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ABSTRACT

Accuracy and robustness are vital to present and future a
navigation, both in the military and civil spheres. The
strengths of INS and GPS are well known; integrated
INS/GPS systems combine their advantages. However, th
knowledge required to jam GPS is becoming public, and i
can be carried out with basic hardware. When GPS dat
are unavailable, and a low grade INS is used, navigatio
accuracy quickly degrades to an unacceptable level.

Terrain-referenced navigation (TRN) techniques—for ex
ample, terrain contour navigation based on radio altimete
measurements over undulating terrain—provide a comple
mentary technology: when integrated with INS and GPS
TRN can allow the system to establish and maintain high
accuracy even in sustained GPS outages. The authors’ pr
vious paper [1] explored different techniques for perform-
ing the triple integration of TRN, INS and GPS, and found
that there were performance advantages if TRN data we
processed using a novel data fusion algorithm known a
IGMAP; in particular, IGMAP was found to provide more
accurate and robust performance over low roughness te
rain, which can prove challenging to conventional TRN al-
gorithms. The present paper explores the IGMAP algo
rithm and its performance in more detail.

IGMAP (Iterative Gaussian Mixture Approximation of
the Posterior) is an advanced data fusion algorithm fo
handling non-linear measurements, particularly ambiguou
measurements (i.e. measurements for which the likelihoo
function may be multimodal), in conjunction with a lin-
ear or linearisable system model. It is particularly well
suited to system models of high dimensionality, and ap
plications where it is desired to interoperate with exist-
ing approaches using a Kalman Filter or multi-hypothesis
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Kalman Filter. Although devised with integrated TRN/INS
or TRN/INS/GPS systems in mind, the algorithm has p
tential applications to other data fusion problems, for e
ample in target tracking.

The paper outlines the mathematical foundations of the
gorithm, and illustrates its operation using recorded flig
data based on the use of an inertial system aided by terr
height information from a radio altimeter.

1 INTRODUCTION

An inertial navigation system (INS) operates continu
ously (bar hardware faults) and provides a high bandwid
(>50 Hz) output with low short term noise. It also pro
vides effective attitude, angular rate and acceleration me
surements as well as position and velocity. However,
navigation accuracy degrades with time as the noise a
biases on its inertial instrument outputs are mathematica
integrated through the navigation equations that gener
the final output.

The Global Positioning System (GPS), and other sat
lite navigation systems, provide a high accuracy positio
solution—of the order of 10 m (2σ) in each axis—that
does not degrade with time. The GPS navigation sol
tion is noisier than that of an INS, has a lower bandwid
(∼1 Hz) and does not normally include attitude. GPS an
INS are thus complementary. Consequently, many aircr
and guided weapons use an integrated INS/GPS navi
tion system. The INS provides the core navigation sol
tion, whilst the GPS measurements are used to correct a
calibrate the INS via an integration algorithm.

However, satellite navigation signals are extremely vulne
able to interference. Unintentional interference sources
clude broadcast television, mobile satellite services, ultr
wide-band communications, over-the-horizon radar a
cellular telephones [2]. In military applications, deliberat
jamming is highly likely, and must be planned for. Inter
ference can be mitigated using a controlled reception p
tern antenna (CRPA) system (e.g. [3, 4, 5]), together wi
advanced INS/GPS integration techniques, such as ad
tive tightly-coupled (ATC) [6, 7] and deep integration (e.g
[8, 9, 10]). These techniques enable satellite navigati
signals to be tracked under higher levels of interferenc
However, they do not eliminate the effects of jamming an
interference completely. The cost and complexity of jam
ming technology that can defeat them is significantly le
than that of the CRPA systems themselves and this techn
ogy is being communicated across the internet!

As soon as GPS measurements are lost, the INS begin
drift out of calibration. Aircraft-grade INS can maintain
a horizontal position accuracy within 100 m through GP
outages of more than 10 minutes. However, the lower co
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INS common in guided weapons, unmanned air vehicles
and general aviation (private) aircraft can only maintain
this accuracy for 2 to 3 minutes. To attain robust naviga-
tion in a GPS jamming environment, reversionary naviga-
tion systems are required. Terrain-referenced navigation
(TRN) techniques offer a solution.

The most established TRN technique, terrain contour nav-
igation (TCN), uses measurements from a radio altime-
ter (radalt) and requires undulating terrain. Performance
may be enhanced by using a laser range-finder as the sen
sor [11, 12]. A second, and complementary, technique is
scene/line feature matching, which uses a dedicated imag-
ing sensor. The current state-of-the-art in line feature
matching systems is represented by the Continuous Visual
Navigation (CVN) system [13], developed and tested by
QinetiQ and Hi-Q Systems.

Our previous paper [1] used simulation to compare a num-
ber of different techniques for integrating TCN with INS,
and for the three-way integration of TCN with INS and
GPS. The techniques considered for integrating TCN data
included a best-fix method, a probabilistic data association
filter (PDAF), and a new algorithm called IGMAP. It con-
cluded that a weighted fix integration technique—of which
PDAF and IGMAP are examples—makes the navigation
solution more robust against false TCN fixes than a sim-
ple best-fix integration. The simulation results obtained in-
dicated that IGMAP performs sufficiently better than the
PDAF algorithm to justify the greater complexity and pro-
cessor load that it entails.

In the present paper we take a closer look at the IGMAP
algorithm. Sec. 2 reviews the various approaches that have
been taken to TCN, to place the IGMAP method in context.
In Sec. 3 we set out the design objectives that led to the de-
velopment of this algorithm. In Sec. 4 we describe how the
algorithm works, and in Sec. 5 we describe the behaviour
of the IGMAP algorithm as applied to data recorded during
a complete sortie of a Tornado aircraft. Finally in Sec. 6
we summarise conclusions and identify possible areas of
future work.

2 REVIEW OF TCN TECHNIQUES

Development of terrain contour navigation (TCN) started
in the 1970s and a number of systems have been produced
commercially over the years. Conventionally, such sys-
tems estimate the height of the terrain below the air ve-
hicle by subtracting radio altimeter height from INS or
barometric/INS altitude. Measurements are typically taken
around once a second. These are then compared with a
terrain height database, such as Digital Terrain Elevation
Data (DTED) [14]. A range of different processing tech-
niques have been developed to obtain position fixes from
the comparisons of measured and database terrain height
7
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[15]. These may be divided into two broad categories: s
quential and batch.

In sequential processing, each measurement is proces
separately. The difference between the radalt genera
and database indicated terrain height is input as a m
surement to a data fusion algorithm. Typically this da
fusion algorithm is an extended Kalman filter (EKF): th
terrain gradient at the current best estimate of position
used to attribute the observed height difference to a line
combination of the latitude, longitude and height compo
nents of the aided INS position error. Sequential proces
ing is well established in commercial TCN systems suc
as BAE Systems’ TERPROM [16] and the American S
TAN [17, 18, 19]. Particle-filtering approaches [20, 15
(also known as bootstrap filtering) also take a sequent
approach, but without the linear/Gaussian assumptions
the extended Kalman filter

The principal advantage of the EKF sequential approach
relative simplicity and comparatively low processor load
However, it relies on accurate knowledge of the terrain gr
dient below the aircraft, which is a demanding requireme
on existing low resolution, low accuracy databases lik
DTED. To a certain extent, the limitations of terrain heigh
databases may be overcome by using sophisticated line
sation algorithms [21]. However, a fundamental proble
remains in that the gradient is calculated below the a
craft’s positionas indicated by the navigation system, not
its true position. Thus, if the horizontal position error ex
ceeds about 250 m, main-stream sequential processing d
not work and a ‘recovery’ mode must be instigated, fo
example batch processing or a parallel solutions approa
such as Multiple Model Adaptive Estimation [19]. An al-
ternative approach is to process the radalt measureme
with a non-linear filter [22].

In batch processing, a series of terrain height measu
ments, known as a transect, are processed together; this
the approach taken in the original TERCOM system [23
and in early work of one of the present authors [24]. Th
transect is fitted to the terrain height database at differe
offsets in latitude and longitude from the current estimate
position. The residuals of each fit are used to calculate
likelihood at each point in the grid, producing a likelihood
surface as the output of the matching process.

The simplest way of obtaining a position fix from the like
lihood surface is to take the highest point. However, th
likelihood surface tends to be noisy, so this does not pr
vide a good position estimate [15]. Another straightfo
ward approach is to fit a Gaussian distribution to the likel
hood surface: this is the approach taken in [24]. Howeve
as we shall see in Sec. 4, the likelihood surface is oft
decidedly non-Gaussian in form, and may well be mult
modal, i.e. it may have more than one peak. The approa
used in the SPARTAN system [25, 26] was to make a pr
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visional Gaussian approximation to the likelihood surface,
but to carry forward residuals for consideration alongside
the data from subsequent transects. Another approach is t
fit multiple Gaussian distributions to the likelihood surface,
providing a multiple hypothesis position fix for processing
by the data fusion algorithm. This approach was the basis
of the Gaussian clumping algorithm used in two of the three
algorithms considered in our previous paper [1], namely the
best-fix and PDAF algorithms.

The IGMAP algorithm is essentially a batch processing al-
gorithm, although it can be configured so that the ‘batches’
comprise a single radalt measurement, in which case it will
effectively operate as a sequential method. However, un-
like the EKF sequential methods considered above, it does
not require any linear approximation to the terrain surface.
Like the best-fix and PDAF algorithms of [1], it uses a pro-
cess of fitting multiple Gaussian distributions, but instead
of being fitted to the likelihood function itself, they are fit-
ted to the resulting posterior distribution; the fitting method
is also completely different. The following section ampli-
fies the design objectives that led to the development of
IGMAP, and the algorithm itself is described in Sec. 4.

3 DESIGN OBJECTIVES

The IGMAP algorithm described in this paper arose from
a need for a data fusion algorithm suited to multiway inte-
grated navigation with terrain-referenced navigation as one
(or more) of the inputs. In this section we consider the de-
sign objectives that led to the development of the IGMAP
algorithm. There were three primary objectives:

1. The algorithm should be capable of updating the
system’s navigation solution quickly—e.g. within
a few seconds—in response to newly-gathered ter-
rain data.

This is in contrast, for example, to early TCN sys-
tems [23, 24] which would gather radio altimeter over
a distance of several kilometres before comparing the
terrain profile thus measured with a digital elevation
map (DEM). This approach has the advantage that the
terrain profile over long distances is likely to be ef-
fectively unique within the area of navigational un-
certainty, and the data can therefore be processed
into a precise and unambiguous position fix, which is
easy to process with conventional integrated naviga-
tion schemes.

The disadvantage with this ‘long transect’ approach
is there there is a considerable delay before the nav-
igational estimate is updated. If this delay could be
reduced, there would be less time for residual naviga-
tional drifts to accumulate before the TRN update be-
comes available. This in turn may allow the air vehi-
8
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cle to fly at lower altitude, since the position of terrain
features and obstacles in relation to the aircraft will b
better known. This consideration is particularly strong
for applications such as unmanned air vehicles an
guided weapons, where the use of lower grade IN
will result in high rates of navigational drift.

2. The algorithm should be capable of handling the
position ambiguities that often arise using terrain-
referenced navigation, in such a way as to make
maximum and timely use of the terrain data.

As has just been remarked, if TCN data are gathere
over several kilometres, an unambiguous position fi
can be obtained. Conversely, if radio altimeter dat
are gathered only over a short period—perhaps a si
gle radio altimeter sample, or perhaps a short ‘tran
sect’ comprising radio altimeter data over a few hun
dred metres—then often the terrain profile thus mea
sured will be agoodmatch to the DEM at several dis-
tinct places within the area of navigational uncertainty
and asatisfactorymatch over an extended (and usually
irregularly-shaped) area. We shall see vivid example
of this later in the paper. Consequently there is an in
herent ambiguity in the navigational information pro-
vided by the terrain data.

Likewise, in line-feature matching systems such a
CVN [13], the lines in a particular scene captured
by the imaging sensor may match the line featur
database in more than one place, thus again leadi
to a navigational ambiguity.

One simple approach to such cases (applicable to bo
TCN and line-feature matching) is simply to discard
batches of data (or images) that lead to appreciab
ambiguities. A rather better approach, less wastef
of terrain data, is to defer processing of the data: in
stead of being processed straight away, the data ba
is aggregated with subsequent data until the ambig
ity is resolved. This is the approach taken by [27]; th
SPARTAN algorithm [25, 26] also utilises this idea.
However, with either approach, the underlying navi
gational drift will continue to accumulate inexorably
until the ambiguity is resolved.

It would arguably be better if the data could be fed im
mediately into the overall navigation solution, but in a
way which takes explicit account of possible ambigu
ities: this is the second design objective.

3. The algorithm should be directly compatible with
Kalman filter approaches to multiway integrated
navigation, including in particular the multi-
hypothesis Kalman filter (MHKF).

Conventional Kalman filter approaches to integrate
navigation are based on linear (or linearised) statis
tical error models of the navigation system compo
nents, with Gaussian error statistics. The secon
N 61st  Annual Meeting
he MITRE Corporation & Draper Laboratory, 
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design objective above implies that we must move
away from such linear/Gaussian statistics towards ap-
proaches that can handle more general statistical mod
els of the system components.

Data Fusion Research Ltd (DFRL) and QinetiQ Ltd
have devoted considerable effort to exploring the po-
tential of Monte-Carlo Markov Chain (MCMC) meth-
ods in application to terrain-referenced navigation—
see, in particular, [28]. Such approaches have the
strong advantage that they can incorporate arbitrary
statistical models of the navigation system compo-
nents, and—using these models—can process the in
put data into an evolving integrated navigation esti-
mate using strict Bayesian statistical reasoning. These
methods take ambiguities, non-linearities, and non-
Gaussian error statistics all in their stride. The related
particle-filtering approaches to TRN [20] have similar
advantages.

There are, however, some disadvantages with MCMC
(including particle filter) approaches to integrated
navigation:

• For relatively straightforward integrated naviga-
tion tasks, such as INS/GPS integration, MCMC
methods are an overkill: as compared with a
Kalman filter, they require much greater compu-
tational loads, but offer little or no performance
advantage.

• Consequently, for multiway integration, e.g.
INS/GPS/TRN, it would seem to be desirable
for the overall integration to be carried out us-
ing Kalman filtering techniques, leaving MCMC
approaches to deal with the non-linearities and
ambiguities of TRN, and somehow feeding the
MCMC output into the overall Kalman filter.
Unfortunately, the output of MCMC methods
is not in a form which lends itself to use as a
Kalman filter input.

• Typical INS models often have 15 or more el-
ements in the state vector. Such high dimen-
sionality may cause problems for MCMC ap-
proaches.

The design requirements outlined above led QinetiQ and
DFRL to search for techniques that would offer some of
the versatility of MCMC methods of data fusion, but in a
way that would fit into a Kalman filter framework for multi-
way integrated navigation. The IGMAP algorithm was the
upshot of this search.

4 OPERATION OF THE IGMAP ALGORITHM

In this section we explain how the IGMAP algorithm
works, as applied to an integrated TCN/INS system us-
9
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Figure 1 Overview of the IGMAP algorithm. The hori-
zontal axes are labelled with UK National Grid coordinates,
and the graticule on the top surface of each box consists of
1 km squares.
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Figure 2 Plan view of transect processing. Coordinate
as in Fig. 1. The brown lines are terrain contours at 10
vertical spacing. See text for further explanation. The sta
mark the true (south-westerly) path of the aircraft durin
the transect, as given by INS/GPS data.

ing a radio altimeter as the terrain sensor. An overvie
of its operation is presented in Fig. 1. At any time, th
system’s navigational estimate is represented as a mixt
(i.e. a weighted sum) of Gaussian distributions, each d
fined over thed dimensions of the state vector defining th
error dynamics of the INS (or combined INS/GPS). For e
ample, for an INS the state vector will typically compris
three elements representing the components of the curr
position error, three elements representing the compone
of velocity error, three platform misalignment angles, plu
further elements representing accelerometer and gyro c
bration errors.

It is difficult to represent distributions over such a larg
number of dimensions in visual form, so in this overview
we shall simplify matters by considering just two dimen
sions, representing horizontal position. With this simplifi
cation, consider an example run in which the system sta
with a very high uncertainty about position. In this ex
ample run, the system’s positional estimate shortly aft
the IGMAP algorithm has started operating is as shown
the probability density function in Fig. 1(a). This distribu
tion is a mixture of four Gaussian components, which a
shown in plan view as the red ellipses in Fig. 2. Each e
lipse encloses 50% of the probability volume of the Gau
sian component, and the proportion of the area of the
lipse shown as a shaded sector represents the weight of
component within the 4-component mixture: these weigh
sum to unity. In the case shown, the probability distribu
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Figure 3 (a) The sensed terrain profile observed during a
transect; the aircraft was flying approximately south-wes
while the transect data were gathered. (b) The terrain to-
pography as given by the Digital Elevation Map (DEM).
In both panels, heights are in metres. Note that the vertic
scale is exaggerated by a factor of about 17.5 in compariso
with the horizontal scale.

tion comprises a sharp peak towards the south-west corn
of the region shown, contributing about 12% of the tota
probability. (The jaggedness of this peak is a plotting arte
fact.) There is a broader, rounded peak towards the nort
east corner, with about 27% of the total probability. The re
maining two Gaussian components are close together in th
middle of the area shown, and form an irregular, roughly T
shaped peak in the perspective view. (Note that despite o
use of topographical metaphors such as ‘peak’ and ‘ridge
we are here talking about the shape of the probability den
sity function, not about the geography of the terrain.)

Now consider what happens when we process a batch
radio altimeter data, known as atransect. It is permissible
for a transect to comprise a single radio altimeter sample
more typically, however, we have used transects spannin
a few seconds of input data, with the radio altimeter sam
pled at 1–2 Hz, so as to achieve a horizontal separation
about 100 m between the samples. (Closer sampling tha
this would increase the processing load but yield little ac
curacy benefit, owing to the limited resolution both of the
radio altimeter and the DEM.) The transect data are pro
cessed by subtracting the height above ground measured
ION 61st  Annual Meeting
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the radio altimeter from the aircraft height measured by the
INS (as corrected by the integrated navigation system) to
yield asensed terrain profile. Fig. 3(a) shows the sensed
terrain profile measured during a transect of 4 seconds’ du-
ration, with the radio altimeter sampled at 2 Hz, yielding
9 samples in all. Notice that sensed terrain profile plotted
here will be offset from the true terrain profile—the section
of terrain profile that was actually being overflown while
the transect data were gathered—because of residual pos
tion errors in the INS, both horizontal and vertical. In the
initial stages of the operation of the algorithm, thisabso-
luteoffset may be of the order of many hundreds of metres
horizontally, and many tens of metres vertically. However,
the relativepositions of the points along the sensed terrain
profile will normally be in much better agreement with the
relative positions of the points along the true terrain pro-
file, although they will still be affected by residual velocity
errors in the INS, radio altimeter errors, and errors in the
digital elevation map (DEM).

The next stage is therefore to search for horizontal and ver-
tical position offsets that will bring the sensed profile into
good agreement with the terrain profile given by the DEM.
Fig. 3(b) shows the form of the terrain surface within the
area of navigational uncertainty, as given by the DEM. This
search proceeds by working through a series of hypothe-
ses about the true position of the aircraft, both vertically
and horizontally, at the time of themid-transect point:
the time when the fifth of the nine radio altimeter read-
ings forming the transect was sampled. (Working from
the middle of the transect helps to minimise the effects of
residual INS velocity errors.) For each hypothesis about
the mid-transect point, we examine the DEM to determine
the terrain profile that would have been overflown during
the transect if that hypothesis were true, and compare tha
DEM terrain profile with the (appropriately offset) sensed
terrain profile. This comparison is performed using a sta-
tistical model characterising the errors arising from the ra-
dio altimeter, and from inaccuracies in the DEM itself, and
yields a statistical quantity known as thelikelihood of the
mid-transect point hypothesis.

Different hypotheses about the position of the aircraft at
mid-transect yield different values of the likelihood, thus
yielding a three-dimensionallikelihood function . High
values of the likelihood function indicate hypotheses where
there is good agreement between the shapes of the sense
terrain profile and the DEM terrain profile, and conversely.
For the transect shown in Fig. 3, the likelihood function
(reduced for presentational clarity to two dimensions) is
shown in Fig. 1(b). The reader will observe that there are
three areas of relatively high likelihood towards the north
of the area shown, and further such regions to the south an
to the west of the centre of the region. There is generally
rather poor agreement elsewhere, for example towards th
south-west corner.
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The next step is to use Bayes’ Theorem to use the data from
the transect to update the state estimate. Stated roughly, the
theorem asserts:

Probability
density
function

conditional on
data

∝
Likelihood
function

arising from
data

×
Prior

probability
density
function

In other words, to update the probability density function
in Fig. 1(a) to take account of the transect data, we simply
need to multiply it by the likelihood function in Fig. 1(b),
and renormalise it so that it integrates to unity. The re-
sult, known as theposterior probability density function,
is shown in Fig. 1(c). Like the likelihood function, it is very
irregular in shape, with a sharp peak towards the centre, an
irregular raised region to the west of that, south-west cor-
ner, another peak near the centre of the area, a more diffuse
raised area towards the north-east, and a slight east-wes
ridge towards the north-centre.

Unfortunately, the great irregularity of the posterior distri-
bution means that even in two dimensions it requires a lot of
data to represent it: within the nine or more dimensions of
the system state vector, manipulating this posterior distri-
bution directly would be computationally intractable. The
final stage of processing transect data is therefore to ap-
proximate the posterior distribution, so that it can be rep-
resented once again as a mixture of Gaussian distributions.
This is achieved by an iterative procedure, thus leading to
the acronym IGMAP: Iterative Gaussian Mixture Approxi-
mation of the Posterior.

The result of this approximation is shown in perspective
form in Fig. 1(d), and the individual components are shown
as the blue ellipses in Fig. 2. As compared with the prior
distribution, there is now no peak in the south-west corner,
and the peak in the north-east has shifted north-westwards
and reduced in volume: this Gaussian component now ac-
counts for only 7% of the total probability. The remaining
three Gaussian components are all located near the centre
of the region shown: one of them contains 63% of the total
probability and corresponds to the sharp peak in Fig. 1(c),
and the other two form a compound peak to the west of that.
(As it happens, the true aircraft position at mid-transect lies
within this latter peak.) Despite the remaining ambiguities,
overall uncertainty about the aircraft’s horizontal position
has been much reduced by this transect.

This completes the processing of the data from the transect
in Fig. 3(a). Each of the Gaussian components can now
be propagated forward in time using the familiar Kalman
filter time update equations, leaving the component weights
unchanged. Time updates continue until another batch of
transect data is available, whereupon the procedure shown
in Fig. 1 is repeated.

If it is desired to combine data from GPS into the mix,
this can be accomplished using the standard measuremen
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update equations for the multi-hypothesis Kalman filte
[29, 30], and the same applies for data from many oth
‘well-behaved’ sources of navigation fixes. The full pro
cedure of Fig. 1 is required only for non-linear/ambiguou
fixing systems like TRN.

As has already been stated, the overview of the algorith
given in Fig. 1 is a simplification, reduced as it is to two
dimensions. More detail of the operation of the algorithm
is given in Fig. 4. Between TRN updates, the navigation
state is represented as a mixture ofn Gaussian distributions
overd dimensions, whered is the dimensionality of the sys-
tem state vector. In Fig. 1n was 4, but in Fig. 4n is 2 to
keep the diagram simple. The state estimate just before
TRN update (corresponding to Fig. 1(a)) is represented
Fig 4 by the rectangle on the left-hand side containing tw
shaded ellipses, which represent thesen Gaussian compo-
nents.

Processing of a batch of TRN data (e.g. a TCN transec
now proceeds through the following stages:

Stage 1(a)Each Gaussian component is projected dow
into thed′-dimensional subspace of the state space o
which the TRN measurement directly depends. Fo
example, the sensed terrain profile observed during
TCN transect depends primarily on thepositionerrors
in the navigation system, so each Gaussian distrib
tion is projected down into thed′ = 3 dimensions cor-
responding to the horizontal and vertical position er
rors, by discarding the remaining elements of the dis
tribution’s mean vector and covariance matrix. (Th
terrain data may also have a second-order dependen
on velocity and attitude errors, but we ignore this.)

In the remaining substages of Stage 1, each of th
n reduced-dimension Gaussian components is pr
cessed separately.

Stage 1(b) Each of then d′-dimensional Gaussian com-
ponents is multiplied by the likelihood function gener-
ated by the TRN measurements, which is itself define
overd′-dimensions. This yields a per-component tru
posterior distribution, which will typically be non-
Gaussian, and irregular in form.

(In practice, this is not carried out as a distinct stag
prior to Stage 1(c): instead, evaluation of the likeli
hood function is driven by the numerical integration
algorithm used in Stage 1(c).)

Stage 1(c)Each per-component true posterior is approx
imated as a mixture of some numberm of d′-
dimensional Gaussian components. In Fig. 4,m = 3,
and the result of Stage 1(c) is shown as the rectangl
containing three hollow ellipses.

This approximation is carried out by an iterative pro
cedure involving numerical integration. However
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Figure 5 Illustration of transect processing at Stage 1(c).
The red ellipse shows the most heavily weighted compo
nent of the prior distribution in Fig. 2, and the blue ellipses
show an approximation to the corresponding posterior dis
tribution as a mixture ofm = 4 Gaussian components. The
other three components of the prior distribution are pro
cessed in a similar way.
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since the integration needs to be carried out only ov
d′ dimensions this is numerically very tractable. A
special adaptive integration procedure has been dev
oped to support this stage of the algorithm.

Fig. 5 shows the processing of the transect in Fig. 1 u
to this stage.

Stage 1(d) Eachd′-dimensional component is now con-
verted back to the full dimensionality of the state vec
tor, by reference to the prior component from which
originated.

Stage 2 The results of Stage 1(d) are now assembled t
gether into a weighted mixture ofnm d-dimensional
Gaussian components. This represents the algorithm
first-cut approximation to the posterior distribution re
sulting from the TRN measurement.

Fig. 6 shows the processing of the transect in Fig. 1 u
to this stage.

Stage 3 Unfortunately, the result of Stage 2 containsnm
components rather than then we started with. Obvi-
ously, if this algorithm is to be used recursively, we
cannot allow the number of components to increas
on each iteration. At Stage 3, therefore, the algorith
chooses the two components of this mixture which a
most similar to each other andfusesthem together, re-
placing them by a single component whose weight
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Figure 6 Illustration of transect processing at Stage 2. The
red ellipses shows the prior distribution as in Fig. 2, and
the blue ellipses show a first-cut approximation to the cor-
responding posterior distribution as a mixture ofnm = 16
Gaussian components. Among these blue ellipses the four
from Fig. 5 are visible (but with scaled-down weights); the
remaining twelve come from the other prior components.
The four ellipses towards the south-west corner have very
low weights, and the shaded sector indicating the weight is
visible barely if at all.

equal to the sum of the weights of the fused compo-
nents. This pairwise fusing (or merging) is repeated
until the mixture is brought back down ton compo-
nents.

The result of this stage is represented in Fig 4 by the
rectangle on the right-hand side containing two shaded
ellipses: this corresponds to Fig. 1(d).

For the transect in Fig. 1, the result of this stage of
processing is shown as the blue ellipses in Fig. 2: it
will be seen that the 16 ellipses in Fig. 6 have been
reduced back to four.

This completes the processing of the batch of TRN
data.

Stage 4 Each of then Gaussian components undergoes
time updates (using the standard Kalman filter time
update equations). This continues until more TRN
data are available.
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5 THE IGMAP ALGORITHM IN ACTION

As the introduction has mentioned, [1, Sec. 7] reported re-
sults obtained using the IGMAP algorithm using simulated
data. It included results for10◦/hr and100◦/hr inertial sys-
tems with various INS alignment scenarios and various lev-
els of terrain roughness, and compared the IGMAP results
with those obtained using a best-fix and a PDAF TCN al-
gorithm. In these results, IGMAP consistently performed
as well as or better than either of the other algorithms.

In this section, we describe the results of applying IGMAP
to real flight data recorded during a sortie of a QinetiQ
Tornado GR1 aircraft over southern Britain. The equip-
ment for the trial included a Honeywell H764G Embed-
ded GPS/INS (EGI) and a BAE Systems AD1990 radio al-
timeter, both mounted in a pod fitted under the fuselage of
the aircraft. The H764G incorporates a GPS receiver and a
ring-laser gyro INS, and provides both a blended GPS/INS
navigation output and a pure inertial output (with baromet-
ric damping of the vertical channel). GPS signals were ob-
tained via a typical fixed reception pattern antenna (FRPA).
The IGMAP algorithm was applied to combine data from
the AD1990 with the pure inertial output from the H764G,
using DTED Level 1 [14] (compiledcirca 1986) as the
digital elevation map. The blended INS/GPS output from
the H764G was used as the ‘truth’ measure with which the
IGMAP output is compared.

Although the INS in this trial was of aircraft grade, the
model of the INS incorporated in the Kalman filter system
model was very pessimistic, particularly as regards the ini-
tial conditions: the initial position was assumed to be ac-
curate only to within±2 km (2σ) in each horizontal axis,
and to within±200 m (2σ) in height. The initial velocity
was assumed to be accurate only to within±20 m/s (2σ) in
each horizontal axis, and±2 m/s (2σ) vertically. Although
the H764G was barometrically aided, the height channel in
the Kalman filter model does not assume this.

The data from this sortie, of duration just over 11
2 hours,

were analysed using the IGMAP algorithm, with the sys-
tem state estimated as a mixture ofn = 4 Gaussian com-
ponents. (In fact, Fig. 1 is based on data from the third
transect of this sortie.)

First consider the initial capture phase, immediately after
terrain data becomes available. The position errors dur-
ing the first 45 seconds are shown in Fig. 7. In the figure
the black lines represent the components of position error,
based on comparing the overall mean of the 4-component
Gaussian mixture with the ‘true’ position given by the
INS/GPS blended data. The green band represents a2σ
tolerance band based on the overall standard deviation of
the Gaussian mixture.

It will be noted that already after the first 4 second transect
has been analysed, there has been a substantial reduction
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Figure 7 Position errors during the first 45 seconds aft
terrain-aided navigation begins. (Time is measured as s
onds after midnight.)

the horizontal position uncertainty, particularly in the eas
west axis, as well as in the vertical position uncertain
After just 22.5 seconds (five transects), the position unc
tainty is of the order of±220 m (2σ) in each horizontal
axis,±6 m (2σ) vertically. After 45 seconds these uncer
tainties are further reduced to±48 m and±2.6 m respec-
tively.

Now let us consider the sortie as a whole. A characteris
of the sortie was the high level of manoeuvre, with the a
craft making numerous sharp turns and climbs and div
Consequently, for a large proportion of the flight, the r
dio altimeter could not provide usable data, either becau
the aircraft’s height above ground was too great (i.e. abo
about 500 m), or its bank angle too great (i.e. greater th
about30◦). Fig. 8, which shows the components of po
sition error throughout the sortie, indicates these parts
the sortie by colouring the2σ tolerance bands red. Yellow
coloration indicates that the radio altimeter was usable, b
that the terrain roughness was no greater than 1%. (Terr
roughness is here measured as the RMS terrain grad
along the true path of the aircraft during a transect, wi
the true path measured by INS/GPS.) The remaining pe
ods are when the radio altimeter was usable and the ter
roughness exceeded 1%; these periods together accou
for about a quarter of the sortie duration, and are indicat
by green colour.

Obviously, during the ‘red’ periods, the horizontal and ve
tical position uncertainties increase continuously as a res
of INS drift, though the rate of drift decreases as the so
tie progresses because the INS becomes better calibra
particularly the velocity errors. During the yellow periods
horizontal uncertainties normally continue to grow, but ve
tical errors are kept in check. Only during the green perio
is the horizontal navigation materially assisted by the TC
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-
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,

data.

Fig. 8 clearly indicates the ability of the IGMAP algorithm
quickly to recover accurate navigation once ‘green’ da
comes along following a period of drift. Taking all the
green periods together, the radial horizontal position err
had a median value of just under 28 m.

The RMS height error during these periods works out a
5.4 m; however, it is noticeable in Fig. 8 that the heigh
error appears to have a slowly varying bias: this is believe
to be due to GPS errors influencing the measurement
‘true’ height. Consequently the height accuracy is probab
better than this.

6 CONCLUSIONS AND PROSPECTS

In this paper we have described the design objectives th
led to the development of the IGMAP algorithm: in a nut
shell, this was to have a data fusion algorithm that cou
cope with the ambiguities inherent in TRN data, but a
the same time make efficient use of the available data,
a manner compatible with the use of a Kalman filter (o
MHKF) architecture for multiway integrated navigation
The paper has given an overview of the operation of th
IGMAP algorithm, and described its performance whe
applied to recorded data from a fast-jet sortie with som
challenging characteristics. The results illustrated the a
gorithm’s ability rapidly to acquire and reacquire accurat
navigation from high initial position and velocity uncer-
tainties.

The following are some areas for possible exploration
the future:

• The studies of the use of IGMAP with medium- and
low-grade IN systems reported in [1] were based o
simulated data. It would be desirable to corrobora
its conclusions using real data, particularly real rad
altimeter data, or—better still—laser rangefinder dat

• All studies of IGMAP applied to TRN have so far been
based on terrain-contour navigation (TCN): it would
be interesting to apply it to an imaging-based tech
nique such as CVN [13].

• IGMAP may also be applicable to some target
tracking problems.
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