

Varying the Topology and the Probability of

Re-initialization in Dissipative Particle Swarm
Optimisation

Mudassar Iqbal, Alex A.Freitas, Colin G. Johnson

Computing Laboratory

University of Kent, Canterbury, UK
{mi26,aaf,cgj}@kent.ac.uk

Abstract. This paper introduces two new versions of dissipative particle
swarm optimization. Both of these use a new time-dependent strategy for
randomly re-initializing the positions of the particles. In addition, one
variation also uses a novel dynamic neighbourhood topology based on small
world networks. We present results from applying these algorithms to two
well-known function optimization problems. Both algorithms perform
considerably better than both standard PSO and the original dissipative PSO
algorithms. In particular one version performs significantly better on high-
dimensional problems that are inaccessible to traditional methods.

1 Introduction

Particle swarm optimisation, PSO, is a heuristic search/optimisation technique first
proposed by Kennedy and Eberhart [1,2,3]. The underlying motivation for the
algorithm is drawn from the collective behaviour of social animals, phenomena such
as bird flocking, fish schooling etc. as well elements of social psychology. After this
first proposal forwarded by Kennedy et al., several researchers have analysed the
performance of PSO with different parameter settings, and PSO so far has been used
across number of applications [4].

In this paper we propose two novel variants on the kind of PSO algorithm known
as dissipative PSO [7]. The basic idea of dissipative PSO is to introduce chaotic
perturbations into the system, by randomly initialising the particle positions with a
small probability. In this algorithm the probability of re-initialisation remains
constant. By contrast, our new algorithm introduces a time-dependence to this
probability. In addition we discuss variants of dissipative PSO which use a local
neighbourhood topology drawing inspiration from small world networks [11].

The remainder of this paper is organised as follows. Section 2 presents an
overview of standard particle swarm optimisation, and reviews the core ideas of
dissipative PSO. Section 3 describes our two new dissipative PSO algorithms. In
section 4 we present computational results which apply these algorithms to function
optimisation. Finally section 5 concludes the paper and mentions directions for future
work.

2 Standard and Dissipative Particle Swarm Optimisation

Like other population-based search algorithms, Particle Swarm Optimisation (PSO) is
initialised with a population of random solutions (particles). Each particle flies in D-
dimensional problem space with a velocity, which is adjusted at each time step. The
particle flies towards a position, which depends on its own past best position and the
position of the best of its neighbours. The quality of a particle position depends on a
problem-specific objective function (fitness).

The position of the ith particle is represented by a vector Xi = (xi1, … , xid, … , xiD),
where xid ∈[ld,ud] , d=1….D. ld and ud are the lower and upper bounds for the dth
dimension, respectively, and D represents the number of dimensions of the search
space.

The best position (i.e. that with the best fitness, the so-called pbest) of particle i is
recorded as Pi = (pi1, … , pid, … , piD). Similarly the location of the best particle among
the population is recorded by the index g and the location Pg is called gbest (global
best) in the case of a global neighbourhood topology, where each particle is connected
to all of the other particles. It is also possible to use a local neighbourhood topology,
in which case the location of the best local neighbour is called Pl (local best). The
velocity of the ith particle Vi = (vi1, … , vid, … , viD), is limited to a maximum velocity
Vmax = (vmax 1, … , vmax d, … , vmax D).

At each time step, the particles’ positions are updated depending on their pbest
and gbest (or lbest) according to following equations:

11

2211
1)()(*

++

+

+=

−+−+=
t
id

t
id

t
id

t
idgd

t
idid

t
id

t
id

vxx

xprcxprcvwv
 (1)

Where t is the iteration index, and w (0≤w<1) is the inertia weight, determining how
much of the previous velocity of the particle is preserved. This plays the role of
balancing the global and local search ability of PSO [12]. c1, c2 are two positive
acceleration constants, r1, r2 are two uniform random numbers sampled from U(0,1).
For the velocity update equation, the second part represents the private thinking by
itself; the third part is the social part, which represent the cooperation among the
individuals. In the case described by equation 1, a global neighborhood was used;
later we shall explore an alternative, which uses a local neighborhood.

A PSO algorithm consists of the following steps:
1) Initialize a population of m particles, assigning random location between

(-Xmax, Xmax) and random velocity (-Vmax, Vmax) for each dimension.
2) Evaluate the desired fitness function for each particle and update pbest and

gbest if needed.
3) Change the velocity and position of each particle according to equation 1
4) Loop to step 2 until a stopping criterion is met (i.e. a good fitness value is

obtained, or a predefined number of iterations is performed).

2.1 Random Re-initialisations in Dissipative PSO

A peculiar property of the standard PSO algorithm is that, although it finds reasonable
quality solutions much faster than many other population-based optimisation
algorithms, it does not continue to improve on the quality of solutions after a certain
number of generations have passed [6]. That is, it is lacking enough capability to
achieve “sustainable development” [7]. The swarm becomes stagnated after a certain
number of iterations.

Xie et al. (2002) devised one solution to this by introducing additional randomness
into the system. This is done by randomly re-initialising particle positions with very
small probability (~0.001) at every iteration, which improves the performance quite
significantly with respect to standard PSO. In this way particles are not only referring
to their historical positions and those of their fellows, but also they are affected by
small changes in their environment. This chaotic perturbation, or negative entropy
(i.e. considering swarm as an “open dissipative system” [7]) brings aspects of the
outside world into the system (swarm) which prevents the system from settling at an
equilibrium. Then self-organization of this complex interacting system leads to
sustainable development from the fluctuations. The additional entropy put into the
system is added by the following two equations, which are executed in the simple
PSO after the velocity and position update equations have been evaluated (eqn.1).

The chaotic perturbation for the velocity of the particle in each dimension is
computed by:

didv vrandvTHENcrandIF max,*())()(=< (2a)
The chaotic perturbation for the position of the particle in each dimension is
computed by:

),()()(ddidl ulRandomxTHENcrandIF =< (2b)
where Cv and Cl are the chaotic factors in the range [0,1] and Random(ld,ud) is a
uniform random number between ld and ud.

3 Dissipative PSO with Variable Probability of Adding Chaotic
Perturbations

Putting forward the same argument as in dissipative version, our analysis reveals that
this scheme, despite improving results significantly with respect to standard PSO and
being competitive to many other variants, has some limitations and can be made much
more effective.

We found that adding this chaotic perturbation to the system is most effective
when done with a time dependant strategy. We specifically discovered that in the
early iterations (approximately the first third) of the algorithm, it is better to re-
initialise the particles with a high probability (~0.5 for each particle). By contrast, in
the later iterations it is better to use a much smaller probability (~0.001), as used in
dissipative PSO.

The underlying idea is that in the early iterations the overall fitness of the particles
is low, so that it is effective to perform more exploration by using random re-
initialisations. In this way particles find good quality local solutions, which they keep

on improving in the later iterations, so obtaining sustained development [7]. In other
words, in earlier swarm iterations, particles are more vulnerable to environmental
effects, whilst later on they rely more on the acquired knowledge of their best
neighbours. Therefore their mutual non-linear interaction helps them to find better
and better intermediate positions.

We have developed two versions of PSO based upon the idea of time-dependant
random re-initialisation of particle positions. The first version uses the global
neighbourhood topology, denoted as gbest; the second version uses a local
neighbourhood topology, denoted as lbest. However, instead of keeping the
neighbourhood constant as in conventional PSO, we introduce a dynamic
neighbourhood topology.

In addition, we argue that for these two versions of global and local
neighbourhoods, a dynamic and time varying local topology can make better use of
the idea of randomly re-initialising particles to slow down the premature convergence.
The idea of this dynamic, time-dependant neighbourhood is inspired by the concept of
small world networks [10]. This local swarm is significantly more robust than the
global version in much harder versions of the problem at hand, as shown later.

3.1 Locally Interacting Swarm with Small World Topology

As Mohan et al. ([8] and references therein) argue, particle positions in PSO oscillate
in damped sinusoidal waves until they converge to the point in between their previous
best and the global best position discovered by all particles so far. In this way
particles converge to the global best position discovered so far. All particles following
the same behaviour quickly converge to a good local minimum of the problem. It may
be argued that many of the particles are wasting computational effort in moving
toward the local minima already discovered. Whereas better results can be found if
various particles explore other possible search directions.

Reasonable choices for deciding the interaction relationship between the particles
can be drawn from observations on the social behaviour of animals. Many species of
social animals try to keep acquaintanceship with a very small number of relatively
fitter individuals. Croft et al. [9] observed that the empirical network between guppies
can be closely approximated by small world networks.

Small world networks, as proposed by Watts (1998) [10], are networks, that lie in
between regular lattice type structures and random networks. They tend to have a
near-optimal trade-off between properties concerned with clustering and with the
average distance between nodes. This can be seen in the examples given in figure 1. A
comprehensive discussion of small world networks, their properties and examples can
be found in [11].

Fig.1. Small world networks lie between order and chaos, as illustrated by increasing
probability of rewiring in a graph (from [11]).

We also believe that the agents should be “intelligent” enough to keep on

breaking/making “friendships” based upon fitness. The rate at which particles change
their neighbourhood relationships is specified by a probability of rewiring, i.e. taking
an edge and connecting to a randomly chosen other node.

However, in our work rewiring is not done entirely at random, rather by using a
strategy where each particle selects its neighbours with a probability proportional to
their fitness. So we define here a probability of selecting particle j as a
friend/neighbour of particle i as follows:

Pij = Rank(j) / (total number of particles) (3)

where all particles are ranked by assigning the highest number to the fittest individual,
et cetera. For example in a population of twenty particles, the fittest particle would be
assigned rank 20. Details of this process are explained in the pseudo-code below
(Algorithm 1).

 3.2 Edge Initialisation for Local PSO

We initialise the connections between the particles using two practically equivalent
schemes. One possible start is a ring with two nearest neighbours. Another, which is
more consistent with the rewiring scheme as well, is to throw edges equal to double of
the number of the agents so that the average connectivity is two. In this scheme, for
each edge we select one node randomly and the probability with which another
randomly selected node is connected to the first one is given by the equation (3). A
pseudo-code description of our PSO is given as Algorithm 1.

For each particle i, initialize the dth dimension randomly
 in the range (-Xi,dmax, Xi,dmax).
Initialize the edges among particles
For each iteration t =1,…,Gmax
 For each particle i =1,…,m
 For each dimension d =1,…,D
 Vid= w*Vid + C1 rand*(Pid-Xid)
 + C2 rand*(Pld-Xid);
 //P is best position by current
 //particle and Pl is the best
 // Position in the current
 // neighbourhood of the particle
 // Limit velocity magnitude
 V = min (Vmax, max (-Vmax, V)) ;
 // Update Position
 Xid = Xid + Vid;
 End for each dimension d
 Compute fitness of current particle
 and, if needed, update the
 historical information.
 End for each particle i
 Rewire K randomly selected edges with probability p.
End for each iteration t

Algorithm 1. Pseudo-code for PSO with local time-varying topology

4 Computational Results

4.1 Experimental Design and Benchmark Function

We have done experiments with two commonly used test functions (see e.g. [13]),
which are very difficult to optimise. We have compared the two versions (global and
local neighbourhood) of our new PSO algorithm—described in the previous section—
with two other PSO algorithms, namely Standard PSO and Dissipative PSO. The two
functions reported here both have global minimum at origin. The first one is
generalized Rastrigin function (f1):

∑
=

+−=
D

d
dd πxxf

1

2
1)10)2(cos10((4)

Rastrigin's function is based on a function with the addition of cosine modulation to
produce many local minima. Thus, the test function is highly multimodal. However,
the locations of the minima are regularly distributed.

The second function is the Rosenbrock function (f2):

2
1

1

22
12)1()(100 −+−= −

=
−∑ d

D

d
dd XXXf (5)

Rosenbrock's valley is a classic optimisation problem, and this function is also known
as the Banana function. The global optimum is inside a long, narrow, parabolic
shaped flat valley. To find the valley is trivial, however convergence to the global
optimum is difficult and hence this problem has been repeatedly used in assessing the
performance of optimisation algorithms.

For all the dimensions d=1,…,D, xmax,d = 500 for both functions and the
initialization range is xd є [-xmax,d , xmax,d]. Maximum velocity is Vmax = xmax,d ; The
acceleration constants are C1= 2 and C2 = 2 . The fitness value is the function value.
The results of our experiments are averaged over 30 runs, except where stated
otherwise. We report results for population sizes of 50 and 100 particles only, mainly
to avoid bulky tables. In all versions, we used time decreasing inertia [13].

In figure 2 we show performance results for varying the rewiring probability.
From this we can see that the best performance is obtained when this probability is in
the range 0.1–0.15. Therefore we have chosen to use 0.15 in the remainder of the
experiments in the paper.

4.2 Results and Discussion

Tables 1 and 2 report the results for the Rosenbrock and Rastrigin function,
respectively. Each table gives a detailed comparison of the results for standard PSO
(SPSO) and dissipative PSO (DPSO), and the two PSO versions that we developed
(GPSO and LPSO). DPSO1 in the tables is a slight variation of dissipative PSO with
inertia weight fixed at 0.4—a parameter value which was also used by Xie et al. [7].
GPSO stands for the gbest version of standard PSO with the chaotic perturbations
introduced in section 3. LPSO stands for the lbest version with small world like
topological relationship along with the same scheme of chaotic perturbation. Each cell
of these tables shows the mean fitness value of the best particle found by the
corresponding version of PSO. m denotes the number of particles in the population,
and Gmax denotes the number of iterations of the PSO.

It is clear from the table 1 that for different numbers of dimensions and numbers
of iterations the two new algorithms outperform the standard and dissipative PSO in
all settings. GPSO and especially LPSO are more robust as the number of dimensions
is increased. In this case LPSO performs reasonably better than GPSO, due mainly to
the strategy of adding perturbation to the system.

Table 2 shows a similar analysis for the Generalized Rastrigin function and the
same argument holds there, except that GPSO is closer in performance to LPSO, in
this case. In more difficult settings, (i.e. higher number of dimensions of the
Rosenbrock function), we see a clear advantage of the locally interacting LPSO over
the globally interacting GPSO. Figure 3 shows such a comparison of LPSO with
respect to GPSO and other PSO variants previously discussed. LPSO scales very well
with the dimensionality (hardness) of the problem.

Figure 2 shows the dependence of LPSO over the rewiring probability which
indicates that a greater than zero (of course less than 1) rewiring probability is better

than fixed topology (rewriting probability zero). Nonetheless, rewiring probability
values in the range 0.15-0.20 are enough to achieve good results.

0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

0.0008

0 0.2 0.4 0.6 0.8 1 1.2

p

M
ea

n
Fi

tn
es

s

20 dim
30 dim
50 dim

Fig.2. Average performance (over 50 runs) vs rewiring probability for LPSO

Another point to note is that in [7], the authors found that dissipative PSO is more
effective (at least for the Rastrigin function) if the inertia weight is fixed at 0.4 rather
than decreasing with time. We used both versions of DPSO, as in tables 1 and 2, for
both functions (Rastrigin and Rosenbrock). An inconsistency is that with same
algorithm as described in [7], fixing w=0.4 performs similarly to original DPSO in
case of the Rosenbrock function, while it does not in case of the Rastrigin function.
This inconsistency is not present (on average) in GPSO and LPSO. Rather, time
varying inertia is still a reasonably better candidate in our opinion, based on the
experiments.

Figure 3 shows the clear advantage of using LPSO over GPSO for the Rosenbrock
function for a number of dimensions greater than 40. Even for fewer dimensions
LPSO finds near-optimum solutions earlier than GPSO, as is clear from figure 3;while
in case of the Rastrigin function both of the algorithms find the global minimum, but
LPSO finds it in fewer iterations.

As can be observed in figure 4,our two new versions of PSO do not suffer from
stagnation. They find good quality solutions in the earlier steps of the exploration, and
then continue to find better solutions when the traditional variants of the algorithm
have ceased improvement.

Figure 4 shows a comparison of different variants of PSO for 30 dimensional
Rosenbrock (4a) and Rastrigin (4b) functions. These illustrate that our two new
algorithms both are capable of the desirable “sustained development” property. The
variants illustrated are the standard PSO algorithm (SPSO), dissipative PSO (DPSO),
a variant on dissipative PSO with inertia weight fixed at 0.4 (DPSO1), and our GPSO
and LPSO algorithms.

Table 1: Mean Fitness for Rosenbrock function

m D i m G m a x S P S O D P S O D P S O 1 G P S O L P S O

1 0 0 0 3 4 1 . 1 4 1 4 8 . 3 3 4 1 1 6 3 . 3 2 4 9 0 . 4 8 0 3 0 4 0 . 3 0 4 0 6 1

2 0 0 0 1 9 1 . 1 0 3 5 7 1 . 0 3 8 1 1 7 0 . 2 6 7 5 3 0 . 1 1 8 3 2 2 0 . 0 0 0 0 7 4

3 0 0 0 2 7 3 . 6 1 8 7 6 . 7 0 4 3 7 1 2 1 . 0 4 5 2 6 0 . 0 0 0 3 6 2 0 . 0 0 0 0 0 5

1 0 0 0 2 6 4 1 . 2 4 3 1 9 2 . 2 8 2 7 1 8 3 . 4 0 4 4 2 . 1 6 7 0 3 9 1 . 4 3 7 1 8

2 0 0 0 3 8 1 . 8 3 1 3 1 5 8 . 2 8 2 2 1 2 2 . 8 9 4 1 0 . 4 9 5 2 6 7 0 . 0 0 1 1 0 6

3 0 0 0 2 3 1 . 5 8 6 7 3 8 . 8 0 0 0 4 5 2 . 3 0 6 4 0 . 0 0 1 0 1 3 0 . 0 0 0 1 5 6

1 0 0 0 1 2 8 0 7 . 1 1 5 2 7 . 6 0 2 5 2 5 0 . 2 1 5 7 3 . 8 0 0 3 3 3 3 . 6 9 6 7 4 6

2 0 0 0 7 6 8 . 2 4 4 7 2 . 6 2 1 0 8 2 3 9 . 0 6 6 3 0 . 0 2 5 8 5 2 0 . 0 0 0 3 7 2

3 0 0 0 6 9 8 . 2 1 2 3 2 . 4 2 2 1 3 4 9 . 9 8 7 3 8 0 . 8 3 7 8 8 3 0 . 0 0 0 4 4 3

1 0 0 0 2 3 2 . 2 6 9 7 2 4 . 5 1 0 2 7 1 0 8 . 5 6 6 8 0 . 1 3 1 9 5 7 0 . 0 0 0 1 1 7

2 0 0 0 1 5 8 . 6 7 1 5 2 . 6 3 5 0 0 7 3 4 . 7 6 8 9 3 0 . 0 0 0 2 7 7 0 . 0 0 0 0 0 1

3 0 0 0 1 4 4 . 2 2 4 1 1 0 . 5 6 0 7 1 1 9 . 3 7 4 2 6 0 . 0 0 0 0 8 2 0

1 0 0 0 5 6 2 . 5 3 0 5 8 2 . 6 5 4 9 9 1 1 0 . 8 0 9 3 0 . 5 1 9 8 0 . 5 0 0 9 4 7

2 0 0 0 3 3 0 . 7 4 6 5 1 8 . 8 8 9 4 6 2 4 . 3 0 8 0 1 0 . 0 0 0 6 9 0 . 0 0 0 0 5 9

3 0 0 0 2 3 8 . 1 9 1 6 2 4 . 7 0 2 7 3 4 0 . 6 7 0 2 8 0 . 0 0 0 4 1 7 0 . 0 0 0 0 0 2

1 0 0 0 1 4 2 2 9 . 1 8 4 2 8 . 8 4 8 8 2 6 0 . 2 0 6 0 . 1 6 4 0 1 1 0 . 0 1 1 9 1 5

2 0 0 0 6 0 1 . 6 4 9 7 5 0 . 9 4 2 1 7 5 8 . 0 9 0 4 7 0 . 0 0 2 2 1 3 0 . 0 0 0 6 7 9

3 0 0 0 4 8 1 . 4 7 6 2 3 . 6 5 1 5 5 1 8 . 8 2 1 6 4 0 . 0 0 0 5 8 8 0 . 0 0 0 0 2 2

2 0

3 0

5 0

1 0 0

1 0

2 0

3 0

1 0

Table 2: Mean Fitness for Rastrigin Function

m D im G m a x S P S O D P S O D P S O 1 G P S O L P S O

1 0 0 0 4 .1 6 4 8 6 8 5 .0 1 6 6 5 8 4 .0 1 3 0 0 5 1 .2 6 0 2 8 5 1 .5 9 1 9 3 6

2 0 0 0 2 .8 8 6 9 8 2 2 .3 6 7 0 0 4 1 .9 9 2 3 8 3 0 .8 2 2 6 6 9 0 .6 3 0 1 4 1

3 0 0 0 2 .5 5 5 5 8 1 .6 0 6 7 9 7 1 .7 7 0 2 8 1 0 .1 6 5 8 2 7 0 .5 3 0 6 4 5

1 0 0 0 2 8 .1 9 7 0 1 8 2 9 .0 2 5 0 1 5 2 4 .1 2 4 8 4 1 2 .8 5 2 3 0 9 3 .9 1 3 5 1

2 0 0 0 2 1 .8 2 3 4 7 1 1 8 .4 0 7 0 8 5 1 5 .0 0 8 3 1 9 1 .6 9 1 5 7 8 0 .5 9 6 9 7 6

3 0 0 0 1 8 .6 3 0 0 0 7 1 5 .6 0 9 8 7 1 2 .6 4 2 5 3 8 1 .0 2 8 1 3 9 0

1 0 0 0 9 2 .0 6 4 6 5 2 7 1 .4 9 5 6 1 3 5 7 .1 9 8 9 6 5 9 .2 9 9 0 6 2 1 0 .9 1 1 3 9 9

2 0 0 0 5 1 .3 2 6 2 3 8 5 6 .9 3 2 7 7 6 4 7 .7 0 0 0 1 5 5 .2 4 1 5 8 9 1 .9 8 9 9 2

3 0 0 0 4 1 .1 0 9 0 7 1 4 3 .8 5 9 5 7 3 1 .7 4 6 4 9 9 3 .4 8 2 3 6 8 0 .9 6 2 4 2 3

1 0 0 0 2 .7 8 7 9 3 1 2 .5 5 5 4 1 3 2 .0 5 6 2 5 1 0 .6 3 0 1 4 1 0 .3 3 1 6 5 3

2 0 0 0 1 .3 9 2 9 4 4 1 .3 9 2 9 4 5 1 .0 6 1 2 9 1 0 0

3 0 0 0 0 .9 9 5 6 4 6 0 .9 7 1 9 9 6 0 .7 9 5 9 6 8 0 0

1 0 0 0 1 9 .5 6 3 3 0 7 2 1 .5 9 8 8 9 2 1 5 .2 2 5 2 8 8 2 .7 5 2 9 6 7 1 .2 2 7 1 1 8

2 0 0 0 1 4 .6 1 0 1 0 9 1 6 .3 2 9 3 7 6 9 .8 1 0 1 7 1 0 .5 6 3 8 1 1 0

3 0 0 0 1 1 .2 7 6 2 6 5 1 0 .5 6 9 5 4 4 6 .4 4 1 4 5 7 0 0

1 0 0 0 6 8 .3 2 1 1 9 8 5 8 .3 6 5 2 3 3 3 8 .6 0 7 1 2 1 3 .7 5 0 2 0 4 0 .9 6 1 7 9 5
2 0 0 0 3 9 .2 0 3 3 3 7 3 7 .3 4 2 4 9 3 2 5 .8 6 4 4 8 2 0 .8 9 5 4 6 4 0

3 0 0 0 3 2 .4 6 0 6 8 1 3 1 .9 6 2 5 8 1 8 .6 0 2 7 1 5 0 0

5 0

1 0 0

1 0

2 0

3 0

1 0

2 0

3 0

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80

Dimensions

M
ea

n
Fi

tn
es

s

GPSO
LPSO

Fig. 3. Performance of GPSO and LPSO for increasing dimensions of the Rosenbrock function

for m=100, Gmax = 3000.

5 Conclusions

We have proposed two new variants on dissipative PSO, based on time-dependent
variation of the probability of re-initialising the particles. One of these two versions
(LPSO) also incorporates additional ideas drawn from small world networks, which
are used to adjust the topology of the particle neighbourhoods. We have compared
these two new algorithms on two well-known function optimisation problems, and
they have been shown to perform better than both standard PSO and the original
dissipative PSO. In particular they demonstrate the “sustained development” property,
the lack of which causes premature convergence to a local optimum. Furthermore, the
local neighbourhood version performs better than the global neighbourhood version
for problems with a large number of dimensions.

Future work will focus on extending these ideas to more challenging problem
domains, in particular moving beyond simple function optimisation problems.
Another direction will be a more extensive analysis of how particular strategies for re-
initialisation influence the performance of the system.

Fig. 4 (a). Rosenbrock function , dimension=30, m=100, Gmax=3000.

Fig. 4 (b). Rastrigin function, dimension=30, m=100, Gmax=3000

Table 3. Mean and standard deviation of final value for experiments in figure 4.

 SPSO DPSO DPSO1 GPSO LPSO
Rosenbrock 481.5,

932.3
23.6,
29.8

18.8,
23.6

0.00058,
0.0008

0.00002,
0.0004

Rastrigin 32.5,
7.5

32.0,
21.2

18.6,
8.3

0,
0

0,
0

Acknowledgements

This work was supported by the EPSRC under grant GR/T11265/01 (eXtended
Particle Swarms). The first author was additionally supported by a scholarship from
the University of Kent Computing Laboratory.

References

1. J. Kennedy and R. Eberhart. Particle swarm optimization, Proc. IEEE Int.

Conf. on Neural Networks, pp. 1942-1948, 1995.
2. R. Eberhart and J. Kennedy. A new optimizer using particle swarm theory,

Proc. 6 th Int. Symposium on Micro Machine and Human Science, pp. 39-43,
1995.

3. Y. Shi and R. Eberhart. Parameter selection in particle swarm optimization,
Proc. 7th Annual Conf. on Evolutionary Programming, pp. 591-600, 1998.

4. R. Eberhart and Y. Shi. Particle swarm optimization: developments,
applications and resources, Proc. IEEE Int. Conf. on Evolutionary
Computation, pp. 81-86, 2001.

5. J. Kennedy. Stereotyping: improving particle swarm performance with cluster
analysis, Proc. IEEE Int. Conf. on Evolutionary Computation, pp. 1507-1512,
2000.

6. P. J. Angeline. “Evolutionary optimization versus particle swarm
optimization: philosophy and performance difference,” Proc. 7th Annual Conf.
on Evolutionary Programming, pp. 601-610, 1998.

7. X, Xie, W, Zang and Z Yang. "A dissipative swarm optimisation, Proceedings
of the IEEE Congress on Evolutionary Computing (CEC 2002), Honolulu,
Hawaii USA, May 2002.

8. E. Ozcan and C. Mohan. Particle swarm optimization: surfing the waves.
Proc. 1999 Congress on Evolutionary Computation, 1939–1944. Piscataway,
NJ: IEEE Service Center, 1999.

9. D. P. Croft and J. Krause, and R. James. Social networks in the guppy
(Poecilia reticulata). Proceedings of the Royal Society of London: Biology
Letters, pp. S516-S519, 2004.

10. D.J. Watts and S. Strogatz. Collective dynamics of ‘Small world’ networks.
Nature 393, pp. 440-442, 1998.

11. D.J. Watts. Small Worlds: The Dynamics of Networks Between Order and
Randomness. Princeton University Press, 1999.

12. Y. Shi and R. Eberhart. A modified particle swarm optimizer, Proc. IEEE Int.
Conf. on Evolutionary Computation, pp. 69-73, 1998.

13. Y. Shi. Particle swarm optimisation code,
http://www.engr.iupui.edu/~shi

