
Automated Detection of Performance Regressions: The Mono Experience

Tomas Kalibera1 Lubomir Bulej1,2 Petr Tuma1

1Distributed Systems Research Group, Department of Software Engineering
Faculty of Mathematics and Physics, Charles University
Malostranske nam. 25, 118 00 Prague, Czech Republic

phone +420-221914267, fax +420-2219143232
2Institute of Computer Science, Czech Academy of Sciences

Pod Vodarenskou vezi 2, 182 07 Prague, Czech Republic
phone +420-266053831

{tomas.kalibera, lubomir.bulej, petr.tuma}@mff.cuni.cz

Abstract

Engineering a large software project involves tracking
the impact of development and maintenance changes on the
software performance. An approach for tracking the im-
pact is regression benchmarking, which involves automated
benchmarking and evaluation of performance at regular in-
tervals. Regression benchmarking must tackle the nonde-
terminism inherent to contemporary computer systems and
execution environments and the impact of the nondetermin-
ism on the results. On the example of a fully automated
regression benchmarking environment for the Mono open-
source project, we show how the problems associated with
nondeterminism can be tackled using statistical methods.

1 Introduction

The increase in scale and complexity of software, as well
as the related increase in size of the development teams,
puts a growing emphasis on the process of quality assur-
ance. Indeed, continuous quality assurance is part of Ex-
treme Programming [8] and many distributed development
models, which rely on regular testing of all components of
the software. The process of testing is often automated
and performed either in given time intervals or whenever
changes are introduced. This is known as regression test-
ing.

The current practice of regression testing typically lim-
its the testing to correctness and robustness of the software.
Another important quality aspect, namely performance, is
often neglected. Regression benchmarking addresses this
gap by extending the regression testing to benchmarking

and evaluation of software performance [3, 2].
In an analogy to regression testing, regression bench-

marking must be fully automated. This requirement in-
cludes automated downloading and building of the software
and the benchmarks, as well as automated executing of the
benchmarks in a robust environment that handles typical
failure scenarios without supervision. This alone is a tech-
nical challenge, if only because the software is under devel-
opment and therefore prone to exhibiting bugs, crashes, or
ending up in a deadlock or an infinite loop.

While many of these problems have already been solved
in regression testing, regression benchmarking requires ex-
tending the solutions to include minimizing any undesirable
influence on the results. During benchmarking, the activity
of unrelated system services, the amount of unrelated net-
work communication, and the scope of system configura-
tion changes should all be minimized.

Importantly, regression benchmarking also requires an
automated analysis of the results to discover performance
changes. The discovery of performance changes is made
difficult by the complexity of contemporary platforms and
software, which causes the durations of the operations mea-
sured by a benchmark to differ each time the operations are
executed. Because of this, it is not possible to discover per-
formance changes from one version of the software to an-
other simply by comparing the durations of the same oper-
ations in the two versions.

Typically, the measured operations are therefore re-
peated multiple times and the durations are averaged. When
the durations can be assumed to be independent identically
distributed random variables, the precision of the averaged
result can be determined. The knowledge of the precision
is necessary so that a comparison of results that differ by

less than their respective precisions is not interpreted as a
performance change. Unfortunately, the requirements of
independence and identical distribution are often violated.
In Section 4, we describe a method of processing the col-
lected data that overcomes the problem of the violated re-
quirements.

Additionally, the nondeterminism inherent to contempo-
rary computer systems and execution environments is re-
flected in the form of random initial conditions that influ-
ence the durations of the operations measured by a bench-
mark [9]. The influence of the random initial conditions
makes the averaged durations differ each time the bench-
mark is executed. This difference makes it generally im-
possible to discover performance changes even by compar-
ing the averaged durations of the same operations in two
versions of software. Furthermore, the difference is unre-
lated to the number of durations that make up the averages
and therefore cannot be avoided by repeating the measured
operations more times. In [9], we also show that the differ-
ence cannot be avoided by simulation or by executing the
benchmark immediately after system initialization. In Sec-
tion 2, we show how to quantify the influence of the random
initial conditions.

To summarize, regression benchmarking requires not
only repeating the operations measured by a benchmark
within the benchmark, but also repeating the execution of
the benchmark within the benchmark experiment. The pre-
cision of the averaged durations can then be calculated even
when the requirements of independence and identical dis-
tribution are violated and the influence of the random initial
conditions is present, as outlined in Sections 3 and 4. Be-
cause of the cost of repeating the execution of the bench-
mark, however, it is necessary to determine the optimum
number of benchmark runs and the optimum number of
measurements in a run, as also explained in Section 3.

To verify the applicability of the methods described in
the paper, we have created an environment for regression
benchmarking of Mono [12]. Mono is being developed by
Novell as an open-source implementation of the Common
Language Infrastructure specification [5], also known as the
.Net platform. The Mono implementation of CLI comprises
a C# compiler, a virtual machine interpreting the Common
Intermediate Language instructions, and the implementa-
tion of runtime classes.

Since August 2004, the environment monitors the per-
formance of daily development snapshots of Mono on
four benchmarks focused at numerical calculations and the
mechanism of .Net Remoting, which implements remote
method invocation. Continuously updated results are pub-
licly available on the web of the project [4].

The structure of the paper is as follows. The analysis and
the quantification of the impact of random initial conditions
is in Section 2. A method of calculating the precision of the

averaged durations influenced by random initial conditions
is presented in Section 3. In Section 4, the method of cal-
culating the precision is extended to cope with a violation
of the requirements of independence and identical distribu-
tion. Section 5 explains how the knowledge of the precision
is used to detect performance changes. Finally, Section 6
provides details on applying the methods on Mono in the
framework of the Mono Regression Benchmarking Project.
Section 7 concludes the paper.

2 Random Initial Conditions of Benchmarks

In contemporary systems, the duration of operations
measured by a benchmark depends on a wide spectrum of
factors. Within the spectrum, classes of factors can be dis-
tinguished depending on when the influence of the factor
changes. First is the class of factors that change for each
individual operation. Second is the class of factors that stay
the same for all operations measured within a single bench-
mark process, because they depend on random initial con-
ditions of the process. On some systems, there is even a
class of factors that stay the same for all operations of all
benchmark processes run using the same benchmark binary
image. All these classes of factors are analyzed and evalu-
ated in [9].

The impact of random initial conditions of a benchmark
process on benchmark results is illustrated by Figure 1. The
graph shows the results of the FFT benchmark, which cal-
culates the Fast Fourier Transform. The operation measured
by the benchmark is a pair of forward and inverse transfor-
mations of a constant vector. The FFT benchmark is based
on the SciMark2 benchmark [14, 13].

The same benchmark has been run repeatedly. Each run
of the benchmark has measured the same operation repeat-
edly. The graph in Figure 1 plots the operation times on the
vertical axis and the sequential index of the measurement
on the horizontal axis, with the measurements from indi-
vidual runs separated by vertical lines. The graph shows
that while the durations from the same run typically differ
from each other only in units of percents, the durations from
different runs of the same benchmark can differ from each
other even in tens of percents. The difference between the
durations from the same run illustrates the existence of the
influencing factors that change when the benchmark is run-
ning. The difference between the durations from different
runs illustrates the existence of the influencing factors that
do not change when the benchmark is running but still differ
every time the benchmark runs.

The graph also shows that the durations from the same
run yield only a small number of different operation times,
which results in the operation times being grouped in clus-
ters. This effect is discussed in section 4.

The degree of influence of the random initial conditions

FFT SciMark
99.18% Measurements

Run Index (version 2005−07−07)

T
im

e
[m

s]

18
0

18
5

19
0

19
5

20
0

20
5

21
0

21
5

1 2 3 4 5 6 7 8 9 10

Figure 1. Durations of the same FFT compu-
tation in several benchmark runs.

on the duration of operations depends on the specific plat-
form and the specific benchmark. In [9], we have intro-
duced an impact factor as a metric of the degree of influence
of the random initial conditions. The impact factor is de-
fined as a ratio of the standard deviation of durations from
different runs to the standard deviation of durations from
the same run and is estimated using simulation as described
in [9].

A value of the impact factor that is close to 1 suggests a
negligible influence of the random initial conditions on the
duration of operations. The larger the value of the impact
factor, the more the durations from different runs differ than
the durations from the same run. Figure 2 shows the values
of the impact factor for the FFT benchmark for daily ver-
sions of Mono developed between August 2004 and June
2005. Especially in February 2005, the influence of the ran-
dom initial conditions was significant, as is indicated by the
values of the impact factor in the order of tens to hundreds.

In contrast to the FFT benchmark, the values of the im-
pact factor for the HTTP Ping benchmark suggest that the
durations from different runs differ only twice or three times
as much as the durations from the same run. The HTTP
Ping benchmark measures the time it takes to invoke a re-
mote method over an HTTP channel. The input argument
of the method is a short string constant, the output argument
of the method is the same string. The plots showing impact
factors for the HTTP Ping and other Mono benchmarks are
available on the web [4].

A value of the impact factor that is close to 1 indicates
that a representative set of durations can be obtained even
from a small number of runs of the same benchmark. A
large value of the impact factor indicates that a large number
of runs, rather than a large number of measured durations in
a run, is needed to obtain a representative set of durations, as

FFT SciMark

In
iti

al
 C

on
di

tio
ns

 Im
pa

ct
 F

ac
to

r
[r

at
io

]

0
50

10
0

15
0

Version

20
04

−
08

−
11

20
04

−
08

−
17

20
04

−
08

−
23

20
04

−
08

−
27

20
04

−
09

−
02

20
04

−
09

−
10

20
04

−
09

−
14

20
04

−
09

−
21

20
04

−
09

−
27

20
04

−
10

−
01

20
04

−
10

−
07

20
04

−
10

−
13

20
04

−
10

−
19

20
04

−
10

−
26

20
04

−
11

−
02

20
04

−
11

−
30

20
04

−
12

−
08

20
05

−
01

−
04

20
05

−
01

−
10

20
05

−
01

−
20

20
05

−
02

−
03

20
05

−
02

−
09

20
05

−
02

−
14

20
05

−
03

−
02

20
05

−
03

−
08

20
05

−
03

−
17

20
05

−
03

−
28

20
05

−
04

−
01

20
05

−
04

−
07

20
05

−
04

−
15

20
05

−
04

−
21

20
05

−
04

−
28

20
05

−
05

−
04

20
05

−
05

−
11

20
05

−
05

−
16

20
05

−
05

−
25

20
05

−
05

−
31

20
05

−
06

−
04

20
05

−
06

−
08

20
05

−
06

−
16

20
05

−
06

−
21

20
05

−
06

−
25

20
05

−
06

−
29

20
05

−
07

−
03

20
05

−
07

−
07

Figure 2. Impact factors of initial conditions
for FFT benchmark in different Mono ver-
sions.

is the case with the FFT benchmark. This line of reasoning
is made precise and formalized in section 3.

3 Benchmark Precision

As shown in section 2, to obtain a representative set of
operation durations, it is necessary not only to repeat the
operations measured by the benchmark within a single run
of the benchmark, but also to run the benchmark repeat-
edly. The factors impacting the benchmark results are often
unpredictable and random, covering for example random
initialization in hardware or intentionally randomized algo-
rithms in the application or the operating system. Conse-
quently, each benchmark experiment consisting of multiple
runs measuring multiple operation durations gives random
results. We expect the distribution of the results to have a
mean and to be well characterized by the mean. To simplify
comparison, we calculate a single result value from each
benchmark experiment, which is the average of all opera-
tion durations.

For a trustworthy detection of performance changes for
the purpose of regression benchmarking, it is necessary to
know the precision of such result values, so that a compar-
ison of result values that differ by less than their respective
precision is not interpreted as a performance change. An
ideal result can be defined as a parameter of a random dis-
tribution that depends on the specific benchmark and the
specific platform. This parameter is not known but can be
estimated using experiments.

We will focus on estimating the mean value of the ran-
dom distribution using an average of the measured dura-
tions. The precision of such an estimate can be determined
using statistical methods. In practice, using a median in-

stead of the average can improve robustness in presence of
outliers [1], but determining the precision of the estimate
analytically is difficult in such a case. Robustness in pres-
ence of outliers is addressed in section 4.

Since we consider the result value of a benchmark to
be the average of the measured durations, the result preci-
sion of the benchmark is the precision with which the result
value estimates the mean value of the random distribution.
We define the precision as a half-length of the 99% confi-
dence interval for the mean value, therefore shorter interval
means higher precision.

The exact formula that expresses the precision of a
benchmark result depends on the choice of the statistical
model that describes the benchmark. In [9], we have pre-
sented a simple additive model of initial conditions, which
expects an additive impact of process initial conditions on
operation durations. We introduce a more general model in
section 3.1.

3.1 Benchmark Precision for Arbitrary Initial
Conditions

We presume that the durations of operations measured
by a benchmark in a run are random, independent and iden-
tically distributed, that the distributions from different runs
can differ in parameters, and that the mean values of the
distributions from different runs are identically distributed
random variables. The result value is the average of the av-
erages of the measured durations as an estimate of the mean
value of the random mean values.

Specifically, for j = 1..m as a benchmark run with i =
1..n measurements,

• the durations of operations rji are observations of ran-
dom variables Rji identically distributed for i = 1..n,
E(Rj1|µj) = µj < ∞, var(Rj1|σ2

j) = σ2
j < ∞.

• µj are identically distributed random variables for each
j = 1..m, E(µ1) = µ < ∞, var(µ1) = ρ2 < ∞.

The result value of a benchmark is

Rmn =
1

mn

m∑
j=1

n∑
i=1

Rji

as an estimate of the ideal result of a benchmark µ. From
the rule of iterated expectations, it follows that µ is also the
mean of Rji if we do not know the specific value of µj :

E (Rji) = E (E (Rji|µj)) = µ.

We will show how to construct a confidence interval for
µ. From the Central Limit Theorem (CLT), the distribution
of µm as an estimate of µ is asymptotically normal:

1
m

m∑
j=1

µj = µm ∼ N

(
µ,

ρ2

m

)
. (1)

From CLT, the average of the averages Mj from run j,

Mj =
1
n

n∑
i=1

Rji,

for the given fixed µj , σj , j = 1..m also has an asymp-
totically normal distribution

Mj |µj , σ
2
j ∼ N

(
µj ,

σ2
j

n

)
.

From the properties of the normal distribution:

Mm|µm, σ2
m ∼ N

(
µm,

σ2
m

mn

)
. (2)

From (1) and (2), it can be shown that:

Mm ∼ N

(
µ,

ρ2

m
+

σ2
m

mn

)
. (3)

The mean and variance of Mm in (3) can by verified by
the rule of iterated expectations :

E[Mm] = E
[
E

[
Mm|µm, σ2

m

]]
= E [µm] = µ

V
[
Mm

]
= E

[
V

[
Mm|µm, σ2

m

]]
+V

[
E

[
Mm|µm, σ2

m

]]
=

= E

[
σ2

m

mn

]
+ V [µm] =

σ2
m

mn
+

ρ2

m
.

If we assume the variances σ2
j to be known or fixed and

only the means µj to be random, it can be shown that the
distribution of Mm is really normal. For details, see ran-
dom effects model in one way classifications in [11]. The
rationale behind the proof is that a convolution of Gaussians
is known to be a Gaussian.

The confidence interval for the estimate of µ can now be
constructed from (3). The result value of a benchmark is

Mm = Rmn

and the half-length of the 1 − α confidence interval for
the mean is

l = u1−α
2
·
√

ρ2

m
+

σ2
m

mn
,

where u are quantiles of the standard normal distribution.

This result holds asymptotically for large n and large
m. The unknown variance of the mean values µj can be
approximated by the variance of the averages of durations
from individual runs, which can be estimated using the S2

estimate:

S2
ρ =

1
m − 1

m∑
j=1

[(
1
n

n∑
i=1

Rji

)
− Rmn

]2

.

The variance of the durations in a run σ2
j is still unknown.

If the variance of the individual runs were constant, σ2
j =

σ2, we could estimate it by

S2
σ =

1
m(n − 1)

m∑
j=1

n∑
i=1

(
Rji − 1

n

n∑
i=1

Rji

)2

to get the half-length of the 1−α confidence interval for
the mean:

lσ = u1−α
2
·
√

nS2
ρ + S2

σ

mn
. (4)

We can proceed using a similar approach when we know
a maximum variance of the durations in a run σ2

max and
estimate the upper bound of the length l, in other words a
lower bound for the precision. We can also note that the for-
mula for l does not rely on the individual values of variance,
but only on the average variance σ2

m. We can therefore use
the formulas for the length lσ and the variance estimate S2

σ

for large m, as implied by the Weak Law of Large Numbers
(WLLN), except for the error of the estimate itself, which is
not included in (4).

In benchmarking experiments, every benchmark process
has to be warmed–up by several measurements of operation
durations that are not included in the results, as they can be
influenced by initialization noise. It is therefore most time-
efficient to improve the result precision firstly by increasing
the number of measurements in a run n and only secondly
by increasing the number of runs m.

For ρ2 > 0, the optimum number of measurements in a
run nopt can be derived from (4) and from the definition of
the cost of the experiment c = (w + n)m, where w is the
number of warm–up measurements:

nopt =

√
wS2

σ

S2
ρ

.

4 Handling Auto-Dependence and Outliers

An important assumption when determining the result of
a benchmark and its precision as described in Section 3 is

the independence and identical distribution of the durations
of an operation execution in a single benchmark run. Our
experience suggests that these assumptions do not generally
hold in raw collected data.

The violation of the independence assumption is typi-
cally manifested by non-random patterns in the collected
data. This was the case for some of the Mono benchmarks,
where the violation of independence was probably caused
by the just-in-time compiler or the garbage collector. As for
the identical distributions, this assumption is typically vio-
lated by outlying measurements, caused by relatively infre-
quent distortions which influence the duration of the mea-
sured operation.

We therefore preprocess the collected data before apply-
ing the methods from Section 3.

4.1 Quantifying Auto-Dependence

The plot in Figure 1 shows that in each run of the FFT
benchmark, we can observe several values that are typical
for the run and around which we can find, with certain vari-
ance, all the measured values. These typical values differ
between benchmark runs and the variance is greater than
the variance of the values in a single run, which results in
the horizontal stripes or clusters that can be seen in the plot.

The clusters visible in Figure 1 appear to have the same,
or at least very similar, variance. This effect can be more
accurately quantified with the help of the impact factor of
the initial conditions described in Section 2. The approach
is similar to determining the extent to which the influence of
the initial conditions fits the additive model in [9]. The mea-
sured data are passed to a clustering additive filter, which
first splits the measured values into clusters using the M-
clust algorithm [7, 6]. Then, for each cluster, the average of
durations from the cluster is subtracted from each duration
in the cluster. This applies the additive filter to the individ-
ual clusters. After applying the filter, the impact factor of
the initial conditions is computed for the resulting data.

In case of the FFT benchmark, the impact factors for dif-
ferent versions of Mono after applying the clustering addi-
tive filter are close to 1, suggesting that the impact of the
initial conditions is described well by the model in 3.1 or
the additive model described in [9] when applied to individ-
ual clusters. The situation can be illustrated by comparing
the plot in Figure 3 with the plot in Figure 2.

The violation of the assumption of sample independence
in case of the FFT benchmark is clear from the following
experiment. First, we number the clusters and transform the
original data into a sequence of cluster indices by mapping
all values from the same cluster to the respective cluster in-
dex. We can then observe that the interleaving of the cluster
indices in the resulting sequence is very systematic. This ef-
fect is also clearly visible in a lag plot of the measured data,

FFT SciMark

Im
pa

ct
 F

ac
to

r
af

te
r

M
cl

us
t A

dd
iti

ve
 F

ilt
er

in
g

[r
at

io
]

0.
94

0.
96

0.
98

1.
00

1.
02

1.
04

Version

20
04

−
08

−
11

20
04

−
08

−
17

20
04

−
08

−
23

20
04

−
08

−
27

20
04

−
09

−
02

20
04

−
09

−
10

20
04

−
09

−
14

20
04

−
09

−
21

20
04

−
09

−
27

20
04

−
10

−
01

20
04

−
10

−
07

20
04

−
10

−
13

20
04

−
10

−
19

20
04

−
10

−
26

20
04

−
11

−
02

20
04

−
11

−
30

20
04

−
12

−
08

20
05

−
01

−
04

20
05

−
01

−
10

20
05

−
01

−
20

20
05

−
02

−
03

20
05

−
02

−
09

20
05

−
02

−
14

20
05

−
03

−
02

20
05

−
03

−
08

20
05

−
03

−
17

20
05

−
03

−
28

20
05

−
04

−
01

20
05

−
04

−
07

20
05

−
04

−
15

20
05

−
04

−
21

20
05

−
04

−
28

20
05

−
05

−
04

20
05

−
05

−
11

20
05

−
05

−
16

20
05

−
05

−
25

20
05

−
05

−
31

20
05

−
06

−
04

20
05

−
06

−
08

20
05

−
06

−
16

20
05

−
06

−
21

20
05

−
06

−
25

20
05

−
06

−
29

20
05

−
07

−
03

20
05

−
07

−
07

Figure 3. Impact factors of initial conditions
after clustered additive filtering in FFT Sci-
mark.

176 177 178 179

17
6

17
7

17
8

17
9

FFT SciMark

Time [ms] (lag 1)

T
im

e
[m

s]

Figure 4. Lag-plot of FFT computation times
in a single benchmark run.

which is commonly used for inspecting auto-dependence in
time series.

Figure 4 shows a lag plot of the data from a single run
of the FFT Scimark benchmark. For comparison, Figure 5
shows a lag plot of the same but randomly reordered data,
which represents the scenario where the individual mea-
surements are independent. The plot in Figure 4 shows that
observing a value from a particular cluster restricts the pos-
sible value of the next observation to a specific cluster.

4.2 Data Preprocessing

The presence of outliers in the data is a typical issue as-
sociated with measurements of real systems, and therefore
applies to benchmarking computer systems as well [2, 1].

176 177 178 179

17
6

17
7

17
8

17
9

FFT SciMark − Randomized Order

Time [ms] (lag 1)

T
im

e
[m

s]

Figure 5. Lag-plot of randomly reordered FFT
computation times in a single benchmark run.

The nature of the outliers is such that under certain circum-
stances, the duration of an operation can be as much as sev-
eral orders of magnitude longer than in most other cases.
Although the occurrence of the outliers is rare, it has a sig-
nificant impact on the results. Since we do not have a plau-
sible model for the collected data of a generic benchmark
on a generic system, we use a simple simulation technique
to preprocess the data, allowing us to neglect the impact of
the outliers on the results. This technique also tackles the
auto-dependence described earlier.

The algorithm for obtaining the result and precision of
a benchmark, including the data preprocessing, follows.
Symbols correspond to those used in Section 3.1):

• execute m benchmark runs, collecting w+k measured
durations rji, j = 1..m, i = 1..w + k of the same
operation each run,

• for each benchmark run j, repeatedly (e.g. 100 times)
generate a random sub-selection of size n using sam-
pling with replacement, where n < k (e.g. n = 0.75 ·
k) from measurements rj,(w+1)..rj,(w+k), and calcu-
late the median Mj of averages of all sub-selections,

• for each benchmark run j, generate another set of ran-
dom sub-selections using the method from the previ-
ous step and calculate the median S2

σj
of sample vari-

ances of all sub-selections,

• the result of the benchmark is Mm = 1
m

∑m
j=1 Mj ,

• the precision of the benchmark result as the half-length
of the 1 − α confidence interval for the mean is

lσ = u1−α
2
·
√

nS2
ρ + S2

σ

mn
,

where

S2
σ =

1
m

m∑
j=1

S2
σj

,

S2
ρ =

1
m − 1

m∑
j=1

(
Mj − Mm

)2
.

With the knowledge of the benchmark result and its pre-
cision in the form of confidence interval half-length, we can
automatically detect statistically significant changes in per-
formance, which is explained in Section 5.

5 Automated Detection of Changes

Regression benchmarking requires automated detection
of changes in performance between different versions of the
software under development. Performance is assessed us-
ing benchmarks that determine the average duration of the
measured operation as well as the confidence interval for
the mean as a measure of precision.

A performance change is reported whenever the confi-
dence intervals for the mean operation durations of two con-
secutive versions of the tested software do not overlap. To
assess the magnitude of a performance change, we use a
ratio of the distance between the centers of the confidence
intervals for the older and the newer version to the center
of the confidence interval for the older version. The center
of the confidence interval is the average of averages calcu-
lated as a result of the benchmark. This quantification has
only an informative character though, as it does not take
into account the lengths of the confidence intervals, i.e. the
precision of the benchmark results.

The plot in Figure 6 shows significant changes in per-
formance for different versions of Mono as measured by the
HTTP Ping benchmark. The horizontal axis shows an index
of the tested Mono version, the vertical axis is the response
time. The confidence intervals for the mean as described
in Section 3.1 are marked by gray lines, the performance
changes are marked by bold black lines. The table below
the plot summarizes and quantifies the detected changes.
Each row of the table contains the dates of the older and
newer versions between which the change was detected and
the size of the change as percentage of the older version.
Changes quantified as positive in the table are therefore re-
gressions.

For practical employment of regression benchmarking in
software development, it is important to be able to locate
modifications in sources that are suspect causes of the de-
tected performance changes. This issue is addressed in [10].

HTTP Ping

99
%

 C
on

fid
en

ce
 In

te
rv

al
 fo

r
T

im
e

M
ea

n
[m

s]

8
10

12
14

16

Version

20
04

−
08

−
11

20
04

−
08

−
18

20
04

−
08

−
24

20
04

−
08

−
30

20
04

−
09

−
03

20
04

−
09

−
11

20
04

−
09

−
15

20
04

−
09

−
22

20
04

−
09

−
28

20
04

−
10

−
04

20
04

−
10

−
08

20
04

−
10

−
14

20
04

−
10

−
20

20
04

−
10

−
27

20
04

−
11

−
03

20
04

−
12

−
01

20
05

−
01

−
04

20
05

−
01

−
10

20
05

−
01

−
20

20
05

−
02

−
03

20
05

−
02

−
09

20
05

−
02

−
14

20
05

−
03

−
02

20
05

−
03

−
08

20
05

−
03

−
17

20
05

−
03

−
28

20
05

−
04

−
01

20
05

−
04

−
07

20
05

−
05

−
04

20
05

−
05

−
11

20
05

−
05

−
16

20
05

−
05

−
25

20
05

−
05

−
31

20
05

−
06

−
04

20
05

−
06

−
08

20
05

−
06

−
16

20
05

−
06

−
21

20
05

−
06

−
25

20
05

−
06

−
29

20
05

−
07

−
03

20
05

−
07

−
07

Newer Version Older Version Change

2004-08-17 2004-08-13 -9.67%
2004-08-18 2004-08-17 -10.44%
2004-08-23 2004-08-20 -2.95%
2004-09-03 2004-09-02 3.4%
2004-09-07 2004-09-03 -4.57%
2004-10-15 2004-10-14 -4.29%
2004-10-29 2004-10-27 3.96%
2004-11-05 2004-11-04 -4.9%
2004-11-30 2004-11-05 -2.87%
2004-12-20 2004-12-01 19.64%
2005-03-02 2005-02-28 -7.81%
2005-03-07 2005-03-04 7.77%
2005-04-05 2005-04-04 39.29%
2005-04-06 2005-04-05 1.77%
2005-04-08 2005-04-07 -3.58%

Figure 6. Confidence intervals for mean re-
sponse time in HTTP Ping with detected sig-
nificant changes.

6 Mono Regression Benchmarking Project

The Mono Regression Benchmarking Project applies the
methods described in the paper at detecting performance
regressions in daily development snapshots of Mono, an
open-source implementation of the .Net platform. The
project serves as a testbed for development and validation
of methods for benchmarking and analysis of data for the
purpose of regression benchmarking.

The project currently includes five benchmarks - the Fast
Fourier Transform (FFT) benchmark, the HTTP Ping and
TCP Ping benchmarks which test remove method invoca-
tion, Scimark [14, 13] which tests floating point computa-
tion and Rijndael which tests a single encryption algorithm.
A more detailed description of the benchmarks can be found
in [10].

The benchmarking environment is fully automated and
the results are continuously updated on the web of the
project [4]. The presented graphs are similar to the graph
on Figure 6 and other graphs presented in this paper.

7 Conclusion

Regression benchmarking, as a part of regression test-
ing, is a promising approach that allows the developers to
monitor the performance of software during development.
Regression benchmarking comprises regular execution of
many benchmarks. For practical use, the detection of per-
formance changes must be automated, which in turn re-
quires the knowledge of the precision of the benchmark re-
sults.

We bring attention to a frequently overlooked depen-
dency of benchmark results on random initial conditions,
present methods for quantifying their influence on various
benchmarks and characterize their influence on benchmark
results.

For determining the precision of benchmark results, we
present methods that take into account the random initial
conditions and auto-dependence in the data from a single
benchmark run, which is also an often-overlooked depen-
dency. The presented methods allow determining the op-
timal number of benchmark runs and the number of mea-
surements that should be collected in each run in order to
maximize the precision of a benchmark result in given time.

Most of the proposed methods and approaches have been
implemented in a simple and fully automated regression
benchmarking system that monitors performance and de-
tects performance changes in daily development snapshots
of the Mono project. Future development will focus on in-
tegrating the method for determining the optimal number of
benchmark runs and the number of measurements in a run
with the benchmarking system.

A challenge for future work comprises automated, or at
least partially automated, correlation of source code modi-
fications with the detected performance changes.

Acknowledgment. The authors would like to express their
thanks to Jaromir Antoch, Alena Koubkova and Tomas Os-
tatnicky for their help with mathematical statistics. This
work was partially supported by the Grant Agency of the
Czech Republic projects 201/03/0911 and 201/05/H014.

References

[1] A. Buble, L. Bulej, and P. Tuma. Corba benchmarking: A
course with hidden obstacles. In IPDPS, page 279. IEEE
Computer Society, 2003.

[2] L. Bulej, T. Kalibera, and P. Tuma. Regression benchmark-
ing with simple middleware benchmarks. In H. Hassanein,
R. L. Olivier, G. G. Richard, and L. L. Wilson, editors, In-
ternational Workshop on Middleware Performance, IPCCC
2004, pages 771–776, 2004.

[3] L. Bulej, T. Kalibera, and P. Tuma. Repeated results analy-
sis for middleware regression benchmarking. Performance
Evaluation, 60(1–4):345–358, May 2005.

[4] Distributed Systems Research Group. Mono regression
benchmarking. http://nenya.ms.mff.cuni.cz/
projects/mono, 2005.

[5] ECMA. ECMA-335: Common Language Infrastructure
(CLI). ECMA (European Association for Standardizing In-
formation and Communication Systems), Geneva, Switzer-
land, Dec. 2002.

[6] C. Fraley and A. E. Raftery. Mclust: Software for model-
based clustering, density estimation and discriminant anal-
ysis. Technical Report 415, Department of Statisticis, Uni-
versity of Washington, WA, USA, Oct 2002.

[7] C. Fraley and A. E. Raftery. Model-based clustering, dis-
criminant analysis, and density estimation. Journal of the
American Statistical Association, 97:611–631, 2002.

[8] R. E. Jeffries, A. Anderson, and C. Hendrickson. Extreme
Programming Installed. Addison-Wesley Longman Publish-
ing Co., Inc., Boston, MA, USA, 2000.

[9] T. Kalibera, L. Bulej, and P. Tuma. Benchmark precision
and random initial state. In accepted for 2005 International
Symposium on Performance Evaluation of Computer and
Telecommunications Systems (SPECTS 2005), July 2005.

[10] T. Kalibera, L. Bulej, and P. Tuma. Quality assurance
in performance: Evaluating mono benchmark results. In
accepted for Second International Workshop on Software
Quality (SOQUA 2005), Sept. 2005.

[11] C. E. McCulloch and S. R. Searle. Generalized, Linear and
Mixed Models. Wiley–Interscience, New York, NY, USA,
2001.

[12] Novell, Inc. The Mono Project. http://www.
mono-project.com, 2005.

[13] R. Pozo and B. Miller. Scimark 2.0 benchmark. http:
//math.nist.gov/scimark2/, 2005.

[14] C. Re and W. Vogels. Scimark – c#. http://rotor.cs.
cornell.edu/SciMark/, 2004.

