
Hat-Delta — One Right Does Make

a Wrong

Thomas Davie & Olaf Chitil, University of Kent

Abstract: We outline two methods for locating bugs in a pro-
gram. This is done by comparing computations of the same pro-
gram with different input. At least one of these computations
must produce a correct result, while exactly one must exhibit
some erroneous behaviour. Firstly reductions that are thought
highly likely to be correct are eliminated from the search for the
bug. Secondly, a program slicing technique is used to identify ar-
eas of code that are likely to be correct. Both methods have been
implemented. In combination with algorithmic debugging they
provide a system that quickly and accurately identifies bugs.

1 Introduction

Program bugs often do not manifest themselves immediately. A user will
often execute a program several times with correct results, only to later find
a specific input that produces an erroneous behaviour. We aim to use the
information that can be gathered from correct computations of the program
to diagnose bugs in an erroneous computation.

We describe two new ways of exploiting information from correct com-
putations when debugging the program. The extra information narrows the
position of a bug and thus improves on earlier methods. The first method,
based on finding repeated reductions, eliminates small sections of program
computation from the search for bugs. After eliminating sections of com-
putation a second method based on a program slicing can be used. Both
methods provide heuristics which guide the debugger. The slicing method is
less reliable in its predictions, but can remove larger numbers of questions
when it is correct.

We use the two methods to locate bugs in Haskell programs. However,
the technique can be applied in any situation where algorithmic debugging
can be applied.

6



sort [] = []

sort (x:xs) = insert x (sort xs)

insert x [] = [x]

insert x (y:ys)

| x < y = x:y:ys

| otherwise = insert x ys

Figure 1: Buggy program used in Figure 2

sort []⇓[] insert 2 []⇓[2]

sort [2]⇓[2] insert 1 [2]⇓[1,2]

sort [1,2]⇓[1,2]

sort []⇓[] insert 1 []⇓[1]

sort [1]⇓[1]

insert 2 []⇓[2]

insert 2 [1]⇓[2]

sort [2,1]⇓[2]

Figure 2: Computation graphs of program in Figure 1. The upper compu-
tation is correct, but the lower one is erroneous

2 Correct Subcomputations

When a computation produces a correct result, it is reasonable to assume
that all its subcomputations produce correct results. This statement is not
always true – it is possible that two bugs cancelled each other out. It is,
however, remarkably hard to come up with non-trivial examples in which
the statement is incorrect, and as such there is a very low chance of marking
incorrect reductions correct. With this in mind, it is immediately possible
to eliminate an area of computation graph from the search for a bug.

If a subcomputation appears in a correct computation graph, as well
as that of an erroneous computation, it is possible to label it as a correct
computation. The debugger can therefore eliminate it from the search for
a bug. Not only the root reduction is said to be correct, but also all sub-
computations involved in the reduction. In Figure 2 we can see that sort

[1,2] computing the correct result has caused the computation of sort [],
insert 2 [], sort [2] and insert 1 [2] to be considered correct as well.
At present we consider a computation having a correct result to be a good
indicator that all reductions within it are correct, and we label them as such
(although we will allow the user to disable this behaviour). Experimental
results will later tell us if such reductions should be trusted less.

Figure 2 shows both a correct and an erroneous computation of the pro-
gram shown in Figure 1. Computation that occurred in the correct trace is

7



1 sort [] = []

2 sort (x:xs) = insert x (sort xs)

-

1 insert x [] = [x]

1 insert x (y:ys)

1 | x < y = x:y:ys

0 | otherwise = insert x ys

Figure 3: The program shown in Figure 1, labeled.

marked as coloured text. While this technique finds a few correct subcompu-
tations, and hence reduces the number of questions asked by an algorithmic
debugger, it does not give very much extra information. In the above ex-
ample, the number of questions asked by an algorithmic debugger is cut by
only one.

Finding extra correct reductions gains relatively little – each correct re-
duction found in the erroneous computation graph cuts the number of ques-
tions asked by at most one. Often finding a correct reduction does not cut
the number of questions at all.

3 Correct Program Slices

The ‘correct subcomputation’ method looks only at the computation graph,
and ignores a large amount of data available from looking at the program as
well. The source code used in executions that ran correctly is more likely to
be correct than code that has never been executed. If some slice of the code
was executed 50,000 times during the computation of the correct program,
then it is a good guess that this slice is correct. This heuristic allows a
significant narrowing of the area of the program in which the bug is likely to
be.

Each reduction in the computation arises from a program slice. If a
program slice is correct, then all reductions arising from this slice must be.
Algorithmic debugging is based on this property – if a reduction is erroneous,
then the program slice is incorrect. Our method uses the case where a
reduction is known to be correct – in this case a slice from which it aries is
likely though not certain to be correct. This method allows the debugger to
find a new set of reductions that are likely to be correct.

In the example used before (Figure 1), we can apply this process, and
arrive at the result shown in Figure 3. This figure adds labels indicating
the number of times each line has been executed in the correct computation.
This labeling suggests a buggy line, but a debugging session is needed to
confirm it. An algorithmic debugger may now order its questions differently
in the hope of finding the bug faster. Instead of traversing the graph in
a breadth first manner (looking only at children of erroneous nodes), the

8



new algorithmic debugger will look at nodes in order of their likely erro-
neousness (based on the likely bugginess of the part of the program being
executed). If a node is found to be definitely erroneous, the system reapplies
the heuristic within that node’s children, rather than continuing in order of
likely erroneousness. This method results in this new debugging session:

insert 2 [1] is [2]

> No

Bug identified in ‘insert x (y:ys)’:

| otherwise = insert x ys

First, the most likely erroneous reduction is the computation of insert
2 [1] to [2], as there is no record that this section of the program has
ever been used to produce a correct result. Hence the first question the
algorithmic debugger asks. Second, the reduction of insert 2 [] to [2] is
known to be correct from the technique described in Section 2, so now the
bug can be identified. Compared to ordinary algorithmic debugging, there is
a clear advantage in using this technique. In this example, the total number
of questions asked is cut from 4 to only 1 (the normal ordering would cause
the algorithmic debugger to ask 4 questions). In more complex examples the
number of questions asked can be cut by an even greater factor.

An extension to this method would refine the estimates of program cor-
rectness as the debugger proceeded. To implement this method, each time
the user answers the algorithmic debugger with a ‘yes’, the system would gain
a new correct sub-program. The new correct sub-program in turn gives it a
new reduction that it knows to be correct, and adds to the total information
about correctly executing parts of the program.

4 Combination of Methods

Finding correct subcomputations is not very effective at cutting the number
of questions asked, however it can be used to greatly improve upon finding
correct program slices. In finding correct subcomputations we are able to
identify several reductions that are very likely to be correct. These reductions
can then be used to provide further program slices that have been executed
correctly, and provide more data for our second method to work with.

5 Related Work

Delta Debugging has been developed for imperative languages by Zeller and
Cleve [9]. Their approach uses comparisons of two execution states at differ-
ent points in time. The approach is hard to transfer directly to functional
languages as it relies on comparing program state. Delta debugging was

9



however the inspiration for our comparative debugger. In Scalable Statistical
Bug Isolation [15], the authors describe a method of performing statistical
analysis on multiple program runs to identify the causes of program failure.
The approach looks at the computation of predicates within programs and
isolates predicates which appear to be good indicators of a certain bug oc-
curring. This in turn allows them to isolate control flow patterns that cause
erroneous behaviour.

6 Discussion and Future Work

Initial Implementation The two methods described in this paper have
been implemented on top of the Hat tracer. First the hat-detect de-
bugger was re-written, allowing it to work correctly with the current Hat

trace file format. After this, the new hat-detect was used as a basis
for the hat-delta debugger. Experiments comparing hat-delta with the
original hat-detect have so far shown that the number of questions asked
is reduced by a vastly varying amount depending on the program, and the
executions of that program. In some experiments, the number of questions
is not cut at all, while in others the number is cut by a factor of ten. So
although an initial implementation has been completed, there is still signifi-
cant work to do in determining the best heuristics to use in order to provide
a short search path in as many cases as possible.

Combination With Other Views The algorithmic debugging process
consistently finds bugs, however it can often ask large numbers of questions,
or questions the user finds difficult to answer. We have presented two meth-
ods for reducing the number of questions asked by an algorithmic debugger.
However, the information gathered from the traces is independent of the al-
gorithm used to view it. The information can be combined with other views,
and provide the user with more information. Olaf Chitil has described a
method of improving algorithmic debugging by allowing the user to navi-
gate freely (and thus choose the most likely position of the bug themselves)
[5]. The information gathered by comparative debugging could be combined
with this view to provide hints to the user about what is buggy. In a similar
way, the information can be combined with an observation based view. This
view mechanism presents a listing of function applications and their results.
An extension could highlight the likely erroneousness of these applications.

7 Conclusion

Large amounts of extra information can be gained by examining traces of
programs that evaluate correctly. This information can be used to lower the
number of questions asked by an algorithmic debugger using the methods

10



described in this paper. The proportion of questions removed from the de-
bugging session can be as great as 90%, but it can be as little as 0%. There
have been no observations made of what conditions are needed for delta
debugging using this technique to be effective.

11



Bibliography

[1] Stephen R. Adams. Efficient sets — a balancing act. Journal of Func-
tional Programming, 3(4):553–562, 1993.

[2] Krasimir Angelov and Simon Marlow. Visual Haskell: a full-featured
Haskell development environment. In Haskell’05: Proc. 2005 ACM
SIGPLAN Haskell Workshop, pages 5–16, Tallinn, Estonia, 2005. ACM
Press.

[3] Thomas Böttcher and Frank Huch. A Debugger for Concurrent Haskell.
In Draft Proc. 14th Intl. Workshop on Implementation of Functional
Languages (IFL’2002), pages 129–141, Madrid, Spain, 2002. Tech. Re-
port 127-02, Dept. de Sistemas Informaticos y Programacion, Universi-
dad Complutense de Madrid.

[4] G. L. Burn, S. L. Peyton Jones, and J. D. Robson. The spineless G-
Machine. In Proc. 1988 ACM Conference on LISP and Functional Pro-
gramming, pages 244–258, Snowbird, Utah, USA, 1988. ACM Press.

[5] Olaf Chitil. Source-based trace exploration. In Clemens Grelck, Frank
Huch, Greg J. Michaelson, and Phil Trinder, editors, Implementation
and Application of Functional Languages, 16th International Workshop,
IFL 2004, LNCS 3474, pages 126–141. Springer, 2005.

[6] Olaf Chitil, Colin Runciman, and Malcolm Wallace. Transforming
Haskell for tracing. In Implementation of Functional Languages, 14th
Intl. Workshop, IFL 2002, Revised Selected Papers, pages 165–181.
Springer LNCS 2670, 2003.

[7] K. Claessen and R. J. M. Hughes. QuickCheck: a lightweight tool for
random testing of Haskell programs. In Proc. 5th Intl. ACM Conference
on Functional Programming, pages 268–279. ACM Press, 2000.

[8] K. Claessen, C. Runciman, O. Chitil, J. Hughes, and M. Wallace. Test-
ing and tracing lazy functional programs using QuickCheck and Hat.
In Advanced Functional Programming, 4th International School (AFP
2002), pages 59–99. Springer LNCS 2638, 2002.

44



[9] Holger Cleve and Andreas Zeller. Finding failure causes through
automated testing. In Proc. 4th Intl. Workshop on Auto-
mated Debugging (AADEBUG 2000), Munich, Germany, 2000.
http://xxx.lanl.gov/abs/cs.SE/0012009.

[10] Tom Davie. Animation of lazy evaluation in Haskell using Hat traces.
BSc project dissertation, Dept. of Computer Science, University of York,
2004.

[11] Mike Dodds. Using trace data to diagnose non-termination errors. MEng
project dissertation, Dept. of Computer Science, University of York,
2004.

[12] Keith Hanna. Interactive visual functional programming. In Proc. 7th
ACM SIGPLAN Intl. Conf. on Functional Programming (ICFP’02),
pages 145–156, Pittsburgh, USA, 2002. ACM Press.

[13] T. Johnsson. Efficient compilation of lazy evaluation. SIGPLAN No-
tices, 19(6):58–69, June 1984.

[14] Daan Leijen. wxHaskell – a portable and concise GUI library for Haskell.
In Proc. ACM SIGPLAN 2004 Haskell Workshop, pages 57–68, Snow-
bird, Utah, September 2004. ACM Press.

[15] Ben Liblit, Mayur Naik, Alice X. Zheng, Alex Aiken, and Michael I.
Jordan. Scalable statistical bug isolation. In Proc. ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI’2005), pages 15–26, Chicago, Illinois, June 2005. ACM Press.

[16] H. Nilsson. Declarative Debugging for Lazy Functional Languages. PhD
thesis, Linköping University, April 1998.

[17] Henrik Nilsson. How to look busy while being as lazy as ever: the imple-
mentation of a lazy functional debugger. J. Funct. Program., 11(6):629–
671, 2001.

[18] Bernard Pope and Lee Naish. Practical aspects of declarative debugging
in Haskell 98. In Proc. 5th ACM SIGPLAN Intl. Conf. on Principles
and Practice of Declarative Programming (PPDP’03), pages 230–240,
Uppsala, Sweden, 2003. ACM Press.

[19] Niklas Röjemo. Highlights from nhc: a space-efficient Haskell compiler.
In FPCA ’95: Proc. 7th Intl. Conf. on Functional Programming Lan-
guages and Computer Architecture, pages 282–292, La Jolla, USA, 1995.
ACM Press.

[20] Colin Runciman. TIP in Haskell — another exercise in functional
programming. In Rogardt Heldal, Carsten Kehler Holst, and Philip

45



Wadler, editors, Proc. Glasgow Workshop on Functional Programming
1991, pages 278–292. Springer Verlag BCS Workshops in Computing,
1992.

[21] Tom Shackell and Colin Runciman. Faster production of redex trails:
The Hat G-Machine. In Marko van Eekelen, editor, Proc. 6th Sympo-
sium on Trends in Functional Programming (TFP 2005), pages 135–150.
Tartu University Press, Estonia, 2005.

[22] Jan Sparud and Colin Runciman. Tracing lazy functional computa-
tions using redex trails. In Proc. 9th Intl. Symposium on Programming
Languages: Implementations, Logics, and Programs (PLILP’97), pages
291–308, London, UK, 1997. Springer-Verlag.

[23] Andrew Peter Tolmach. Debugging standard ML. PhD thesis, Princeton
University, Princeton, NJ, USA, 1992.

[24] Malcolm Wallace, Olaf Chitil, Thorsten Brehm, and Colin Runciman.
Multiple-view tracing for Haskell: a new Hat. In Ralf Hinze, editor,
Proc. 2001 ACM SIGPLAN Haskell Workshop, pages 151–170, Firenze,
Italy, September 2001. Universiteit Utrecht UU-CS-2001-23. Final ver-
sion in ENTCS 59(2).

46


