
Assessing Roles of Variables by Program Analysis

Craig Bishop and Colin G. Johnson
Computing Laboratory

University of Kent at Canterbury
Canterbury, Kent, CT2 7NF, England

Email: C.G.Johnson@kent.ac.uk

ABSTRACT
The idea of roles of variables is to provide a vocabulary for
describing the way in which variables are used by experi-
enced programmers. This paper presents work on a system
that is designed to automatically check students’ role assign-
ments in simple procedural programming. This is achieved
by applying program analysis techniques, in particular pro-
gram slicing and data flow analysis, to programs that stu-
dents have written and annotated with role assignments.

1. INTRODUCTION
One important area of difficulty in the teaching of pro-

gramming is bridging the gap between what can be done
with a programming language, and what are the typical id-
ioms used by programmers when they use that language.
Structures in programming languages are very general; how-
ever, in “real” programming these structures are typically
used in a small number of ways most of the time.

Typically, this has been regarded as part of the tacit knowl-
edge [15] that is acquired by immersion in the activity of pro-
gramming. However, in recent years a number of attempts
have been made to articulate this knowledge in a more con-
crete fashion. Examples include the idea of design patterns
[8], which articulate the ways in which high-level behaviour
is achieved by the interaction of classes playing certain roles
in an object-oriented system; and the idea that is at the core
of this paper, viz. assigning high-level “semantic” roles to
variables alongside the basic labelling which says what sort
of thing the variable contains [12]. In general we can see
this as a move from expressing static information about the
kind of thing something is to expressing the kind of thing
that it does.

One way to support such ideas is to develop computer-
based tools to aid learners in applying such concepts. Such
tools can help learners by checking whether these seman-
tic ideas are consistent with the syntax they have written,
annotating program code that they have written with some
interpretation of that code, providing a visual interpreta-
tion of the code with regard to the semantic information, et
cetera.

The aim of this paper is to discuss such a tool. The aim
of it from the learner’s point of view is that the learner
specifies the role that they believe the variable to be playing
in their program, then the tool analyses whether that role
has been correctly assigned. This is achieved by carrying
out a slicing of the program (i.e. rewriting the program so
that just those parts of the program that affect a particular
variable are included), then constructing a data flow graph

from the sliced program. We then analyse properties of that
graph, and the sliced program itself, for properties which
suggest particular variable roles.

The paper is structured as follows. We begin with two
short reviews of the roles of variables concept and the ideas
of program analysis and slicing. We then discuss how the
tool has been constructed, and go on to discuss ongoing
work.

2. ROLES OF VARIABLES
When an experienced programmer creates a variable, they

have a number of things in mind. Most obvious are the
two things that we teach explicitly to students: the type
of information that the variable contains (int, String . . .);
and the information that is represented by that variable,
e.g. a piece of real-world data, some information that is
significant in an algorithm, a piece of information input by
a user,

However, the experienced programmer will also make use
of their (typically tacit) knowledge about how variables are
typically used in programming. Occasionally, this knowl-
edge is articulated: for example programmers will talk about
a “constant” or a “loop index”. Occasionally, (as with the
idea of a constant) the computer language provides a way
to talk about these; on other occasions there is an informal
natural language description that is used amongst program-
mers (e.g. the notion of a loop index). However, in many
cases there is no explicit term with which to discuss these
concepts.

To tackle this the idea of explicitly named roles of vari-
ables has been introduced by Sajaniemi and colleagues [12].
This work identifies a number of ways in which variables are
used in programs, and provides names for these roles. An
example of such a role is gatherer. A variable playing this
role accumulates information as the program goes on, e.g.
accumulating an aggregate or average value as data is input,
or generating an index or ordering as new items are added.

Interestingly, a small number of such roles describe the
vast majority of variable uses in simple procedural program-
ming. It has been demonstrated that ten roles are suffi-
cient to cover 99% of variables used in a large collection of
programs [12, 18], and that experienced programmers agree
with a high degree of consistency on which roles should be
assigned to which variables [1].

These roles can be used in teaching in a number of ways.
Primarily, they are used to aid discussion of programming
between teachers and students, by providing a set of named
concepts that can help to understand how experienced pro-

grammers work, and thus provide a bridge between näıve
and experienced programmers. Another way in which these
have been used is in program visualisation [17], using an in-
tuitively appealing cartoon-like image associated with each
role.

Most work on roles of variables has focussed on procedu-
ral programming. Recently, some preliminary work has been
carried out on analysing roles in an object-oriented frame-
work [5]. However, for the purposes of this paper we focus
solely on procedural programs.

3. PROGRAM SLICING AND PROGRAM
ANALYSIS

The standard thing to do with a program is to run it on a
set of input data or through interaction with users. However,
if we want to understand how a program behaves we can do
many other things to a program; in general, such techniques
are known as program analysis [14].

Program analysis techniques typically consist of two stages:
transforming the program with regard to the kind of analy-
sis that is to be attempted, then following some information
through that transformed program. Typically the aim will
be to follow some property of the information processed by
the program through all possible program paths; often this
is achieved through making some (conservative) approxima-
tion to that information.

An example of this is abstract interpretation, where we
choose a property of a variable (e.g. “does this number ever
go negative?”), aggregate the values that the variable could
take into a set of abstract values (e.g. “known-positive’,
“known-negative”, “don’t know”), transform the program
so that operations act on that abstraction rather than the
concrete value (e.g. “if a known-positive number is added to
a known-positive number, then the result is a known-positive
number”), then follow the transformed program through all
possible branching points examining how the abstracted val-
ues of those variables are transformed in the program.

Two program analysis techniques of particular importance
to the work in this paper are program slicing, which trans-
forms a program with respect to a variable by removing
all parts of the program which cannot influence the value
of that variable; and data-flow analysis, which generates a
graph summarising the paths that can be taken through the
program and analyses properties of that graph. Details of
these will be given as needed during the description of the
tool development below.

4. DEVELOPING A TOOL FOR CHECK-
ING ROLES OF VARIABLES

4.1 Overview and Stance
We have been developing a tool that uses program analysis

techniques to check variable role assignments in procedural
code sections in the Java language. Each time a new vari-
able is introduced the student annotates their code with a
structured comment saying what role they believe the vari-
able is playing. The tool then analyses the program to check
whether that role assignment is correct. If the tool cannot
successfully assign a role to the variable, then it reports a
“don’t know” value.

The development of this tool is an attempt to chart a mid-
dlebrow route between two extremes. By using analysis of

the program rather than simply testing it on a number of ex-
amples, the tool aims to be more rigorous than a tool that is
based simply on sample runs and heuristics. Nonetheless the
aim is not to produce a system where the analysis is backed
up by a formal proof of correctness of that role assignment.

4.2 Transforming the Program
The input to the tool is an annotated program: a Java

program which is self-contained within a single class, where
variable declarations are accompanied by a comment which
states the role that the student believes the variable to be
playing. Here is an example (modified from one of the exam-
ples at http://www.cs.joensuu.fi/~saja/var_roles/):

import java.io.*;

public class Doubles {

private int counter; //%%counter%%stepper%%
private int number; //%%number%%most recent holder%%

public Doubles() {
do {

System.out.print("Give amount of loops: ");
counter = getInput();

}
while (counter < 0);
while (counter > 0) {

System.out.print("Give some number: ");
number = getInput();
System.out.println("Two times " + number

+ " is " + 2*number);
counter = counter - 1;

}
}

public int getInput() {
int returnInt = 0;
BufferedReader in = new BufferedReader(new

InputStreamReader(System.in));
try {

returnInt = new Integer(in.readLine())
.intValue();

} catch (IOException e) {
System.out.println(e.getMessage());

}
return returnInt;

}
}

As discussed in [16, 9] the role of a variable has more
to do with the way in which the data flows through the
variable than value of the variable itself. A formal way of
transforming programs in such a variable-centric fashion is
given by the theory of program slicing [2, 19, 10]. This
was devised by Weiser [20] as a formalisation of the process
used in debugging programs whereby programmers consider
a variable in a program by working out which parts of the
program can impact upon the value of that variable. A
slice of a program with respect to a variable is the program
with all statements which cannot impact on that variable
removed.

For the purposes of the present project, there should not
be any need to undertake the total decomposition of the
source code described in [7] where every variable having an
impact on the value of the analysed variable is isolated. In-
stead it should be sufficient to look for each variable, at
where and under what circumstances it is assigned and used
(though some provision may need to be made for indirect

Figure 1: Source Code Map

usage of the variable e.g. when two variables are used in
combination to set a flag that acts as a condition for the
loop).

In the tool we create the slice from a source code map (il-
lustrated in figure 1); from this statements relating to each
variable for which a role has been declared can be extracted.
A sensible starting point for this in each program is the map
containing the variables to be checked. Taking the key set
of the variable map, the source code map can be traversed
and each of the control constructs encountered stored in the
order that they occur, until a construct (elementary, or con-
trol) containing the variable in question, is found. Once an
occurrence of the given variable has been found, it is stored
with its associated control constructs in a list. The map is
traversed again looking for the next occurrence of the vari-
able, with any control constructs and variable statements
stored in a separate list from the first. This process can
be repeated until every occurrence of the variable has been
found. In this way it is possible to identify the position
of each incidence of the variable being analysed in the pro-
gram. This process can be repeated for all variables in the
program for which a role has been declared. It is then possi-
ble to reconstruct the program from the perspective only of
a given variable. This is the program slice. Figure 2 shows
a program slice diagram for the variable last_fib from the
Fibonacci program given in full in the Appendix.

4.3 Analysing the slice
Having obtained a slice of the program with respect to the

variable role, we now need to analyse the slice to determine
whether the role specified in the annotation is the actual
role played. In doing this we are primarily concerned with

Figure 2: Program Slice for last_fib.

data flow analysis of the program, as it is such data flow
properties that primarily define the role that the variable is
playing.

In [13] Moonen describes a generic architecture for data
flow analysis, and concludes that there is no need to be
specific about control constructs within the program being
analysed. Any loop can be modelled simply as a loop having
a condition under which it should continue to run. Similarly,
any branch can be modelled as a branch and condition un-
der which it should be followed in the sequence of executed
statements. Moonen usefully differentiates between variable
definition comprising input statements and those where the
variable appears on the left hand side of equations, and vari-
able use such as output statements and those where the vari-
able appears on the right hand side of equations. According
to [1], the role of a variable captures its behaviour by charac-
terising the dynamic nature of the variable, i.e. the sequence
of its successive values as related to other variables and ex-
ternal events. The analysis of training programs undertaken
in the present project does not entirely support the view in
[12] that usage does has no effect on the role of a variable,
but the idea of separating statements involving variables into
those in which the variable is defined and those in which the
variable is used, provides a useful starting point for break-
ing down the sliced statements. From the available training
programs, four distinct categories of variable statement are
identified as follows:

1. Assignment statements, i.e. those where the vari-
able appears on the left hand side of an equation as de-
scribed in [13]. Java appears to have some advantages
over other programming languages such as Pascal in
this respect, as direct assignment statements always
contain an = operator on the left hand side of which
appears the variable in question1.

1Indirect assignment of a variable e.g. via input of an integer

2. Usage statements, i.e. those where the variable is ei-
ther output to terminal (for use by the program user),
directly used to assign some value to another variable,
or as input to a method. This is roughly equivalent to
the description of variable use in [13].

3. Conditional statements, i.e. those statements where
the variable appears either as the condition for a loop,
or as a condition for a branch in the software.

4. Other statements, e.g. those where the variable is
declared, or returned.

In order to aid with the construction of analyses that would
suggest variable roles, a tool was written which took ex-
ample programs and listed each variable together with a
description of how that variable was assigned and used (in
particular where the variable was assigned and modified with
respect to loop structures in the program).

By comparing these assignment and usage conditions with
the roles we identified 21 conditions which can be used to
build up checks for role assignment (table 1).

By using these conditions we have built a set of condi-
tions for each role under which that role will fail to apply.
This gives us a way of checking the student’s role assertion
and providing feedback if the role assignment appears to be
incorrect.

As an example consider the role most recent holder. This
has the failure condition

Y = F ∨ ¬A ∨ (Q ∧R) ∨ (Q ∧X) ∨M ∨K ∨ I ∨ J∨
S ∨H ∨ L ∨ (¬G ∧D ∧ ¬P)

∨(¬T ∧ ¬U) ∨ (¬B ∧ (¬C ∨D ∨ E))

where Y is a predicate indicating that the rule assignment
is correct. If any of the subconditions are not met, feedback
can be given appropriately using the messages in table 2.

In developing the rule sets, we have endeavoured where
possible to create a rule set for each role that has minimal
overlap with rule sets for other roles. This is to stop inci-
dences where a variable appears to conform to the rule set
of more than one role.

One exception to this is the case of the rule set for most
recent holder. In that rule set, one of the rules indicating
that the variable is not a most recent holder is as follows:
R = A ∧ B, where R signifies an incorrect role declaration,
A signifies that the variable is of type array, and B signifies
that the variable is not playing the role fixed value. This
break with convention is to enable the program to recognize
in programs such as Histogram.java (see Appendix), that
the float Array (amount) has the role fixed value and not
the role most recent holder. The problem in that case is that
the array appears to be used within the loop in which it is
assigned, even though only one of the array values is being
used and that value is actually assigned only once (i.e. it is
a fixed value). At present, the variable is reckoned by the
analysis software to have the role fixed value, only because
even though it appears to be used in the loop within which
it is assigned, it is also of type Array.

Moreover, the analysis program recognises the variable as
not having the role most recent holder, only because one of
the rules is that the variable shall not be an Array and also

value to a method, is not covered in the present version of
the software.

A variable is assigned in a loop.
B variable is used in its assignment loop.
C variable is used conditionally in its assignment loop.
D variable is used directly for its assigning loop condition.
E variable is used indirectly for its assigning loop condition.
F variable is assigned in ”for” loop statement.
G variable is used directly in the program.

H
variable is assigned in a branch for which
it is part of the condition.

I
variable appears directly on both sides of
assignment statement.

J
variable appears indirectly on both sides of
assignment statement.

K variable is directly toggled within a loop.
L variable is indirectly toggled within loop.
M variable is incremented/decremented within a loop.
N variable is used outside of loop in which it is assigned.
O variable is assigned in loop before it is used in that loop.

P
variable is used conditionally for a loop
outside of its assignment loop.

Q variable appears in array organizing type statement.
R variable is of type array.

S
variable is assigned within a loop with a
combination of other variables, values and
operators.

T variable is assigned with the output from a method call.

U
variable is assigned with a value resulting
from instantiation of a new object or di-
rectly with boolean value.

(X) (variable is playing role fixed value).

Table 1: The 21 rules (plus one role assignment that
plays the role of an additional rule) from which the
role assessments are constructed.

conform to the rule set for fixed value. This combination of
rules is circular and self satisfying. What more, it effectively
means that it is not possible for a variable to be of type Ar-
ray and have the role most recent holder. Clearly, this is
not an adequate rule for either fixed value, or most recent
holder, and it serves to highlight the additional difficulties
faced when trying to define rules that hold for variables of
type array and other primitive types. It also perhaps serves
to highlight the sort of problem that may be encountered
if trying to deal with other more complex variables such as
those that refer to an object. Further analysis is therefore
required for variables of type Array, perhaps to the extent
that additional categories of variable statement should be
defined for Array type variables, such as “Array value as-
signment”, and “Array value usage”.

It is desirable to add information to the output of the pro-
gram that can be used to illustrate why a declared role is
thought to be incorrect, so prioritisation is used for the rules
within the rule set. Prioritisation is also required, because
some rules are more specific than others. E.g. if a variable
having a declared role of fixed value is actually a gatherer, it
may fail the fixed value check because it is used within the
loop within which it is assigned, as well as because the vari-
able appears on both sides of an assignment statement. In
such cases it is preferable to identify the reason for the incor-
rect role declaration as the detection of a specific gatherer
(on both side of assignment) type statement, rather than
the more generic reason that a fixed value variable shall not

Condition under which variable is ad-
judged not to be fixed value.

Message generated

F ”assigned in for loop statement”
¬A ”not assigned in loop”
(Q ∧R) ”appears to be organizer statement”
(Q ∧X) ”is array filled in loop”
M ”incremented/decremented within loop”
K ”toggled within loop”
I ”appears on both sides of assignment”
J ”indirectly appears on both sides of assignment”
S ”assigned in loop with combination of other variables, operators and constants”
H ”used as condition for branch in which assigned”
L ”appears to be indirectly toggled within loop”
(¬G ∧D ∧ ¬P) ”condition for loop in which assigned and limited use outside of loop”
(¬T ∧ ¬U) ”always assigned in loop with value of variable”
(¬B ∧ (¬C ∨D ∨ E)) ”not used in loop in which assigned”

Table 2: Messages given on failure: Most Wanted Holder.

be used in the same loop in which it is assigned. This pri-
oritisation also supports the suggestion of roles to the pro-
grammer, as the offending statement (e.g. “variable appears
on both sides of assignment statement”) can be presented
with the incorrect role detection announcement, reason for
the detection, and suggested role for the variable.

5. CURRENT STATE AND FUTURE PLANS
The software has been implemented, and is currently able

to handle procedural code sections in Java. There are a
small number of limitations on the programs that will be
processed by the tool: in particular variable overriding and
switch/case statements are not currently supported.

At present we have focused our attention on using the
analysis to identify faults in the student’s role assignment.
A second approach, which would add robustness to the role
checking, would be to identify positive features in the data
flow graph which indicate that a particular role is certainly
being played. This could involve additional analysis tech-
niques, for example model checking [6, 11], which allows
statements about variables in temporal logic (e.g. “if A
is positive, then at some time before the program ends B
is guaranteed to be negative, regardless of the path taken
through the program”) to be confirmed or counterexamples
found.

We have tested the program on the seventeen programs
given at http://www.cs.joensuu.fi/~saja/var_roles/ (which
were used for the experiments described in [1, 5]) and all
roles are correctly identified by the tool (also we have shown
that experiments with erroneous variants on those programs
correctly identify the errors). Clearly, this is a good thing;
nonetheless such programs will have been devised specifi-
cally as clean examples of the role concept, and as a result
future evaluation work will focus on a wider variety of pro-
grams.

We have incorporated the role analysis tool into the BlueJ
programming/learning environment (http://www.bluej.org/)
and hope to use this in practical evaluation of the tool in
real classroom settings.

Further details of this work are given in [3] and on our web
site at http://www.cs.kent.ac.uk/people/staff/cgj/research/
rolesOfVariables.html.

6. REFERENCES
[1] Mordechai Ben-Ari and Jorma Sajaniemi. Roles of

variables as seen by CS educators. In Boyle [4], pages
52–56.

[2] David Binkley and Keith Brian Gallagher. Program
slicing. Advances in Computers, 43:1–50, 1996.

[3] Craig Bishop. Roles of variables and program analysis.
Master’s thesis, University of Kent at Canterbury,
Computing Laboratory, 2005.

[4] Roger Boyle, editor. Proceedings of the 9th Annual
ACM Conference on Innovation and Technology in
Computer Science Education (ITiCSE 2004).
Association for Computing Machinery, 2004.

[5] Pauli Byckling, Petri Gerdt, and Jorma Sajaniemi.
Roles of variables in object-oriented programming. In
Proceedings of the Object-Oriented Programming,
Systems, Languages and Applications (OOPSLA
2005) Educators Symposium. ACM Press, 2005.

[6] Edmund M. Clarke Jr., Orna Grumberg, and
Doron A. Peled. Model Checking. MIT Press, 1999.

[7] Keith B. Gallagher and James R. Lyle. Using program
slicing in software maintenance. IEEE Transactions
on Software Engineering, 17(8):751–761, 1991.

[8] Erich Gamma, Richard Helm, Ralph Johnson, and
John Vlissides. Design Patterns. Addison-Wesley,
1994.

[9] Petri Gerdt and Jorma Sajaniemi. An approach to
automatic detection of variable roles in program
animation. In A. Korhonen, editor, Proceedings of the
Third Program Visualization Workshop. University of
Warwick Department of Computer Science Report
CS-RR-407, 2004.

[10] Mark Harman and Rob Hierons. An overview of
program slicing. Software Focus, 2(3):85–92, 2001.

[11] Michael Huth and Mark Ryan. Logic in Computer
Science: Modelling and Reasoning about Systems.
Cambridge University Press, 2000.

[12] Marja Kuittinen and Jorma Sajaniemi. Teaching roles
of variables in elementary programming courses. In
Boyle [4], pages 57–61.

[13] Leon Moonen. A generic architecture for data flow
analysis to support reverse engineering. In Proceedings

of the 2nd International Workshop on the Theory and
Practice of Algebraic Specifications, 1997.

[14] Flemming Nielson, Hanne Riis Nielson, and Chris
Hankin. Principles of Program Analysis. Springer,
1999.

[15] Michael Polyani. Personal Knowledge: Towards a
Post-Critical Philosophy. Routledge and Kegan Paul,
1958.

[16] Jorma Sajaniemi. An empirical analysis of roles of
variables in novice-level procedural programs. In
Proceedings of the 2002 IEEE Symposium on
Human-Centric Computing Languages and
Environments, pages 37–39, 2002.

[17] Jorma Sajaniemi and Marja Kuittinen. Visualizing
roles of variables in program animation. Information
Visualization, 3(3):137–153, 2004.

[18] Jorma Sajaniemi and Marja Kuittinen. An experiment
on using roles of variables in teaching introductory
programming. Computer Science Education,
15(1):59–82, 2005.

[19] Frank Tip. A survey of program slicing techniques.
Journal of Programming Languages, 3(3), 1995.

[20] Mark D. Weiser. Program slicing. IEEE Transactions
on Software Engineering, 4:352–357, 1984.

Appendix: program examples
The Fibonacci and Histogram programs (adapted from http:

//www.cs.joensuu.fi/~saja/var_roles/) used as examples
in several sections above.

import java.io.*;

public class Fibonacci {
private int last_fib; /*%%last_fib%%follower%%*/
private int fib; //%%fib%%gatherer%%
private int temp; //%%temp%%temporary%%
private int number; //%%number%%fixed value%%
private int i; //%%i%%stepper%%
/**
* Constructor for objects of class Fibonacci
*/

public Fibonacci() {
last_fib = 1;
fib = 1; /*another comment*/ number = getNumber();
if (number <= 2) {

System.out.println("The first and
second numbers are 1.");

} else {
System.out.println("Value 1 is: 1");
System.out.println("Value 2 is: 1");
for (i = 3; i <= number; i++) {

temp = last_fib;
last_fib = fib;
fib = fib + temp;
System.out.println("Value " + i +

" is: " + fib);
}

}
}

/**
* Read number of integers in sequence from terminal
* @return The number of values to be in the sequence
*/

private int getNumber() {
BufferedReader in = new BufferedReader(new

InputStreamReader(System.in));

int n = 0;
while (n < 1) {

String tempN = "";
System.out.print("Enter number in sequence: ");
try {

tempN = in.readLine();}
catch (IOException e) {

System.out.println(e.getMessage());
}
Integer tempInt = new Integer(tempN);
n = tempInt.intValue();

}
return n;

}
}

import java.io.*;

public class Histogram {
//Draw a histogram

private final int longest = 40; //Longest bar
private float[] amount = new float[12];
//Data for drawing%%amount%%fixed value%%
private float max;
//Maximum data element %%max%%most wanted holder%%
private int month;
//Current month %%month%%stepper%%
private int i; //%%i%%stepper%%

public Histogram() {
max = 0;
for (month = 1; month <= 12; month ++) {

System.out.println("Enter amount for month "
+ month + ": ");

amount[month - 1] = getInput();
if (max < amount[month - 1]) {

max = amount[month - 1];
}

}
System.out.println();
for (month = 1; month <= 12; month++) {

System.out.print(month + ": ");
if (month < 10) System.out.print(" ");
for (i = 0; i <= amount[month-1]

/ max * longest; i++)
System.out.print(’*’);

System.out.println();
}

}

private float getInput(){
float returnFloat = 0;
BufferedReader in = new BufferedReader(new

InputStreamReader(System.in));
try {

String inputString = in.readLine();
Float tempFloat = new Float(inputString);
returnFloat = tempFloat.floatValue();

} catch (IOException e) {
System.out.println(e.getMessage());

}
return returnFloat;

}
}

