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Abstract. We outline two heuristics for improving the localisation of
bugs in a program. This is done by comparing computations of the same
program with different input. At least one of these computations must
produce a correct result, while exactly one must exhibit some erroneous
behavior. First, reductions that are thought highly likely to be correct
are eliminated from the search for the bug. Second, a program slicing
technique is used to identify areas of code that are likely to be correct.
These techniques are used in combination with algorithmic debugging to
create a debugger that quickly and accurately locates bugs. The imple-
mentation of a prototype system is now complete.

1 Introduction

Features of Haskell [6] such as strong type checking eliminate several simple
classes of bugs in programs. These features do not however stop all bugs from
occurring. Instead, it simply means that bugs are less commonly found at run
time and that those that get past the compiler are often more subtle and difficult
to comprehend. These bugs often do not manifest themselves immediately. A user
will often execute a program several times with correct results, only to later find
a specific input that produces erroneous behavior. We aim to use the information
that can be gathered from correct computations of the program to diagnose bugs
in an erroneous computation.

In this paper, we describe two new ways of exploiting information from cor-
rect computations whilst debugging the program. These methods help to identify
the location of a bug and thus improve on earlier methods. The first method,
based on finding repeated reductions eliminates sections of program computation
from the search for bugs. This ‘computation comparison’ method can be com-
bined with a second method based on a program slicing. Both methods provide
heuristics which guide the debugger. The ‘program slicing’ method is less reliable
in its predictions, but can reduce the search space more when it is correct.

We use the two methods to locate bugs in Haskell programs. We have im-
plemented the system based on the Hat tracer and are evaluating the results.
Although our implementation is based on Haskell and Hat, the technique can
be applied in any situation where algorithmic debugging can be applied.
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sort [] = []

sort (x:xs) = insert x (sort xs)

insert x [] = [x]

insert x (y:ys)

| x < y = x:y:ys

| otherwise = insert x ys

Fig. 1. Buggy program used in Figure 2

2 Algorithmic Debugging

We initially describe our comparative debugging methods as improvements over
algorithmic debugging [7, 5, 4]. The methods are also applicable to other methods
of debugging, as we describe in Section 7. Algorithmic debugging is a technique
developed to deal with finding logical errors in declarative programs. The tech-
nique was later applied to functional languages. The process works by continu-
ously narrowing down the part of a computation a bug has occurred in. At each
stage in the process a question is asked: “should the application fa1 . . . an reduce
to x?”. If the user answers yes, the reduction is marked as ‘correct’, meaning
that no bug manifests itself at this level. If the user answers no, the reduction is
marked as ‘erroneous’, meaning that either the definition of the function f , or
one of its subcomputations is buggy. Given a no answer the debugger proceeds to
examine all subcomputations. A reduction is identified as ‘buggy’ iff it is marked
as erroneous and all subcomputations are correct. The program slice from which
this reduction arose (the parts of the definition of the applied function that have
been used in this reduction) contains a bug.

Figure 2 shows the Evaluation Dependancy Tree for the buggy code in Figure
1. The EDT shows what sub-computations were needed in order to compute
an expression’s value. If the evaluation of fa1 . . . an depended on evaluating
gb1 . . . bm, then the node for gb1 . . . bm appears as a child of the node for fa1 . . . an

in the EDT. This EDT shows that to evaluate sort [2,1] (incorrectly), the
program had to evaluate sort [1] and insert 2 [1]. To debug this program,
an algorithmic debugger would ask the following questions:

sort [2,1] = [2] The system asks about the top level node.
> no The user says it is incorrect.
sort [1] = [1] The system asks about an erroneous node’s child.
> yes

insert 2 [1] = [2]

> no One of the children is erroneous.
insert 2 [] = [2] The system investigates that node’s children.
> yes All those children are correct, so the node is buggy.

Bug identified in ‘insert x (y:ys)’:

| otherwise = insert x ys
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sort [2,1] ~> [2]

insert 2 [1] ~> [2] sort [1] ~> [1]

insert 2 [] ~> [2] insert 1 [] ~> [1] sort [] ~> []

Fig. 2. Computation graph of program in Figure 1

As shown in this example, the program EDT is traditionally traversed in
a top down, left to right manner. It is important to realise however that this
traversal order is not mandatory. Questions may be asked in any order.

Algorithmic debugging has proven to be extremely useful for short computa-
tions. However, for large computations it can ask a large number of questions, or
ask questions that the user either cannot answer, or knows to be irrelevant. We
aim to reduce the number of questions asked and eliminate irrelevant questions.

3 Correct Subcomputations

If a computation produces a correct result, it is reasonable to assume that all its
subcomputations produce correct results. This statement is not always true —
it is possible that two bugs cancelled each other out. It is, however, remarkably
hard to come up with non-trivial examples in which the statement is incorrect
and as such there is a very low chance of marking incorrect reductions correct.
Using this assumption, we can produce our first heuristic — with a high degree
of certainty, the bug is not in the areas of the EDT that have been identified.

If the debugger is told that a reduction is correct, not only the root reduction
is said to be correct, but also all subcomputations involved in the reduction. In
Figure 3 we can see that sort [1,2] computing the correct result has caused
the computation of sort [], insert 2 [], sort [2] and insert 1 [2] to be
considered correct as well. It should be noted that thanks to Haskell being a
lazy-evaluated language, we can easily identify which parts of the computation
are actually used in this reduction — if they appear in the trace, then they have
been evaluated and hence are used in the computation.

At present we consider a computation having a correct result to be a good
indicator that all reductions within it are correct and we label them as such.
Experimental results so far show that this is reasonable, however there will be
a mechanism in the final debugger to regard these reductions merely as highly
likely to be correct.

Figure 3 shows both a correct and an erroneous computation of the program
shown in Figure 1. Computation that occurred in the correct trace is marked
in grey. While this technique finds a few correct subcomputations and hence
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sort [1,2] ~> [1,2]

insert 1 [2] ~> [1,2] sort [2] ~> [2]

insert 2 [] ~> [2] sort [] ~> []

sort [2,1] ~> [2]

insert 2 [1] ~> [2] sort [1] ~> [1]

insert 2 [] ~> [2] insert 1 [] ~> [1] sort [] ~> []

Fig. 3. Computation graphs of program in Figure 1. The upper computation is correct,
while the lower is erroneous.

reduces the number of questions asked by an algorithmic debugger, it does not
give very much extra information. In our example, the number of questions asked
by an algorithmic debugger is cut by only one.

Finding extra correct reductions gains relatively little — each correct reduc-
tion found in the erroneous EDT cuts the number of questions asked by at most
one. Often finding a correct reduction does not cut the number of questions at
all. Finding an erroneous reduction is much more useful — when one is found, we
can remove all of its siblings from the search space and thus remove a significant
number of questions. Our next heuristic attempts to do this.

4 Correct Program Slices

The ‘correct subcomputation’ method looks only at the EDT and ignores the
program. The source code used in executions that ran correctly is more likely to
be correct than code that has never been correctly executed. If some slice of the
code is executed 50,000 times during the computation of the correct program,
then it is a good guess that this slice is correct. This heuristic allows a significant
narrowing of the slice of the program in which the bug is likely to be.

Each reduction in the computation arises from a program slice. If a program
slice is correct, then all reductions arising from this slice must be. Algorithmic
debugging is based on this property — if a reduction is erroneous, then the pro-
gram slice is incorrect. Our method uses the case where a reduction is known to
be correct — in this case a slice is likely to be correct (although not necessarily).
This method allows the debugger to find a new set of reductions that are likely
to be correct.
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1 sort [] = []

2 sort (x:xs) = insert x (sort xs)

-
1 insert x [] = [x]

1 insert x (y:ys)

1 | x < y = x:y:ys

0 | otherwise = insert x ys

Fig. 4. The program shown in Figure 1, labeled.

In the example used before (Figure 1), we can apply this process and arrive
at the result shown in Figure 4. This figure adds labels indicating the number
of times each line has been executed in the correct computation. This labeling
suggests a buggy line, but a debugging session is needed to confirm it. An algo-
rithmic debugger may now order its questions differently in the hope of finding
the bug faster. Instead of traversing the graph in a single-step manner, looking
only at children of erroneous nodes, the new algorithmic debugger will look at
nodes in order of their likely erroneousness, based on the likely bugginess of the
part of the program being executed. If a node is found to be definitely erroneous,
the system reapplies the heuristic within that node’s children. This results in a
new debugging session:

insert 2 [1] == [2]
> No

Bug identified in ‘insert x (y:ys)’:
| otherwise = insert x ys

First, the most likely erroneous reduction is the reduction of insert 2 [1]
to [2], as this section of the program has never been executed, so the algorithmic
debugger first asks this question. Second, the reduction of insert 2 [] to [2]
is known to be correct from the technique described in Section 3 and hence, the
bug is identified. Compared to ordinary algorithmic debugging, there is a clear
advantage in using this technique. In this example, the total number of questions
asked is cut from 4 to only 1. The normal ordering would cause the algorithmic
debugger to ask 4 questions.

We use a combination of both the correct subcomputation and the program
slicing methods. In finding correct subcomputations we are able to identify sev-
eral reductions that are very likely to be correct. These reductions can then be
used to provide further program slices that have been executed correctly and
provide more data for our program slicing method to work with.

An extension of this method refines the estimates of program correctness as
the debugger proceeded. To implement this extension, each time the user answers
the algorithmic debugger with a ‘yes’, the system would gain a new correct sub-
program. These answers in turn give it a new reduction that it knows to be
correct and add to the total information about correctly executing parts of the
program.
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5 Implementation

The two heuristics described in this paper have been implemented on top of the
Hat 1[8] tracer. Hat is a tracer for real Haskell programs, which provides a
framework on which our debugger can be built.

5.1 The Hat Tracer

Tracing a computation with Hat consists of two phases: trace generation and
trace viewing. These two phases are performed entirely separately. This modu-
larity allows Hat to trace exactly the same computation multiple times.

First, hat-trans converts a Haskell program into a self tracing version. This
program, in addition to its normal input/output behavior writes a trace into a
file. After this program has terminated, the programmer studies the trace with
a collection of viewing tools. In this case, we have implemented an additional
viewing tool — hat-delta— that performs algorithmic debugging, guided by
our heuristics.

Haskell
Source

Transformed
Source

Input

Output

hat-trans Compiler

Hat Libraries

Tracing
Binary

Trace

Viewing
Tools

5.2 Hat-Detect

hat-detect implements standard algorithmic debugging. The program first
constructs an evaluation dependancy tree from the Hat trace file. During the
debugging process hat-detect maintains a list of EDTs in which it has yet to
search for the bug, we will call this list the ‘candidate list’. The candidate list
initially contains only the EDT for the entire computation. If a user answers
a question with ‘yes’, then the bug is not in the EDT for that reduction and
hence we discard it and move onto the next EDT in our list. If the user answers
a question ‘no’, then a bug does manifest itself in this EDT. In this case we
discard the contents of the candidate list and replace them with the children of
this node. When we run out of EDTs to look at, we have found our bug and we
1 http://www.haskell.org/hat
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display a message. We keep track of the last question the user answered ‘no’ to
and display a message indicating that the bug is in the definition of the function
involved in this reduction.

5.3 Hat-Delta

To implement the computation comparison method, hat-delta must do some
extra work when the user answers ‘yes’ — hat-delta gains correct computations
from the user answering a question ‘yes’, as well as from multiple input traces.
hat-delta must gather all the sub-computations and then search all other trees
eliminating these computations (as we no longer need the user to tell us that
they are correct).

To implement the program slicing method hat-delta must again do more
work. With this heuristic, hat-delta must maintain information about program
slices and how often they have been executed. When a user answers ‘yes’, hat-
delta examines all child computations, to determine the program slice used in
their execution. These are then unioned with the existing information. In each
debugging step, hat-delta will scan the EDTs in the candidate list looking for
the computation most likely to be buggy (according to the heuristic) and ask
that question. If it is found to be erroneous, hat-delta will replace the contents
of the candidate list with that nodes children. If not, hat-delta will prune out
that node, regenerate its heuristics and continue with the next most likely node.

hat-delta currently looks ahead by up to three levels in the candidate list,
however this number is arbitrarily assigned and a different number of levels might
be more appropriate. The purpose of stopping hat-delta looking too far ahead
is simply that searching an entire candidate list takes a long time. We want to
maximise the size of the jumps that hat-delta can make, while minimising the
time it takes to search.

hat-delta currently uses a coarse-grained slicing mechanism, finding the
function that has been evaluated, rather than the specific parts of that function.
This slicing will be improved in future versions of hat-delta, which will hope-
fully lead to an improvement in the heuristic’s accuracy. There is still significant
work to do in determining the best heuristics to use to provide a short search
path in as many cases as possible.

6 Experimental Evaluation

Experiments on the initial implementation have so far shown that the number
of questions asked is reduced by a vastly varying amount depending on the
program and the executions of that program. In some experiments, the number
of questions actually rises slightly, while in others, the number is cut by a factor
of ten.

Table 1 compares the number of questions asked by hat-detect with the
number asked by hat-delta. We gave each program an input that caused it
to exhibit erroneous behavior and ran the two tools on the trace file produced.
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In these experiments we rely solely on ‘yes’ answers to give hat-delta correct
computations. In some cases hat-delta provided significant reductions in the
number of questions asked. The last row of the table shows that our heuristics
can be wrong — we hypothesise that in this case, the heuristic did not have
enough data to work on and hence made an error.

The program addLists takes a list of numbers, generates all sublists and pairs
each sublist with the sum of its elements. Fac . rev . take . fibs generates
the infinite list of fibonacci numbers, takes 5 of them, reverses the list and
then takes the factorial of each element. reverse . sort first quick sorts a
list, then reverses the result. tautology tests if a propositional logic statement
is a tautology by partial evaluation and case analysis. treeSort performs a tree
sort. natInt implements arithmetic in church numerals and conversion to and
from integers. primes generates a list of prime numbers. iSort performs an
insertion sort. We introduced a bug into each program.

Program No of funs hat-detect hat-delta

addLists 5 11 6
Fac . rev . take . fibs 5 15 9
reverse . sort 4 6 5
tautology 6 11 10
treeSort 3 8 8
natInt 6 4 4
primes 3 3 3
iSort 2 6 7

Table 1. Number of questions asked using normal input

The results shown in Table 1 show hat-delta operating in its worst possible
environment — with only an erroneous input given. hat-delta has no informa-
tion to work with initially and indeed in the primes and natInt examples, the
user never answers a question with yes. The lack of any yes answers means that
hat-delta never gets any additional data and as such makes no improvement
over hat-detect.

Program No of funs hat-detect hat-delta

addLists 5 11 1
iSort 2 6 2
Fac . rev . take . fibs 5 13 6
tautology 6 11 5
treeSort 3 8 5
reverse . sort 4 8 5

Table 2. Number of questions asked where a correct input was given
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hat-delta was designed to work with more information than these results
show — it was expected to have at least two inputs (at least one of which exhibits
a correct behavior and one of which exhibits an erroneous behavior). Thus, we
carried out a second series of experiments, on the same programs, giving them
the two inputs required. The results of these experiments can be seen in Table
2. Not all the programs are present in this table, this is because we could not
construct inputs for which the program worked in these cases. The results show
a significant improvement in all cases, as the heuristics can now work better with
more information.

We conjecture that with this technique, the number of questions asked is
directly proportional to the number of functions in the program, rather than
to the logarithm of the size of the trace (as with algorithmic debugging). This
claim can be backed up by considering how the program slicing heuristic works.
Once a function has been evaluated correctly, it is effectively removed from the
debugging session, until other functions become less likely to be buggy. Thus,
the debugger will eliminate functions from its search for the bug rather than
eliminate specific evaluations as in algorithmic debugging.

We would expect that an improvement in the slicing technique will improve
the accuracy of the slicing heuristic significantly. There are however several prob-
lems to consider with this approach. First, if the slices become too accurate, then
effectively only the same application will match the same slice. This would lead
to the heuristic never being applied. A balance must therefore be struck in how
accurate slices become. Second, as slices become more accurate, it will become
increasingly common that slices overlap, but do not match. Careful considera-
tion must be given to what this means in terms of how the heuristic should be
evaluated.

Further evaluation must be carried out. Each heuristic must be tested on its
own and compared. We must compare multiple slicing methods and we must
compare counting slices with simply marking slices as having been executed.

7 Combination With Other Views

We have looked at two heuristics that can improve an algorithmic debugger.
However, the information gathered from the traces is independent of the algo-
rithm used to view it. The information can be combined with other views and
provide the user with more information. Olaf Chitil has described a method of
improving algorithmic debugging by allowing the user to navigate freely (and
thus choose the most likely position of the bug themselves) [1]. The information
gathered by comparative debugging could be combined with this view to provide
hints to the user about what is buggy.

In a similar way, the information can be combined with an observation based
view. This view mechanism presents a listing of function applications and their
results. An extension could highlight the likely erroneousness of these applica-
tions.
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8 Related Work

Delta Debugging has been developed for imperative languages by Zeller and Cleve
[2]. Their approach uses comparisons of two execution states at different points
in time. The approach is hard to transfer directly to functional languages as it
relies on comparing program state. Delta debugging is however the inspiration for
our comparative debugger. In Scalable Statistical Bug Isolation [3], the authors
describe a method of performing statistical analysis on multiple program runs to
identify the causes of program failure. The approach looks at the computation
of predicates within programs and isolates predicates which appear to be good
indicators of a certain bug occurring. This in turn allows them to isolate control
flow patterns that cause erroneous behavior. There are clearly several methods
of extracting information from multiple traces, more study is needed in this area
to gain a clearer picture of how the methods fit together and what information
is not yet being exploited.

9 Conclusion

Extra information can be gained from examining traces of programs that evalu-
ate correctly. This information can be used to decrease the number of questions
asked by an algorithmic debugger using the methods described in this paper.
The gains provided by the heuristics can be extremely large, but in some situ-
ations can lead to an increase in the number of questions asked by a debugger.
Implementation and Evaluation still needs to be done in order to find the con-
ditions necessary for delta debugging to reduce the number of questions asked
in a debugging session and to find the best heuristics to apply.
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