
Opportunities and Challenges with J2SE 5 for
Introductory Programming Teaching

Michael Kölling, Poul Henriksen
Maersk Institute

University of Southern Denmark

{mik, polle}@mip.sdu.dk

Davin MacCall, Bruce Quig, John Rosenberg
Deakin University

Melbourne, Australia

{davmac, bquig, johnr}@deakin.edu.au

ABSTRACT
The recent release of the Java version 5.0 "Tiger" introduces
some significant language changes. For educators, some of
these changes provide opportunities to improve teaching,
while others pose additional problems that require awareness
to avoid them. The authors have recently completed the
inclusion of support for all new language features into a well-
known educational IDE for Java – BlueJ – and in the course of
doing so evaluated each of them for usefulness in education,
and developed pedagogic strategies to handle the inherent
opportunities and challenges. This has formed the basis of the
design of the features in BlueJ which support the language
changes. In this paper, we describe the results of our
evaluation, provide recommendations on treatment of the new
features in introductory courses and discuss how BlueJ may be
used to illustrate important aspects.

Categories and Subject Descriptors
K.3.2 [Computers & Education]: Computer & Information
Science Education - Computer Science Education

General Terms
Languages

Keywords
CS1, programming, Java, pedagogy, IDE.

1. INTRODUCTION
Recently a new version of Java, J2SE 5.0 “Tiger”, has been
released. This version includes some significant changes to
the language, and thus will affect the way we teach our Java-
based introductory courses.

An imposed language change such as this, made without a
conscious decision by the teacher, could lead to unfortunate
responses in two ways: teachers may resent having to change
their courses and continue to use existing material, potentially
missing out on valuable teaching opportunities, or they may
jump in too deep, trying to discuss all new features, some of
which clearly complicate the language and should be avoided
in first year teaching.

We attempt to offer concrete information about potential
benefits and problems with each feature, helping instructors
find a middle path through the new challenges. Our comments

are based on extensive functional design and interface design
work done for the integration of J2SE 5.0 features in the
educational IDE BlueJ [5]. During this design work, we
carefully studied characteristics of each new language feature,
analysed ways in which it could be included in a modern CS1
curriculum and designed the functionality and user interface
in the environment to support the desired activities and
illustrate the fundamental concepts.

The most relevant new language features are generic types,
enumeration types, auto-boxing, a new for loop and variable
argument lists. All of these have been described repeatedly and
in detail elsewhere (see, for example, [2] [6]), and we will not
repeat that exercise here. We assume that readers are familiar
with the syntax and semantics of these constructs.

Instead, we want to discuss the impact of these features on
introductory Java teaching. This has been partially covered
elsewhere [4], and we will enhance and expand upon the
discussion here.

We aim to identify which elements of the new language
features represent important concepts that should be explicitly
introduced, which parts can safely be ignored, and which parts
form pitfalls that introduce new problems.

Furthermore, for those parts that warrant discussion in an
introductory course, we give examples of use, guidance for
introduction, and discuss how the visualisation elements of
the BlueJ IDE help to illustrate the important aspects to
students. We will also record several points where our
assessment of the usefulness of the new constructs differs from
that given in [4].

We start with a discussion of each of the new language
features, followed by general discussion and our conclusion.

2. GENERIC TYPES
The inclusion of generic types is, without doubt, the most
substantial and most important change to the Java language,
both for developers and for education.

When making the switch to “Tiger”, we recommend that
teachers start using generic types in favour of Object-typed
parameters and type casts wherever possible.

The most prominent use for generic types is in collection
classes: all collections are now available in generic variants,
and students are bound to encounter these in their course.

The main reason to embrace generic types is that they are able
to completely replace an idiom (Object-typed collections) that
was hard to explain, unsafe in its use, and seemed to contradict
fundamental language principles.

The use of the classic heterogeneous collections is out of line
with the spirit of the Java type rules, since it does not support

strong type checking on insertion of its elements. The
necessary cast on retrieving elements is hard to explain to
students at an early stage in the course, and presents nothing
more than (necessary) syntactic noise. Furthermore, students
could only fully understand collection semantics if they
understood inheritance – a concept that is covered after
collections in many courses.

With the availability of generic types, use of old-style
collections can (and should) completely be avoided, thus
gaining several educational advantages, including the
complete decoupling of the topic of inheritance from the first
use of collections, and avoiding premature discussion of type
casts.

Not everything about genericity, however, is as rosy as this
first judgement makes it look. The new language rules include
constructs with subtle problems that are not always easy to
understand.

The use of generic types in Java can be separated into four
groups of tasks:

• using (instantiating and calling) generic types,
• writing simple generic types,
• writing generic types with (bounded or unbounded)

wildcards,
• generic methods.

We propose that these four tasks are separated in a course and
covered at different times.

Figure 1: A constructor with a type parameter

2.1 Using generic classes
Using generic types is relatively straightforward, and can be
covered quite early in the course. It should be covered when
the first collections are needed in student programs.

In BlueJ, generic types are supported explicitly at all stages of
interaction. When a generic class is instantiated, the
constructor dialogue includes an explicit entry field for each
type parameter, similar to the fields for constructor/method
parameters. This illustrates the similarity of the concept of
parameterisation of classes and methods (Figure 1).

When an object has been instantiated, its type on the object
bench is displayed as its actual parameterised type (e.g.
A r r a y L i s t < S t r i n g > or ArrayList<Person> instead of
ArrayLis t<E>) (Figure 2). This serves to illustrate the
narrowing to an actual type during the instantiation process.

Similarly, calls to methods that were defined with formal
generic type parameters show the actual type in the method
invocation dialogue. All type checks are appropriately done in
interactive invocations, just as they would be in equivalent

calls in compiled source code, and type errors are reported
when encountered. To ensure consistency, BlueJ uses the same
error messages in reporting these errors that the compiler uses
when it encounters errors in written source code.

Figure 2: Parameterised objects on the object bench

In introducing generic types, it is helpful to interactively
create two or more parameterised objects with different actual
type parameters on the object bench. The different actual types
can then be observed in their respective methods, and the
effect of providing these different type parameters becomes
obvious.

Another tool that can be used to examine and understand
generic types is BlueJ’s object inspector. When inspecting a
generic object, fields declared with formal type parameters are
displayed with their actual type. Again, contrasting two
different instances serves to illustrate the semantics of generic
instantiation.

2.2 Writing simple generic classes
Writing simple generic classes is also straightforward, and
could be covered any time after use of generic classes has been
understood. It is important to realise, however, that these two
aspects are not necessarily connected – writing these classes
may well be covered some considerable time later than using
them. This leaves a great deal of freedom in course design. A
similar approach has been used with BlueJ for some time with
use of existing classes being introduced well before the design
of a new class.

Figure 3: Generic classes in the class diagram

In BlueJ, generic classes in a project are marked with their full
generic type name in the class diagram (Figure 3). Thus, they
can easily be identified.

2.3 Wildcards and generic methods
The generic type mechanism in Java includes substantially
more constructs than those covered above. These include
wildcard type parameters (written in Java with a question mark
symbol as the formal type parameter), wildcards with upper or
lower bounds, and generic methods. In addition, the semantics
of several constructs are not as easily understood as one might
think at first glance. Among the more subtle issues are
subclass relationships of generic collections and arrays of
generic objects [3].

While some of these constructs – such as bounded type
parameters – represent general principles, and should be
discussed at some stage, it is not entirely clear whether this
should be in a first year course or later in the curriculum.

If they are discussed in the first year course, the discussion
should be separated from the coverage of simple generics.
Understanding the need for wildcards and the semantics of
bounded generic types requires detailed understanding of
inheritance, and thus should be introduced fairly late in an
introductory course, while general use of (generic) collections
is so fundamental that it should not be delayed this long.

Some other generic type mechanisms have no obvious role in a
first year course. One of these is generic methods. A
programmer must, for example, decide whether to use bounded
type parameters or generic methods in certain situations. I.e.,
should a method be written as

 public void m(Collection<? extends E> a);

or as

 public <T extends E> void m(Collection<T> a);

These two alternatives are similar in many regards, and the
difference is subtle. Examples like this clearly go beyond an
average first year course’s material.

In other words: attempting to cover all aspects of Java’s
generic types would be a distraction from the fundamental
programming concepts, and should consciously be avoided.

2.4 Generics and legacy code
This leaves, lastly, the question how to deal with old-style
collections.

Once J2SE 5.0 is well established, there is no need to write new
code using non-generic collections anymore. Students might,
however, be confronted with those in reading older Java code
from other sources.

We would suggest that old-style collections be avoided
initially (while collections are introduced). They can then be
discussed later as one example of using inheritance,
presenting them as an outdated programming style, thus
enabling students to read older code without encouraging
them to write it.

3. ENUMERATION TYPES
The addition of type safe enumerations (known as enum types)
to the Java language is a valuable improvement. The main

reason, again, is that it completely replaces a code idiom that
was potentially misleading to read and unsafe in operation.

The most common way to implement enumerations before was
to use final static integer fields. The most obvious problems
are that the declared type (int) does not represent the logical
type, thus making interpretation harder; that the type does not
correctly specify legal values; and that the use of illegal
values goes undetected by the language type checker. These
and other problems with int-values as enumerations have been
discussed in more detail in [1].

Solutions to this problem prior to the introduction of explicit
enum types include the type-safe enumeration pattern [1].
While this pattern solves many of the main problems, i t
remains largely unused in introductory courses, partly because
teachers do not know about it, and partly because of its
syntactic overhead.

These problems have now been completely removed. Using
enums makes the code both more readable and type safe.

In introducing enums, teachers should initially concentrate on
simple declaration without custom constructors or methods.

BlueJ now includes enum as one of the standard templates for
creating new classes, and the default template provides an
example of such a simple definition:

 public enum Season
 {
 spring, summer, autumn, winter
 }

Using a simple declaration as above is relatively easy to
understand and well worth the additional time needed to
introduce an additional language construct. Enumeration
types are a general programming language concept in their
own right, and thus worth covering, and they support other
concepts that we should try to convey, such as the need for
type safety, readability and clarity of code.

Figure 4: Presentation of enum fields in objects

Enums also allow an extended declaration which includes the
definition of custom fields, constructors and methods. Using
this extended format is much less important for an
introductory course, since it does not touch as much on
additional fundamental concepts. (It presents a fascinating
example to examine for a programming language course in a
later year, since the unification of enums and classes is well
worth studying. This, however, would be out of the scope of
many introductory programming courses.) We would
recommend coverage of this only if a particular given

programming problem clearly benefits from this construct, but
not setting aside time for introduction of this construct for its
own sake.

One of the benefits of the new Java enums is that they provide
readable default string representations.

BlueJ makes use of this when presenting enum values in
object inspectors. Instead of presenting enum objects simply
as object references, they are shown using their actual value
strings (Figure 4). This reflects in the environment the spirit
and purpose of enum values, and aids in conceptual
understanding and debugging.

In the class diagram, enumeration classes are marked with an
«enum» stereotype, so that they can easily be distinguished.

Important characteristics of enum types are that they cannot be
explicitly instantiated, and that their implicitly generated
instances can be accessed using the static values() method.

Both these important aspects are illustrated in the BlueJ
interface. An enum class in BlueJ does not have a constructor,
but access to the values() method is provided through the
class popup menu.

From the class inspector, the Get button can be used to place
the constants onto the object bench for further interactive use.
Thus, interactive exploration of enum classes and objects i s
supported in similar style to interaction with other objects,
and important characteristics of enums can be actively
explored by students.

4. AUTO-BOXING
Auto-boxing – the automatic wrapping and unwrapping of
primitive types into their corresponding object types when
needed – has variously been commented on very positively or
has been judged mildly useful or neutral in a teaching context
[4]. Our view differs fundamentally: auto-boxing is a
potentially confusing feature that makes our lives more
difficult and will require great care and some extra time in
teaching.

The feature is, without a doubt, useful for experienced
programmers, since it allows more concise expression of a
standard task. However, it is not helpful when trying to learn
or teach programming and Java concepts.

The typical situation where beginners are confronted with this
construct is the entry of primitive types into collection
classes. The traditional way of writing this – the explicit
creation of the wrapper object – is tedious and requires more
careful thinking than we would like (since we have to write
some code purely for technical reasons of the underlying
programming language implementation, not for our logical
task at hand).

But the new alternative – auto-boxing – would be beneficial
only if it would replace the old notion. It does so, however,
only syntactically, but not conceptually.

To understand the semantics of a statement such as

 myList.add(5);

a student needs to fully understand the wrapping mechanism,
including the creation of the wrapper object and the restriction
of collections to object types. The shorter syntax serves to
hide, and thus mystify, not clarify, this notion.

For students to acquire the necessary understanding, we have
to discuss the wrapping mechanism – probably using and
explaining the old-style syntax in the process – and the new
syntax. We add a mechanism without adding functionality.

If students are left without this full understanding, they are in
danger of forming misconceptions about important concepts,
such as the distinction between primitive types and objects,
and the nature and behaviour of collection elements.
Seemingly simple rules, such as “The type of elements added
to a collection must match the declared parameter type in the
collection declaration” are apparently broken by the auto-
boxing mechanism. However, understanding this rule is more
important than saving the typing effort through auto-boxing –
that is why this feature poses more problems than it helps.

In practice, this feature should largely be avoided. Collections
of primitive types are usually found either in mathematics-
based problems or artificial tasks. Much better examples are
available. When programming examples are chosen from
practical problem sets, we usually deal with collections of
people, or records, or shapes, or diary entries, and many more
such things. The emphasis here is on things – in other words
objects. Collections of primitive types should be avoided in
the first part of the course, and introduced later when students
have the competence to easily understand the need for and
notion of wrapper classes. Auto-boxing should then be
introduced as the syntactic afterthought that it really is.

Auto-boxing in contexts other than collections – such as
assignment – should be completely avoided.

BlueJ supports auto-boxing (it must, since it aims to be a fully
compatible Java environment), but does not make a significant
effort to illustrate it in sophisticated ways.

To illustrate auto-boxing using BlueJ, a generic collection
object of Integers could be placed on the object bench.
Primitive int types values can then be added using interactive
invocation to demonstrate this feature, and the object
inspector can be used to inspect the collection object and
show the implicit conversion to the Integer class.

5. VARIABLE ARGUMENT LISTS
Variable argument lists (also known as varargs) provide a
shorthand notation for passing an array of values to a method.

For the learning of programming principles, this construct
does not provide substantial new material that would have a
recognisable benefit in being covered. On the other hand, the
syntax and semantics of this construct are relatively simple,
and could be introduced without much time overhead.

We would recommend that the introduction of this construct
very early in the course be avoided, since it seems to
contradict the language rules about matching of formal and
actual parameter lists. In the early weeks of the course, while
students still struggle with these fundamental concepts,
introducing such exceptional cases should be avoided.

Later in the course, this construct can be covered fairly easily,
it does not, however, contribute much to the learning of
general programming principles.

Again, we would recommend use of this construct if it happens
to fit naturally in a programming example, but not set aside
instruction time specifically to cover it for its own benefit.

If it is covered, the BlueJ method call dialogue can be used to
illustrate its semantics. When calling a vararg method, the call
dialogue will initially show one parameter for the variable
argument list, together with two buttons labelled + and – that
lets users add or remove parameters (Figure 5). This interface
provides a strong hint as to the options provided by the
varargs construct, and lets students actively explore the
possibilities and limitations.

Figure 5: Method call dialogue with a variable argument list

6. NEW FOR LOOP
An additional for loop syntax has also been added to the
“Tiger” version of Java. It provides an abbreviated format that
embeds the iteration of collections and arrays into the for loop
syntax. Its most visible effect is in removing lines of
repetitive idiomatic code to access and manipulate an iterator
for a data structure. It also complements other new features
such as generic collection types.

The new loop makes the code needed to iterate and manipulate
collections much shorter and more concise, without greatly
compromising readability. We therefore advocate its use when
iterating through collections and arrays.

The main benefit of this loop lies in the fact that the use of
explicit iterators when introducing collections can now be
completely avoided. This makes it significantly easier to
introduce collections quite early in the course. The necessary
iterator construct traditionally was the largest stumbling
block in introducing use of collection classes early, and this
has now been removed.

It should be noted that this does not altogether replace
traditional for loops (not even for collection iteration) as i t
does not provide any capacity to use the iteration as a
counting function, or to use any custom form of traversal.

BlueJ provides no special support for this feature; it i s
supported through the environment’s support for parsing,
compilation and the execution of JDK 5.0 compatible classes.

7. OTHER FEATURES
There are a number of other changes introduced in JDK 5.0,
which are briefly discussed below.

Java now allows static imports. With this feature the use of the
static keyword in an import statement allows static members
and methods to be referenced without having to reference the
class name. This would seem to add little overall benefit and

possibly cause some confusion over where these methods and
members are defined.

The meta-data facility is another new feature that aims to
minimise the writing of boilerplate code. This feature would
typically be beyond the scope of CS1.

Apart from language changes, there are also significant
changes in the class libraries. One that may be of interest from
an education standpoint is the new scanning and formatting
classes. These simplify the code used to provide console input
and output. This is of less interest to us since the interaction
and inspection facilities of BlueJ eliminate the need for
prematurely exposing students to I/O complexities.

8. CONCLUSION
The new language features of Java's "Tiger" release add a
number of opportunities and potential problems in relation to
the teaching of programming principles.

Teachers who choose to ignore those changes miss out on
opportunities to teach some important concepts, and may
encounter discrepancies as students discover some of those
features on their own.

On the other hand, each of the new features adds more syntax
to the language, thus reducing the simplicity of Java – a
characteristic that is important for use of the language in
teaching.

It is important to identify which of the new constructs
represent a more general programming principle, and thus are
worth the effort of teaching the added syntax, and which are
changes merely at the syntactic level that add little to the
understanding of general programming principles, and can
even cause confusion amongst students. If selected carefully –
including ignoring some parts – the new language constructs
can contribute to raising the quality of our first year courses.

BlueJ, in its version 2.0, has been enhanced to illustrate those
principles we have identified as relevant for beginners, and
using it as a visualisation aid during program development
can support the introduction of these new constructs.

9. REFERENCES
[1] Bloch, J., Effective Java: Programming Language Guide,

Addison-Wesley, 2001.

[2] Bloch, J., New Language Features for Ease of Development
in the Java 2 Platform, web document at
http://java.sun.com/features/2003/05/bloch_qa.html,
accessed August 2004.

[3] Bracha, G., Generics in the Java Programming Language,
http://java.sun.com/j2se/1.5/pdf/generics-tutorial.pdf,
accessed August 2004.

[4] Frens, J.D., Taming the Tiger: Teaching the Next Version
of Java™. In Proceedings of the 35th SIGCSE symposium,
Norfolk, Virginia, March 2004.

[5] Kölling, M., Quig, B., Patterson, A. and Rosenberg, J., The
BlueJ system and its pedagogy, Journal of Computer
Science Education, Special issue on Learning and
Teaching Object Technology, Vol 13, No 4, 249-268, Dec
2003.

[6] Sun Microsystems, J2SE™ 5.0 “Tiger” Feature List.
Available at http://jcp.org/aboutJava/communityprocess/
pfd/jsr176/, accessed August 2004.

