
TERMGRAPH 2006

Towards a Theory of Tracing for Functional
Programs based on Graph Rewriting

Olaf Chitil and Yong Luo

Computing Laboratory
University of Kent

Canterbury, United Kingdom

Abstract

The tracer Hat records in a detailed trace the computation of a program written in
the lazy functional language Haskell. The trace can then be viewed in various ways
to support program comprehension and debugging. Here we describe a model of the
trace that captures its essential properties and allows formal reasoning. The trace
structure was inspired by standard graph rewriting implementations of functional
languages. The trace is a graph which is constructed by graph rewriting but goes
beyond simple term graphs.

Key words: Tracing, debugging, Haskell, augmented redex trail.

1 Tracing Functional Programs

Usually, a computation is treated as a black box that performs input and out-
put actions. However, we have to look into the black box when we want to see
how the different parts of the program cause the computation to perform the
input/output actions. The most common need for doing this is debugging:
When there is a disparity between the actual and the intended semantics of
a program, we need to locate the part of the program that causes the dispar-
ity. Other reasons for observing how a program works are checking internal
consistency properties (cf. assertions), reverse-engineering of an insufficiently
documented program, and learning to program. Tracing is the process of ob-
taining additional information about the internal workings of a computation.

Conventional forms of tracing are the introduction of specific statements
in a program for logging information about the computation progress and
the use of debuggers for stepping through a computation and inspecting the
computation state. For lazy functional languages different tracing methods
have been developed for two reasons. First, conventional methods are unsuit-
able, because intermediate expressions with large unevaluated subexpressions
are hard to read and the lazy reduction strategy is too complex for human

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Chitil and Luo

programmers to follow. Second, conventional tracing methods reflect only
the computational model of imperative programs: a long sequence of state
transformations. In contrast, functional programmers want to ignore low-
level operational details, in particular evaluation order, but take advantage of
properties such as explicit data flow and absence of side effects.

Several tracing systems for lazy functional languages are available, all for
Haskell [11,6,3,12,9]. All systems take a two-phase approach to tracing:

(i) During the computation information about the computation is recorded
in a data structure, the trace.

(ii) After termination of the computation the trace is used to view the com-
putation. Usually an interactive tool displays fragments of the computa-
tion on demand. The programmer uses their knowledge of the intended
behaviour of the program to locate faults.

A trace is a complex graph of expression components; most trace structures
also incorporate links to the source program. The trace as concrete data
structure liberates the viewer from time and the sequential evaluation strategy.

Each tracing method gives a different view of a computation; in practice,
the views are complementary and can productively be used together [2]. Hence
the Haskell tracer Hat integrates several methods [12]. During a computation
a single unified trace is generated, the augmented redex trail (ART). Separate
tools provide different views of the ART, for example algorithmic debugging
[10,6,9], following redex trails [11] and observing functions [3].

2 The Aim: A Theory of Tracing

Hat transforms a Haskell program into a new Haskell program. When the
compiled new program is executed, it writes the ART to a file in addition to
any normal I/O the original program would perform. This indirect definition
of the ART through program transformation makes it hard to determine the
ART of even a simple computation by hand. Because two programs are in-
volved, the original and the transformed one, it is hard to disentangle which
assumptions about the semantics of each are made. The ART also includes
many special constructs, because Haskell is a large and complex language.

Therefore our aim is to give a direct and simple definition of the ART that
captures its essential properties and will enable us to formally relate a view
to the semantics of a program. Thus viewed information has a clear meaning
and can be used correctly to understand a program and locate program faults.

We concentrate on the ART because it was already distilled as a unified
trace from several other traces. This focus on the ART does not preclude
revisions of its definition in the light of new insights. We are aware of several
shortcomings (lack of information) that we intend to remove. Although the
ART is only used for Haskell, it is suitable for both strict and non-strict pure
functional languages, as our definition shall clarify.

2

Chitil and Luo

3 What is a Trace?

A trace consists of information about a computation. It (partially) describes
how the computation of a program obtained its outputs from its inputs. How-
ever, if computation is deterministic (as we assume here), then the complete
computation is already determined by the program and its inputs. So is a trace
hence superfluous? No. Any detail of a computation can be reconstructed
from program and inputs by rerunning the computation, but that would be
expensive. The purpose of a trace is to provide quick and easy access to any
desired information. Most viewing tools are interactive; hence they have to
provide demanded bits of information quickly, in particular independent of
the length of the computation.

Operational semantics provide descriptions of computations. Both a se-
quence of expressions M0 → M1 → M2 → . . . of a small-step operational
semantics and the proof tree of a big-step natural semantics are descriptions
of computations. However, they are unsuitable as traces not just because they
do not provide quick access to all desired information, but more obviously be-
cause they are full of redundancies. In both these descriptions most parts
of expressions are replicated many times. A trace has to be as compact as
possible to describe long computations.

4 The Origin of the Augmented Redex Trail

Term graph rewriting [8] provides an operational semantics for functional pro-
grams that is abstract and closely related to standard term rewriting seman-
tics. In contrast to terms/expressions, graphs allow the sharing of common
subexpressions as it happens in real implementations of functional languages,
such as the G-machine [4] or the more efficient STG-machine [7]. Term graph
rewriting can correctly model the asymptotic time and space complexity of
real implementations [1]. For us, sharing is the key for a space efficient trace
structure and closeness to the implementation also promises easy creation of
a trace.

Consider the representation of the Haskell expression sort [’t’] as term
graph ([’t’] is syntactic sugar for (:) ’t’ []):

•

’t’:

[]• •

• •sort

• •

3

Chitil and Luo

The function sort is defined by the following two rewrite rules:

sort [] = []

sort (x:xs) = insert x (sort xs)

We perform a rewriting step with the second equation:

•

’t’:

[]• •

• •sort

• •

sort

• •

insert

• •

• •

→

For this rewriting step we have added new graph nodes that represent the
right-hand side of the used rewrite rule. We have a new root node denoting
the top of the expression. To ensure that the new top node is correctly shared
(when the redex is only part of a larger expression), implementations actually
overwrite the top node of the redex with the top node of the reduct. Some
graph nodes become unreachable from the root and are removed by a garbage
collector:

•

’t’

[] sort

• •

insert

• •

• •

It is vital for the efficiency of graph rewriting that each rewriting step
only adds a small number of new nodes; subexpressions that are bound to the
variables of the rewrite rule are shared with the redex graph and hence need
not be added.

For tracing a computation we simply do not overwrite the redex with the
reduct, but construct the reduct separately, still sharing subexpressions with
the redex as above. We connect the top nodes of redex and reduct by a special
reduction edge.

Using also the rewrite rules

sort [] = []

insert x [] = [x]

4

Chitil and Luo

we obtain the following trace of a complete computation (dotted arrows are
reduction edges):

•

’t’:

[]• •

• •sort

• •

sort

• •

insert

• •

• •

[]

:

• • []

• •

This is the augmented redex trail (ART) of the computation. It is a com-
pact but detailed representation of the computation; in particular, it directly
relates each redex with its reduct. Its creation in both practise and theoretical
model is greatly simplified by the fact that each reduction step only adds to
the trace but never modifies the already existing parts.

As described here, the ART has no information about the order of reduc-
tion steps. It does not say that sort [] → [] happened before insert ’t’

[] → [’t’]. This information is irrelevant for most views provided by Hat.
This observation agrees with our idea that functional programmers abstract
from time. Because Hat writes the nodes of the ART into file in the order
of their creation, timing information is actually available. If it later proves
necessary, we can easily add it to our model.

5 Programs

Operational semantics for functional languages that describe sharing, in par-
ticular the widely used semantics of Launchbury [5] and its variations, are
based on an initial translation into a small core calculus that is rather dif-
ferent from programming constructs mostly used in programs. Such a core
calculus is suitable for compilers. In contrast, a trace supports a program-
mer in understanding how a program works. Hence it is important that the
trace relates to the program as originally written. We limit ourselves to the
most frequently used program language features: named functions and pattern
matching. Our programs are higher-order term rewriting systems.

variable f, g, x, y

expression M,N := x variable

| C data constructor

| M N application

5

Chitil and Luo

Each data constructor is associated with a natural number, its arity. A data
constructor application CM1 . . . Mn is fully applied if n is the arity of C. A
pattern P is an expression formed only from variables and fully applied data
constructors. fP1 . . . Pn = M for n ≥ 0 is a rewriting rule for the variable f .
A program is a set of rewriting rules. The left-hand sides of any two rewriting
rules for the same variable must have the same number of patterns and they
must not have a common instance. Thus the term rewriting system of the
program is confluent.

6 Formalising a Trace Graph

Graphs have the disadvantage that the choice of node and edge elements is
usually irrelevant because we are mostly interested in the labels. The notion
of graph morphism becomes central, because we do not want to distinguish
isomorphic graphs. Isomorphism classes of graphs are inconvenient to handle.
Hence we choose a standard representation of graphs where a node describes
the path from the root of the graph to the node. A node is a (possibly empty)
string of the letters l, r and t, where l means following the left argument of
an application, r means following the right argument of an application, and t
means following a reduction edge to the top of the reduct.

node letter i, j := l | r | t

node n,m, o ∈ {l, r, t}∗

Because of sharing, several paths may lead to the same node in the graph.
However, in trace graphs there exist canonical paths: We start with the term
graph of the start expression that has no sharing, so every node has a unique
path. In every rewrite step we add a number of nodes, each of which has
exactly one incoming edge, so a unique path as well. Rewriting also leads to
sharing of already existing nodes, but we do not change the identity of a node
because of that. So a node describes the single path by which it was reachable
at creation time and thus nodes even contain useful information.

Here our previous example with node identities:

•

rlr
’t’

rll
:

rr
[]

rl
• •

r
• •

l
sort

ǫ

• •

trl
sort

tr
• •

tll
insert

tl
• •

t
• •

trt
[]

ttll
:

ttl
• •

ttr
[]

tt
• •

6

Chitil and Luo

We do not explicitly include reduction edges in the graph, because they
are already implicitly given through our choice of nodes. A reduction edge
always points from a node n to the node nt. If and only if node nt exists in
the graph, there is a reduction edge from node n to node nt.

The real Hat ART also includes so-called parent edges that we have not
mentioned yet. Each node has a parent edge that points to the top node of
the redex that caused its creation. For example, the parent of node tll is node
ǫ. The parent of node trt is node tr. This information is also encoded in our
nodes:

parent(nt) := n

parent(nl) := parent(n)

parent(nr) := parent(n)

parent(ǫ) := undefined

Each node is labelled with a node expression, which may point to further
nodes.

node expression T := x variable

| C data constructor

| n indirection

| nm application

Similar to functional implementations we need an indirection node expression.
To record a reduction we have to add at least one node. If we reduce with
a projection, such as id x = x, then a new indirection node will be created,
which points to the argument of id.

Definition 6.1 A trace graph is a partial function G : n 7→ T such that its
domain is prefix-closed, that is, if ni ∈ dom(G), then n ∈ dom(G).

We sometimes regard a trace graph G as a set of tuples {(n,G(n)) | n ∈
dom(G)}. A trace graph is closed if all nodes occurring in its node expressions
are in its domain.

When composing two trace graphs we have to rename the nodes of at least
one of them.

prefix(D,n)(m) :=

{

nm if m ∈ D

m otherwise

We extend the renaming function prefix to node expressions and then combine
two trace graphs G1 and G2 with mi = n /∈ dom(G1) but m ∈ dom(G1) as
follows:

G1 +n G2 := G1 ∪ (prefix(dom(G2), n) ◦ G2 ◦ prefix(dom(G2), n))

7

Chitil and Luo

Defining a non-sharing graph for a given expression is straightforward. How-
ever, looking ahead at the next section we want to consider expressions that
may also contain nodes. This makes the definition slightly more complex:

graph(x) = {(ǫ, x)}

graph(C) = {(ǫ, C)}

graph(n) = {(ǫ, n)}

graph(M N) =

{(ǫ,M N)} if M and N are nodes

{(ǫ, lN)} +l graph(M) if only N is a node

{(ǫ,M r)} +r graph(N) if only M is a node

({(ǫ, l r)} +l graph(M)) +r graph(N) otherwise

Because of reduction edges, a single node of a trace graph may represent many
expressions. For example, the most evaluated form of node n of graph G is
mefG(n), obtained by always following reduction edges:

mefG(n) =

{

mefG(nt) if nt ∈ dom(G)

meftG(G(n)) otherwise

meftG(x) = x

meftG(C) = C

meftG(n) = mefG(n)

meftG(m n) = mefG(m) mefG(n)

7 A Reduction Step

We define a reduction step in terms of substitution on expressions. To obtain
correct sharing, the substitution substitutes nodes instead of expressions, so we
work on expressions that contain nodes. The function pmef obtains all partial
most evaluated forms from a node, expressions that include nodes. For our ex-
ample trace graph pmefG(ǫ) = {ǫ, ttl ttr, ttl [], (ttll ttlr) ttr, ((:) ttlr) ttr, . . .}.

pmefG(n) = {n} ∪ pmeftG(endG(n))

endG(n) =

{

endG(nt) if nt ∈ dom(G)

G(n) otherwise

pmeftG(x) = {x}

pmeftG(C) = {C}

pmeftG(n) = pmeftG(endG(n))

pmeftG(m n) = {M N | M ∈ pmefG(m), N ∈ pmefG(n)}

Definition 7.1 The rewrite relation → on trace graphs is defined as follows.
Let n ∈ dom(G) with nt /∈ dom(G). If there is a rewriting rule L = R in the

8

Chitil and Luo

program and a substitution of nodes for variables σ such that Lσ ∈ pmefG(n),
then G → G +nt graph(Rσ).

Trace graph rewriting is subcommutative, that is, for G → G1 and G → G2

exists G′ with G1 →
= G′ and G2 →

= G′.

Definition 7.2 A trace graph G with graph(M) →∗ G for some expression
M is an augmented redex trail (ART).

An ART is closed and acyclic.

We have not yet defined any reduction strategy for a lazy or eager func-
tional language. The structure of the ART is independent of any reduction
strategy and we hope to formulate and prove most properties of interest with-
out reference to any reduction strategy.

8 Further Work

Here we have presented and motivated the basic definitions for a theory of
tracing. We are still wondering if some definitions, in particular trace graph
rewriting, can be simplified to simplify proofs. There are still many properties
to prove.

Algorithmic debugging is a semi-automatic method for locating a faulty
rewrite rule in a program [10,6,9]. The method is based on a tree-based rep-
resentation of the computation, the evaluation dependency tree (EDT). The
EDT can easily be constructed from the ART. Using the ART we have proved
that if a computation yields an incorrect result, then algorithmic debugging
correctly locates the faulty rewrite rule.

Currently we are studying two extensions of the ART model. First, we
add local rewrite rules to the program. Information about the value of a free
variable, such as variable x of function f in the definition

g x y z = f y + f z

where

f v = v + x

needs to be available in the trace. Second, the current ART is acyclic, but
implementations of lazy functional languages actually create cyclic graphs for
constants such as

ones = 1 : ones

The real ART produced by Hat also contains cycles in such cases and it is well
known that these cause problems for example for algorithmic debugging. We
intend to compare definitions of ARTs with and without cycles to determine
which information is lost.

9

Chitil and Luo

References

[1] Adam Bakewell. Using term-graph rewriting models to analyse relative space
efficiency. In TERMGRAPH 2002 International Workshop on Term Graph
Rewriting, volume 72 of Electronic Notes in Theoretical Computer Science.
Elsevier Science Publishers, 2002.

[2] Olaf Chitil, Colin Runciman, and Malcolm Wallace. Freja, Hat and Hood
— A comparative evaluation of three systems for tracing and debugging
lazy functional programs. In Markus Mohnen and Pieter Koopman, editors,
Implementation of Functional Languages, 12th International Workshop, IFL
2000, LNCS 2011, pages 176–193. Springer, 2001.

[3] Andy Gill. Debugging Haskell by observing intermediate data structures.
Electronic Notes in Theoretical Computer Science, 41(1), 2001. 2000 ACM
SIGPLAN Haskell Workshop.

[4] Thomas Johnsson. Efficient compilation of lazy evaluation. In Proceedings of
the SIGPLAN ’84 Symposium on Compiler Construction, pages 58–69. ACM
Press, 1984.

[5] John Launchbury. A natural semantics for lazy evaluation. In Conference
Record of the Twentieth Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 144–154. ACM Press, 1993.

[6] Henrik Nilsson. Declarative Debugging for Lazy Functional Languages. PhD
thesis, Linköping, Sweden, May 1998.

[7] Simon L. Peyton Jones. Implementing lazy functional languages on
stock hardware: The spineless tagless G-machine. Journal of Functional
Programming, 2(2):127–202, April 1992.

[8] Detlef Plump. Term graph rewriting. In H. Ehrig, G. Engels, H.-J. Kreowski,
and G. Rozenberg, editors, Handbook of Graph Grammars and Computing by
Graph Transformation, chapter 1, pages 3–61. World Scientific, 1999. Volume
2: Applications, Languages and Tools.

[9] B. Pope and Lee Naish. Practical aspects of declarative debugging in Haskell-98.
In Fifth ACM SIGPLAN Conference on Principles and Practice of Declarative
Programming, pages 230–240, 2003.

[10] E. Y. Shapiro. Algorithmic Program Debugging. MIT Press, 1983.

[11] Jan Sparud and Colin Runciman. Tracing lazy functional computations using
redex trails. In H. Glaser, P. Hartel, and H. Kuchen, editors, Proc. 9th Intl.
Symposium on Programming Languages, Implementations, Logics and Programs
(PLILP’97), pages 291–308. Springer LNCS Vol. 1292, September 1997.

[12] Malcolm Wallace, Olaf Chitil, Thorsten Brehm, and Colin Runciman. Multiple-
view tracing for Haskell: a new Hat. In Preliminary Proceedings of the 2001
ACM SIGPLAN Haskell Workshop, UU-CS-2001-23. Universiteit Utrecht, 2001.
Final proceedings to appear in ENTCS 59(2).

10

	Tracing Functional Programs
	The Aim: A Theory of Tracing
	What is a Trace?
	The Origin of the Augmented Redex Trail
	Programs
	Formalising a Trace Graph
	A Reduction Step
	Further Work
	References

