learning and Teaching Object Technology,
vol. 13, 2003.

[3] Context-Driven School, "The Seven Basic Principles of the
Context-Driven School," http://www.context-driven-
testing.com/, accessed April 1, 2005

[4] J. Bach, "Exploratory Testing Explained,"
http://www.satisfice.com/articles/et-article.pdf, accessed April 1,
2005

[5] A. Hyrskykari, "Development of Program Visualization
Systems," presented at 2nd Czech British Symposium onVisual
Aspects of Man-Machine Systems, Prague, Czechoslovakia,
1995.

[6] S. Meyers and S. P. Reiss, "An Empirical Study of Multiple-
View Software Development," presented at SIGSOFT
symposium on Software development environments, Virginia,
USA, 1992.

[7] B. Schneiderman, "Direct Manipulation for Comprehensible,
Predictable and Controllable User Interfaces," presented at

International Workshop on Intelligent User Interfaces, New
York, 1997.

[8] K. V. Haaster and D. Hagan, "Teaching and Learning with
BlueJ:an Evaluation of a Pedagogical Tool," presented at
Information Science + Information Technology Education Joint
Conference, Rockhampton, QLD, Australia, 2004.

[9] Inca X, "Inca X - IDE and Runtime environment for Jini
2.0," http://www.incax.com/, accessed April 1, 2005

