
Game Programming in Introductory Courses With
Direct State Manipulation

Michael Kölling
Computing Laboratory

University of Kent

mik@kent.ac.uk

Poul Henriksen
Computing Laboratory

University of Kent

p.henriksen@kent.ac.uk

ABSTRACT
While the introduction of object-oriented programming slowly
moves down the age groups – starting from advanced university
courses, to introductory courses, and now into high schools –
many attempts are being made to make object-oriented
programming introduction less abstract and theoretical.
Visualisation and interaction techniques are being applied in an
attempt to give students engaging and concrete experiences with
objects. Recently, the greenfoot environment has been proposed
as another step in this development. In this paper, we describe
new functionality in the greenfoot environment, especially the
addition of user interaction programming via direct state
manipulation. Direct state manipulation provides very low
overhead graphical I/O handling at a level that makes it feasible to
guide students to simple graphical game programming within a
few weeks, while concentrating on fundamental object-oriented
concepts in the structure of the program.

Categories and Subject Descriptors
K.3.2 [Computers & Education]: Computer & Information
Science Education - Computer Science Education

D.1.5 [Programming Techniques]: Object-Oriented
Programming.

General Terms
Design, Human Factors

Keywords
Pedagogy, Object-Oriented Programming, Visualisation,
Animation, Behaviour, Interaction, Games

1. INTRODUCTION
A few years ago, authors writing about the introduction of object-
oriented programming to students argued for an 'objects early'
approach. Object orientation should be moved from advanced
programming courses in later years of the curriculum to first
programming courses in order to avoid the paradigm shift when
moving into object orientation. This change was largely accepted
and implemented in most institutions over the last years.

The 'objects early' debate then continued, this time arguing that
the concept of objects and classes should be addressed in the early
weeks of the introductory course, not towards its end. Several
pedagogical reasons were stated, claiming better understanding of
important concepts with this approach. We do not want to
continue that particular debate here, but merely point out that we
agree with the arguments of the objects-early proponents.

One more recent development in this debate is that the goal posts
are shifting. While we aim at introducing object orientation first,
for many students the introductory programming course at
university or college is not the first contact with programming
anymore. Programming is now regularly taught at high school
level, and it is possible that its introduction will move even further
down into mid-level schools. If appropriate tools were available,
this certainly seems possible.

For teachers of object orientation this introduces a radical change.
If we want to teach objects early, we can no longer concentrate on
college courses, we have to address students at school level.

There are several significant differences between those two
populations (college versus school students) that are highly
relevant for teachers as well as for developers of pedagogical
content and tools. Apart from maturity issues, the most significant
difference is interest.

In many computing courses at university and college level,
students have made a conscious choice to study computing, and
an individual interest (or at least some form of secondary
motivation) can be assumed in a substantial part of the student
audience. (Those colleges where this is not true need to be viewed
as being similar to high schools for the purpose of this
discussion.)

At high schools, this is not the case. Many students have no
interest in programming, either because they do not know
anything about it, or because they dislike the idea of programming
based either on prior experience or prejudice.

Thus, in a school setting, an introduction to programming must
address distinctly different challenges than a similar course at a
university. The course must not only convey programming
concepts, it must first and foremost generate interest in the subject
matter for students with no previous affinity for the subject.

In this paper, we introduce a tool named greenfoot, which is
designed to form the basis of an introduction to programming for
school students or at early college level.

Greenfoot is an interactive object world that aims at motivating
students by providing concrete experience with object concepts
through interaction and visualisation, using engaging context
scenarios, while conveying important object-oriented program-
ming abstractions in the standard Java programming language.

We first discuss some of the more fundamental considerations in
designing such a tool, followed by a description of the greenfoot
interaction and visualisation capabilities. Specifically, we
introduce direct state manipulation as a novel mechanism for
easily programming interactive systems.

2. MAKING OBJECTS CONCRETE
In order to engage the interest of young students, we aim at
providing concrete experiences with the subject matter.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

ITiCSE’05, June 27–29, 2005, Monte de Caparica, Portugal.

Copyright 2005 ACM 1-59593-024-8/05/0006…$5.00.

Since the concept of objects is at the heart of our subject matter,
we aim at providing concrete experiences with objects.

Teaching about programming is in constant danger of relying
heavily on abstract conceptualisation, while providing little
concrete experience with the treated concepts, such as object
behaviour.

In order to understand object-oriented programming students must
understand objects. Programming is the activity of defining the
behaviour of objects.

One of the problems in traditional programming environments is
that object behaviour is not directly observable. Students can
program behaviour, but only secondary effects of this behaviour
can be observed (if at all), introducing an abstract separation of
cause and effect.

Even in educational visualisation environments such as BlueJ [7],
where objects are graphically represented, this remains true.
Objects in BlueJ have a uniform appearance, and they do not
change as the object acts or its state changes. Behaviour cannot
directly be observed.

One educational approach that has addressed this problem is the
use of micro worlds, such as turtle graphics [3], Karel the Robot
[1], or the Marine Biology Case Study [9]. Dann et al. have used
the Alice environment to address these issues using a three
dimensional world [4].

In these micro worlds behaviour of objects in the world is
visualised, and students can make direct observations of object
behaviour and interactions.

While this is an important and valuable first step in the right
direction, this approach can be taken further. Existing micro
worlds suffer mainly from two restrictions: They lock students
and teachers into a fixed world scenario, and they lack direct
interaction mechanisms with objects or simulated worlds.

Students need to be engaged. To achieve this it is beneficial if
they can interact with their artefacts. The activity of programming
is one form of interaction that is at the core of these systems. But
missing out on direct interaction with instantiated objects or
executing simulations means missing a great opportunity for
engaging especially the less technically minded students. In other
words: students must be able to manipulate, experiment with, and
observe objects, not merely lines of source code.

We will discuss both aspects – flexible scenarios and interaction –
in more detail below. In this paper, we will concentrate especially
on the interaction aspect of the greenfoot object world.

3. DESIGN GOALS
Before discussing some aspects of greenfoot in detail, we give a
brief summary of the main design goals, which will help to put
into perspective those decisions we discuss later in more detail.

Design goals for greenfoot include:

• to provide visual feedback of object state and behaviour;
• to allow active interaction and experimentation with object

instances and to explore behaviour interactively;
• to support highly flexible scenarios, while freeing scenario

writers from dealing with GUI programming;
• to provide a clean illustration of object-oriented concepts;
• to allow for easy development of interactive scenarios, for

example interactive games, by students;
• to support migration to other environments.

Some of these design goals have been discussed in more detail in
[5]. We will not repeat this discussion here.

The goal of supporting an interaction mechanism for running
applications – for the purpose of developing game-like
applications – has recently been added and was not included in
earlier discussions of design goals. We describe the motivation
and environment mechanism for supporting this below.

4. THE GREENFOOT SYSTEM
The greenfoot system is an interactive object world. It provides a
framework and environment to create interactive, simulation-like
applications in a two-dimensional plane.

One aspect of greenfoot is that it allows visualisation of
appearance and location of simulation objects in a two-
dimensional grid, similar to micro world systems, such as Karel J.
Robot [1] or the Marine Biology case study.

In addition to this, greenfoot allows direct interactive method calls
on simulation objects, similar to the interaction facilities in the
BlueJ environment.

Scenarios are completely decoupled from the visualisation and
interaction framework, so that greenfoot can be used for a wide
variety of graphical applications.

The greenfoot system also provides a full IDE, including
integrated editing, compilation, creation of new classes, object
inspection and a source level debugger.

Figure 1: The greenfoot main window

4.1 The User Interface
The largest part of greenfoot’s user interface is reserved for the
display of the world, shown in the centre of the screen (Figure 1).
It holds the greenfoot objects (ant hills, ants and food in this
example).

To the right of the world is a class display. Here, all classes
involved in the current application are shown. The classes are
divided into Greenfoot-World Classes, representing worlds, and
Greenfoot-Object Classes, representing visible objects within the
world.

The classes can be edited, compiled and instantiated. These
actions can be accessed from a popup menu of the class.

The lower part of the window holds execution controls to run,
stop or single-step the simulation and a slider to control the
execution speed.

4.2 Greenfoot Development
All classes whose instances should be visible in the greenfoot
world extend the predefined superclass GreenfootObject. The
environment also provides a predefined class GreenfootWorld,
which implements the world itself.

The world provides a grid of cells, which can hold greenfoot
objects. Each greenfoot object can specify its own individual
appearance using an icon or a drawing method. Greenfoot objects
have a location in the world and a rotation that is applied to the
icon. The appearance can span one or more cells.

All objects in a greenfoot world are automatically animated and
interactive. They can have behaviour that is exhibited when the
simulation is run using the Run button, and they can be used for
direct interaction through associated popup menus when the
simulation is paused.

Figure 2: Roles of people involved in creation and use of micro
worlds (traditional vs. greenfoot)

5. FLEXIBLE SCENARIOS
One of the important characteristics of greenfoot is the de-
coupling of the user level scenario from the animation and
interaction framework.

Many existing micro worlds achieve simplicity by restricting use
to a single scenario: The Marine Biology Case Study deals with
fish and nothing else, Karel has robots and "beepers", turtle
graphics has a turtle and a pen.

While this restriction has the advantage to simplify start-up, it has
disadvantages as well. The scenario cannot easily be adapted for
different user groups. If, for example, some students have no
interest in robots, they still cannot escape them if Karel is used. It
also means that courses typically use only a single scenario. The
overhead of learning to use a different micro world system in
order to use a different scenario is usually forbidding.

In greenfoot, a goal is to allow widely differing scenarios to be
developed by knowledgeable users (such as teachers) within a
single framework (Figure 2). This enables use of more user-
targeted scenarios, since scenario writing is at a level of
complexity that puts it within reach of many teachers. Also, it
allows use of multiple scenarios in a single course, since the

overhead of installing and learning to interact with a new
framework is avoided.

We still envisage scenarios to be shared between teachers, but the
group of people writing scenarios can easily be much larger than
those who have the time to implement a complete micro world
framework.

6. SOME SAMPLE APPLICATIONS

6.1 Ants
A first scenario is shown in Figure 1. This example is called
"Ants" and displays ant hills, ants, food sources and pheromones.
Ants leave their ant hills to find food and place tracks of
pheromones if their search is successful. More food can be
dropped into a running animation to influence the ants' behaviour.

During the testing phase, we have placed some ants and just a
single drop of pheromones (which evaporates over time) into the
world to check if ants correctly follow the pheromone smell. No
additional coding is needed to perform such tests.

Figure 3: Karel The Robot in greenfoot

Karel The Robot

Figure 3 shows a re-implementation of the popular Karel The
Robot scenario in greenfoot (with our own graphics). Robots can
walk around the world and collect or place 'beepers'. Here, the
world uses a grid resolution of about 30 pixels per grid cell.

In scenarios such as this one, we envisage that a teacher would
create the initial robot class, while students start with making
modification to the robot, and then define their own robot
subclasses with specified behaviour.

The appearance of a robot, for example, can be changed with a
single line of code, and additional behaviour can be added easily.

The Marine Biology Case Study is structurally very similar, and
can easily be programmed as well.

6.2 A Lift Simulation
The lift simulation is a more advanced example that students
might work on later in a course. We have included it here to
demonstrate that greenfoot cannot only be used to display birds-

eye views of a regular grid surface, but also other animated two-
dimensional graphics.

Here, people appear on various floors of a multi-story building,
wait for a lift, and then enter the lift to travel to different floors.

Any application that uses two dimensional graphics to perform its
I/O can easily be coded in greenfoot.

Figure 4: A lift simulation

6.3 Other scenarios
A wide range of other applications can be fitted into the greenfoot
framework. While best suited to applications that produce two-
dimensional graphical output, other uses are not excluded. Since
drawing capabilities on the world include the drawing of text,
some objects could display a behaviour that displays textual
information on the screen. While this is not the main goal for
greenfoot, it extends its capabilities.

Possible scenarios are unlimited. Obvious choices include
emergency evacuation of buildings, traffic simulations,
supermarket checkout queues, predator/prey simulations and
many more. Greenfoot may even be used to provide an easy-to-
use output mechanism to more advanced exercises such as, for
example, the dining philosophers problem.

7. INTERACTION
The description so far has concentrated on visualisation of a
continuous event simulation scenario, and interaction via method
calls to selected objects while the simulation was paused.

An additional challenge was to add game-like interaction to
running applications, so that students are not restricted to passive
observation once a simulation has started, but can enter into an
interaction with the running program.

Programming user interaction in modern object-oriented
languages is often not trivial, and graphical interaction libraries
are often big and complex. The most common solution for
interaction in these systems is based on event-driven models.

Greenfoot uses standard Java as the user's implementation
language, and the standard Java library for this purpose (included
in the AWT and Swing packages) is a typical example. Users need

to deal with events and listener models to use these – constructs
that rely heavily on a substantial number of advanced language
constructs that we do not want to require of beginning students.

Several attempts have been made to simplify graphical user
interaction, typically by providing custom GUI libraries with
simplified event models. ObjectDraw [2] and Java Power Tools
[8] are two typical examples.

These libraries provide a great deal of help, and are steps in the
right direction: they take some of the burden of complexity of the
programmer, and make it easier for beginners to develop
programs that include user interaction.

We believe, however, that we can take this a big step further and
remove most of the remaining complexity by integrating the
interaction mechanism into our object world framework.

The mechanism we propose is direct state manipulation. We will
discuss this with an example.

Imagine a Lunar Lander application (a classic small game where
the user has to land a space craft by providing the right amount of
thrust with limited fuel supplies).

To implement this example, we use two classes: the Lander class
that models the space craft, and a Throttle class that models the
throttle to control the engine (Figure 5).

Figure 5: The Lunar Lander scenario

When instantiating a lander, the throttle is automatically
instantiated and placed on screen as well (via code in the lander's
constructor). The lander will then move according to programmed
gravity and the throttle value. This implies that the throttle has, for
example, a getValue() method to provide its state.

In our greenfoot example, this method simply returns the throttle's
vertical coordinate. Users can then, while this application is
running, grab the graphical representation of the throttle and drag
it up and down on screen. This will update the throttle object's
position in real time, thus providing input for the application.

The mechanism is simple to understand and simple to use. The
idea is based on directly reversing the animation mechanism: the
visualisation framework guarantees that some changes in object
state (changes to location, rotation, or icon representation) are
immediately made visible on screen. This is what gave us state
and behaviour visualisation.

Now we have added a framework that reverses this: user-initiated
changes to some of the object's state (here: screen position) are
immediately fed back into the internal object state.

This mechanism is inspired by the Squeak framework [6], which
provides similar functionality in a very different environment.

When the user drags an object, the framework will request a
position change by calling the object's own setLocation() method.
The object can influence the exact positioning by overriding this
method. In the Lunar Lander project, for example, we have
modified this method to honour the requested change along the Y-
axis, but leave the X-coordinate constant. The result is that the
user can freely drag the throttle up and down, but not sideways.

8. I/O WITHOUT I/O
The input mechanism as described here has several advantages.
The most fundamental advantage is that the application can
receive user input without any specific code written for the
purpose of reading input.

The user just writes code that specifies that the rocket should
adjust its thrust by the throttle setting, and that the throttle setting
corresponds to its Y-coordinate. No additional I/O code is ever
written by the user.

This lets students concentrate on the fundamental modelling of
object characteristics and interactions, without being distracted by
having to write arcane or mysterious event handling code. In an
exact mirror of the output model – behaviour can be visualised
without programmed output, just by changing the object's
location, for example – input can now be received without
programmed input code.

Input is achieved just by definition of fields and 'normal' methods,
putting the implementation of games within reach of beginning
students.

9. CONCLUSION
In this paper, we have mainly discussed use of greenfoot to
program simulations or simple games. In reality, greenfoot is not
restricted to these categories of applications. It is just as easily
imaginable that greenfoot is used to create, say, a virtual drum kit,
or an on-screen piano. Any application that profits from graphical
output may potentially profit from greenfoot.

Typically, we would envisage that in early examples teachers
write some classes for a given scenario (either from scratch or by
sharing them with other teachers), and students modify and extend
these classes. A little later in a course, students may also create
completely new scenarios from scratch. The Karel-The-Robot
scenario shown above, for example, consists of only 250 lines of
Java code; the Ants example has a total of about 600 lines of code
(including empty lines and comments).

Since users program only behaviour in greenfoot, not the
graphical I/O code, writing a scenario of this complexity towards
the end of a course is not unrealistic.

Overall, we believe that greenfoot may have the potential to allow
teachers to use engaging and interesting examples in the
classroom, while concentrating on teaching the fundamentals of
object-oriented programming: objects, their state and behaviour,
and object interaction.

The use of graphical output from the start allows students to get
immediate and intuitive feedback about program behaviour. It is

also hoped that it helps to create interest and encourage students
to experiment and invent modifications and additions to existing
programs, especially for students that have a less technical or
mathematical background.

The availability of interaction programming allows students to
create applications that are closer to the computer games many of
them are familiar with. At the same time, the flexible scenarios
allow targeting of the application topic to personal preferences, so
that the teaching context can be designed to connect to students’
interests and backgrounds. We hope that this also increases the
level of interest and acceptance in students.

Whether these goals are achieved should be the focus of a study
once the first greenfoot versions can be tested in realistic settings.

10. STATUS
An implementation of a greenfoot prototype has been completed
and experimentation with this prototype with the goal of
functional refinement is currently underway. An early access
release of greenfoot is available for free download from
www.greenfoot.org. A complete system, also to be distributed
freely, is expected in the second half of 2005.

11. REFERENCES
[1] Bergin, J., Stehlik, M., Roberts, J., & Pattis, R. Karel J.

Robot – A Gentle Introduction to the Art of Object-Oriented
Programming in Java. Unpublished manuscript, available [18
March 2004] from: http://csis.pace.edu/
~bergin/KarelJava2ed/Karel++JavaEdition.html

[2] Bruce, K., Danyluk, A., Murtagh, T., A library to support a
graphics based object-first approach to CS 1. In Proceedings
of the 32nd SIGCSE symposium, Charlotte, North Carolina,
February 2001.

[3] Caspersen, M. E., Christensen, H. B., Here, There and
Everywhere – On the Recurring Use of Turtle Graphics in
CS1, Proceedings of the Fourth Australasian Conference on
Computing Education, 2000.

[4] Dann, W., Dragon, T., Cooper, S., Dietzler, K., Ryan, K.,
Pausch, R., Objects: Visualization of behavior and state. In
Proceedings of the 8th annual ITiCSE conference,
Thessaloniki, Greece, 2003.

[5] Henriksen, P. and Kölling, M., greenfoot: Combining Object
Visualisation with Interaction, The 19th Annual OOPSLA
conference, Educators' Symposium, Vancouver, Canada,
2004.

[6] Ingalls, D., Kaehler, T., Maloney, J., Wallace, S., Kay, A.,
Back to the future: the story of Squeak, a practical Smalltalk
written in itself. In Proceedings of the 12th ACM SIGPLAN
OOPSLA conference, Atlanta, Georgia, 1997.

[7] Kölling, M., Quig, B., Patterson, A. & Rosenberg, J., The
BlueJ system and its pedagogy. In Journal of Computer
Science Education, Special issue on Learning and Teaching
Object Technology, 13 (4), December 2003

[8] Proulx, V.K., Raab, j., Rasala R., Objects from the
beginning-with GUIs. In Proceedings of the 7th annual
ITiCSE conference, Aarhus, Denmark, 2002.

[9] The College Board (Advanced Placement Program), Marine
Biology Case Study. Available [September 10, 2003] from:
http://www.collegeboard.com/

