
Objects-Early Tools – A Demonstration 
Joe Bergin 

Computer Science 
Pace University 

berginf@pace.edu 

Kim Bruce 
Computer Science 
Williams College 

kim@cs.williams.edu 

Michael Kölling 
Mærsk McKinney Møller Institute 
University of Southern Denmark 

mik@mip.sdu.dk 
 

SUMMARY 
Various software tools have been proposed or developed for use 
in introductory programming courses. Usually, presentation of a 
new tool at the SIGCSE symposium occurs when a tool is first 
developed, leaving it to interested observers to identify success or 
failure of tools over their lifetime. 

For teachers, it can be difficult to compare available tools and 
judge potential application in their courses.  

In this session, three tools with an established track record of 
successful classroom use are presented: Karel J Robot [1], 
objectdraw [2], and BlueJ [2]. In addition to considering each tool 
individually, opportunities for combinations of these tools are also 
discussed. 

The focus of this session will be on concrete, hands-on advice that 
teachers can immediately apply in their classrooms. 

Categories and Subject Descriptors 
K.3.2 [Computers & Education]: Computer & Information 
Science Education  - Computer Science Education 

General Terms 
Human Factors. 

Keywords 
CS1, object-orientation, objects early, pedagogy, software tools. 

1. INTRODUCTION AND OBJECTIVES 
The idea of teaching a programming course in an ‘objects-early’ 
mode has been proposed and discussed repeatedly in the past. A 
common observation, however, is that many teachers still find it 
very difficult to find a good entry point into teaching such a 
course. 

Over the last few years, a considerable number of software tools 
have been developed and presented at the SIGCSE symposium to 
help with this task. Reports from users consistently show that use 
of some tools can greatly ease the task of dealing with some of the 
overhead that teaching of object orientation imposes on teachers 
and students, and significantly increase understanding of 
important concepts by students. 

New teachers, however, do not have an easy task in finding and 
evaluating existing tools, identifying those that are still being 

maintained, and keeping up with recent changes and 
developments. Frequent questions appearing on various teaching-
related mailing lists or being sent to the authors directly bear 
witness of these difficulties. 

In this session, three tools that have a proven track record of 
successful classroom use are being presented by their authors. 
These presentations aim at achieving three things: 

• to give teachers who know little or nothing about the tool a 
quick and general introduction into capabilities and 
application areas of the tool; 

• to give teachers who already know the tool an update on 
important recent changes in the tool; and 

• to provide concrete, immediately useful ideas about 
improving programming courses through the use of software 
tools, that teachers can directly benefit from. 

The three projects presented are well known instances of three 
different types of object-oriented software tools: a micro world 
(Karel J Robot), a development environment (BlueJ) and a class 
library (objectdraw). 

All three have in common that they have been developed 
specifically for the teaching of object-oriented concepts in 
introductory programming courses. All three are also well beyond 
experimental stages, having been widely used for several years. 

Presenting the tools together in a single session provides the 
unique opportunity to not only discuss each of the software tools 
individually, but to investigate how these software tools may be 
combined or complemented to increase their impact. 

2. KAREL J ROBOT 
Karel J Robot is the current version of a microworld that has 
evolved since about 1980 into an effective means of teaching 
programming to novices. It has always focused on correct use of 
the then dominant programming paradigm. Today that is object-
oriented programming. Karel thus introduces dynamic 
polymorphism as early as reasonable in a course (about the third 
week of CS1). The Karel world is visual, programming is in Java, 
and the system is provably a Turing Machine, permitting very 
complex programs to be written with a very reduced Java subset. 
Problem solving is stressed over language syntax, and instructors 
are dissuaded from introducing new language features to solve 
new problems.  

The Karel J Robot (KJR) system is distributed as a Java jar file 
that has the visual system and a set of classes for primitive robots 
that the student programmer extends to do interesting things in a 
simple world. In addition to the "obvious" things (described in the 
manuscript), KJR provides an agile testing framework (JUnit 
based) so that test first development can be done in KJR. There is 
also an acceptance testing framework (KarelFixture) permitting 

 
Copyright is held by the author/owner(s). 
SIGCSE’05, February 23–27, 2005, St. Louis, Missouri, USA. 
ACM 1-58113-997-7/05/0002. 
 



the instructor to present exercises as executable specifications 
interleaved with text descriptions of the exercise requirements.  

KJR also has a remote controller interface permitting students to 
exercise robots manually. This is built with Java reflection, 
permitting the student's own code to be so exercised easily. 
Finally an event driven programming API has recently been added 
to KJR so that something like programming physical robots via 
feedback can be simulated.  

Web site: http://csis.pace.edu/~bergin/KarelJava2ed 
/Karel++JavaEdition.html 

3. BLUEJ 
BlueJ is an integrated Java development environment specifically 
designed for introductory teaching that presents a unique front-
end to offer an interaction style that is different to other 
environment available today. 

BlueJ was carefully designed with three fundamental goals in 
mind: visualization, interaction, and simplicity. 

The visualization concept aims at making the main abstractions of 
object orientation visible on screen: objects and classes. This 
makes it much easier for students to understand and reason about 
these fundamental concepts, and easier for teachers to talk about 
them. 

Classes are visualized in a UML-like diagram, which gives an 
immediate overview over students projects and also shows 
dependencies. Objects are shown when they are instantiated. 

The interaction part enables users to directly interact with the 
conceptual entities in the environment. Classes can be 
interactively instantiated, and public method can be invoked on 
objects. This encourages an exploratory approach to 
understanding object orientation that involves the student much 
more than traditional environments. 

Simplicity is a key goal in BlueJ’s interface design. The 
environment itself should not become an obstacle in the learning 
of programming principles. Unfortunately, environments designed 
for professional developers are of a complexity that poses its own 
challenges, distracting from the learning of programming itself. 
BlueJ avoids this by presenting tools custom-designed for student 
use. 

Apart from the general object interaction mechanism, BlueJ offers 
integrated support for a variety of education-related tools, most 
importantly an easy-to-use debugger, a javadoc generation facility 
and integrated support for JUnit. 

BlueJ was first released in 1998, and is now widely used in many 
institutions all over the world.  

Web site: www.bluej.org 

4. OBJECTDRAW 
The objectdraw library was developed by Kim Bruce, Andrea 
Danyluk, and Tom Murtagh to support teaching Java to novice 
programmers. It is designed to support an “objects from the 
beginning” approach to CS 1. It supports truly object-oriented 
graphics, makes it possible to incorporate event-driven 
programming techniques from the beginning, and provides 
support for introducing concurrency quite early in a course. 

Graphical objects both serve as excellent examples of objects and 
provide visual feedback that makes it easier for students to 
determine the effects of their code and to detect errors in their 
programs. The graphical objects provided in the objectdraw 
library also have the advantage that results of the creation and 
modification of objects appear immediately on the screen without 
the need to invoke a paint or repaint method. 

The programs that students use most are event-driven.  Clicking 
on a link, selecting an item from a menu, or dragging an icon 
results in program actions.  Students are more highly motivated by 
writing event-driven programs than using traditional text-based 
I/O. Moreover, because different events can happen at any time, 
students learn early that event-driven methods can be invoked in 
many different orders, just as the methods of other objects can be 
invoked in different orders. Thus students learn from the 
beginning not to expect a single monolithic ordering of program 
statements during execution. The objectdraw library contains a 
class WindowController that extends Japplet by inserting 
a drawing canvas in the center of a window and that serves as a 
listener for mouse actions on the canvas. The syntactic 
simplifications that result make it easy for students to program in 
an event-driven style. In many cases, event-driven programming 
is easier than more traditional styles. 

Web site:  cortland.cs.williams.edu/~cs134/eof 

5. PRESENTERS 
Joe Bergin is Professor of Computer Science at Pace University. 
He has been teaching for 32 years and OO programming since 
1986. He is the creator of Karel++ and Karel J Robot, based on 
earlier work of Pattis, Stehlik, and Roberts. He has written widely 
on OO programming and especially the central role of 
polymorphic thinking. 

Kim Bruce is the Frederick Latimer Wells Professor of Computer 
Science at Williams College, and is currently a Visiting Professor 
of Computer Science at the University of California at Santa Cruz.  
He is the author of Foundations of Object-Oriented Languages:  
Types and Semantics, MIT Press, and is a co-author of the 
forthcoming CS 1 text, Java: An eventful approach, Prentice-Hall.   

Michael Kölling is an Associate Professor of Software 
Engineering at the University of Southern Denmark. He is one of 
the developers of the BlueJ environment and has published 
numerous papers on object-oriented and computing education 
topics and is co-author of a successful Java textbook. 

6. REFERENCES 
[1] Bergin, J., Stehlik, M., Roberts, J., Pattis, R., Karel J Robot: 

A Gentle Introduction to the Art of Object-Oriented 
Programming in Java, Unpublished manuscript. Available on 
the web at: http://csis.pace.edu/~bergin/ 
KarelJava2ed/Karel++JavaEdition.html 

[2] Bruce, K. B., Danyluk, A., and Murtagh, T. A library to 
support a graphics-based object-first approach to CS 1. In 
Proceedings of the 2001 ACM SIGCSE Symposium (2001), 
pp. 6–10.. 

[3] Kölling,  M., Quig, B., Patterson, A. and Rosenberg, J., The 
BlueJ system  and its pedagogy, Journal of Computer 
Science Education, Special  issue on Learning and Teaching 
Object Technology, Vol 13, No 4, 249-268, Dec 2003. 


