
Problems in the Initial Teaching of Programming
using Java: The case for replacing J2SE with J2ME

 Ian Utting
Computing Laboratory

University of Kent at Canterbury
Canterbury, Kent, UK

+44 1227 823811

I.A.Utting@kent.ac.uk

ABSTRACT
In their analysis of the use of Java as a first teaching language, the
ACM Java Task Force (JTF) identified a number of issues with
the Java language and APIs which caused significant pedagogic
problems. The focus of their work, and hence of their
characterisation of the issues, was the Java “Standard Edition”
(J2SE).

This paper contends that the version of Java designed for
programming small devices (Java 2 Micro Edition, J2ME) does
not suffer from these problems identified by the JTF to the extent
that the (more familiar) J2SE does, and suggests a number of
other reasons why J2ME represents a good choice as a first
programming language.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and Information
Science Education – Computer Science Education

General Terms
Languages.

Keywords

Introductory programming, programming languages.

1. INTRODUCTION
In its “Taxonomy of Problems in Teaching Java” [1], the ACM
Java Task Force (JTF) identified from the literature a number of
problems which have been observed in the use of Java as a first
teaching language. Setting aside those issues which had been
resolved (or at least addressed) since they were first identified, the
JTF is engaged in addressing the remaining issues by a
combination of constructing a restricted view of the Java Standard
Edition API documentation, and by producing a number of new,
pedagogically-focused APIs.

In this paper, I examine the practicality of an alternative solution:
replacing the use of the familiar “Standard Edition” of Java
(typically used for Applets and desktop applications) with the
much simpler “Micro Edition”, which is increasingly used on
mobile devices such as cell phones and PDAs. After introducing
the major features of J2ME, the paper will evaluate the extent to
which J2ME addresses the problems identified by the JTF, and
look at what needs be done to alleviate any remaining major
obstacles to its deployment as a language for the initial teaching
of programming.

2. AN OVERVIEW OF J2ME
Despite the “write once run anywhere” slogan, there are actually
four different versions of Java:

• J2EE: The Enterprise Edition, typically used for server-
side business applications,

• J2SE: The Standard Edition, used for desktop
applications and browser-based Applets

J2EE and J2SE are fundamentally differentiated only by the set of
APIs assumed to be available. In addition, there is:

• JavaCard: used for smart card applications. This is, in
practice, a significantly different language and a
basically disjoint set of APIs.

• J2ME: The Micro Edition, used to program applications
for mobile/wireless devices. Both a slightly different
language and a (largely) disjoint set of APIs.

J2ME [7] is the version of the Java language (and the set of APIs)
designed to support applications running on “small devices”. As
might be imagined, the definition of “small device” is changing
quite rapidly as hardware capabilities in mass-market devices
increase, but the fundamental constraint on J2ME programs
remains the size of packaged (executable) applications – the
larger the packaged application is, the more time it takes to
download Over The Air, the more time it takes to load, and the
more persistent storage it requires on the target device. Significant
differentiation in the mobile device market (with/without a
camera, with/without BlueTooth, etc.) also has an impact on the
APIs which are appropriate for inclusion in particular J2ME
systems.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ITiCSE’06, June 26-28, 2006, Bologna, Italy.
Copyright 2006 ACM 1-59593-055-8/06/0006…$5.00.

193

Due to intrinsic hardware restrictions, early versions of J2ME
lacked floating point support and other fundamental Java
language features, but the increasing capabilities of mobile
devices has rendered such restrictions pointless. The remaining
significant restrictions to the subset of Java language features
available in J2ME are largely related to class-file size: reflection
and dynamic class-loading are not supported. In addition recent
(Java 5) features such as generics, autoboxing, and enumerated
types are not currently supported in standard J2ME (although,
given that they have no impact on the Java Virtual Machine which
runs Java programs, there is no reason why they couldn’t be
supported).

Given the wide variation in wireless device capabilities, there is
clearly a problem in matching the set of capabilities assumed to
be present by application authors against those actually present on
a particular device. The J2ME architects have addressed this issue
by placing each non-core capability into a separate API package.
So BlueTooth, Camera access, Multimedia messaging, etc. are
each addressed by separate, optional, API packages. This is in
distinct contrast to the approach taken in J2SE, where there is a
monotonically increasing set of “core” APIs (e.g. CORBA, XML
and AWT/Swing) which are assumed to be present in all
environments.

3. J2ME EVALUATED AGAINST THE JTF
PROBLEM TAXONOMY
In this section, I discuss how J2ME measures up against the set of
problems identified by the JTF, and particularly how it compares
in that respect with J2SE. The references in (brackets) are to the
problem numbers in Chapter 3 of the JTF rationale document (op.
cit.).

3.1 THE GOOD NEWS
In a number of ways, J2ME compares well with J2SE, and
addresses a number of problems identified by the JTF: Scale, the
use of static methods (especially main), the lack of a simple
input mechanism, the conceptual difficulty of the Graphics model,
the appropriateness of the available GUI components, and the
inadequate support for event-driven programming.

3.1.1 SCALE (H1)
It is apparent from context that the JTF mean here, and assert that
their sources for this problem mean, the scale (extent, scope) of
the J2SE APIs, rather than the language itself. This may have
been a function of the time at which the JTF was gathering its
evidence, as the subsequent release of J2SE 5 (previously known
as J2SE 1.5) introduced significant changes to the Java language,
as well as to the standard APIs. Some of the language issues the
JTF identified are excluded here for the sake of brevity.

The “standard” APIs

It has been observed (by Eric Roberts) that the original text of the
“Pascal User Manual and Report” [8] contained some 35000
words. This was enough to specify the entire language, and to
provide what was felt to be (at the time) sufficient background
material to allow students to learn to program in it. In contrast,
there are more than 35000 public methods in the standard J2SE
APIs, a figure which increases with every new release of J2SE.

This increase is due not only to the increasing complexity of the
“core” (java.lang) APIs, but also to the practice of including
in the standard distribution of J2SE an increasing number of
notionally “optional” packages (javax.*). These now includes
not only GUI libraries (javax.swing), but also XML handling
(javax.xml.*) and the OMG/CORBA distribution framework
(org.omg.*). Although these packages are of immense value to
professional software developers, the fact that their
documentation is integrated into the “standard” online API
documentation significantly increases the complexity of a
resource which is fundamental to students’ understanding of the
environment in which they are working. This observation is at the
root of the JTF’s efforts to exclude “optional” packages from the
API documentation visible to students.

In the core (java.lang.*) packages, recent releases of J2SE
have seen not only the addition of new packages (java.nio,
java.util.concurrent.*) but also significant changes to
existing classes such as the use of regular expressions
(java.util.regex) in the java.lang.String class.

In contrast with the approach adopted in J2SE, the J2ME
architects have decided to keep the core APIs (assumed to be
available in all environments) simple, while providing extra
functionality through, separately documented, “optional
packages”, such as Multi-media messaging and BlueTooth.
Merely the ability to not have these packages cluttering up the
core (student-visible) documentation provides a significant respite
from the information overload observed in programmers first
trying to find a particular class in the J2SE documentation.

The Java language itself

After having been stable for a number of releases, the core
language defined for J2SE has recently undergone a number of
significant changes. These include additions which have long
been on the wish-lists of educators (JTF, op cit), most obviously
generics and autoboxing [3]. Since the release of J2SE 5, there
has not been sufficient pedagogic use of these new facilities to
evaluate their effect on practice. They are not yet available in any
standards-conformant J2ME implementation although, as they are
compile-time only constructs, there is no reason why they could
not be made available. See “Stability” below.

3.1.2 STATIC METHODS, INCLUDING main
One of the first problems which must be addressed when teaching
application programming using J2SE is the meaning and import
of the magic phrase public static void main
(String [] args). The necessary appearance of this phrase
in students’ first program causes two classes of problems: that it
refers to a number of language features which will not be
introduced until much later in any sensible first course, and that it
requires a student’s first program to start-up outside the “world of
objects”. It is this latter issue which seems to cause the most
problems.

Students (who are rapidly learning to “trust me and type this”)
appear to be less concerned by having to type the magic phrase
than they probably should be, but are truly confused by the non-
availability of the non-static fields and methods they declare as
their program’s execution progresses.

194

Courses where J2SE is used to implement Applets do not suffer
from this problem (although the magic phrase extends
Applet is then apparent). J2ME behaves similarly to J2SE-
applets in this regard, except that
javax.microedition.midlet.MIDlet replaces the more
familiar java.applet.Applet as the controlling class for the
application. The MIDlet lifecycle is not radically different to that
of the Applet.

3.1.3 LACK OF A SIMPLE INPUT MECHANISM
(A1)
Textual I/O (particularly Input) is often the first area of the Java
language in which students are exposed to the tensions between
Java’s commercial and pedagogic uses.

In typical commercial applications, textual output is a marginal
concern, restricted perhaps to error logs, and input is handled
through complex forms packages or GUI dialogs, not command
line prompt-and-respond. In commercial uses of simple textual
I/O, failure is a primary concern, and input validation/output
formatting are significant issues.

Conversely, in traditional early student programs, (e.g. the classic
Fahrenheit-to-Celsius temperature converter) I/O is the major
concern of the program, and the application logic which
intervenes between I and O is minimal. I/O failure is typically
ignored, and input validation/output formatting (if required at all)
must be extremely simply implemented.

In the type of applications implemented in J2ME, devices are
assumed to have fairly minimal text input capabilities (e.g.
predictive text input using a numeric keypad), and the standard
APIs provide simple mechanisms for both accessing these
facilities and giving hints about the type of input which is
expected (e.g. email address, URL, phone number, general text).
In practice, these mechanisms and constraints (when suitably
incorporated into early assessments) can devolve many of the
problems encountered by beginning programmers to the J2ME
infrastructure.

3.1.4 CONCEPTUAL DIFFICULTY OF THE
GRAPHICS MODEL (A2)
The fundamental issue with the J2SE graphics model, as
identified by the JTF, is the necessity for the application to retain
enough of its own state to be able to respond to callbacks on its
paint() method. This is also the model used in the J2ME
graphics environment, but the problem is ameliorated by the
much smaller (and single) set of available graphical primitives –
J2ME does not suffer from the historical duplication of
functionality that J2SE exhibits in its java.awt.Graphics
and Graphics2D classes.

3.1.5 GUI COMPONENTS INAPPROPRIATE FOR
BEGINNERS (A3)
The J2SE GUI packages (AWT or Swing) contain a large number
of disparate components, often with fairly primitive behaviour –
there is, for instance, no simple graphical component for typing in
a checked numeric value. It is also difficult to build GUIs of the
sort of quality even beginning students are familiar with from the
simpler of J2SE’s provided Layout Managers, leading to
frustration for students.

J2ME assumes limited input mechanisms and minimal screen real
estate on its target devices. This leads to a number of choices both
in the types of GUI component offered, and the flexibility in
layout allowed by the standard J2ME GUI toolkit. For instance,
all input fields are tagged with the type of input they are to
expect. In principle this is to allow appropriate forms of
Predictive Text Input to be activated on individual fields, in
practice it imposes some quite useful constraints and checks on
the data which can easily be input.

Similarly, given the small amount of screen space available, and
the primitive nature of item-to-item and screen-to-screen
navigation supported on small devices, the flexibility allowed in
laying out GUI components in J2ME is also limited, with the
effect of vastly reducing the amount of information which
students must assimilate before being able to approach the core of
the task they are addressing.

3.1.6 INADEQUATE SUPPORT FOR EVENT-
DRIVE CODE (A4)
Although, again, J2ME adopts the same style of event-handling as
J2SE, the significantly smaller number of different types of event
does slightly simplify this aspect of programming. This is aided
by the necessity in J2ME of having a single listener for all
commands on a particular screen rather than the choice offered in
J2SE between a single listener with an internal selection
mechanism and per-target listeners. Although the multiple listener
style is preferred by OO purists, many libraries designed for
beginners, such as ObjectDraw [5], adopt a style similar to J2ME.

3.2 The Bad News
Undoubtedly, there are a number of areas in which J2ME is less
suitable as an initial teaching language than J2SE. Primarily,
these are: language and API instability, and the availability of
tools and textbooks

3.2.1 INSTABILITY (H2)
There is a significant difference between the J2SE approach to
adding APIs to the language and that adopted by J2ME (as has
been commented above). In some senses, the J2ME approach of
adding new APIs in separate, optional, packages has less of an
impact on the beginning programmer than the J2SE approach of
bundling more and more javax packages into the standard
distribution. On the other hand, the plethora of optional packages
in J2ME makes ensuring that a particular application will run on a
particular device some sort of combinatorial nightmare. It also
means that individual optional packages can evolve
independently, raising the inevitable problem of version
incompatibilities.

Another contributor to instability in J2ME is the rapidly
increasing capabilities of commercially available target devices.
Current generation cellphones are capable of running J2SE
language applications, if not supporting the entire array of J2SE
APIs. A desire for convergence of development environments and
code-bases is generating a pressure for the core J2ME and J2SE
language dialects and APIs to merge. In practice, seeing that the
major new features of J2SE 5 are visible only to the compiler (i.e.
are not visible in the generated Java Byte Code), this issue
resolves to that of re-coding the APIs to take advantage of the
new language features: a much longer-term problem.

195

3.2.2 Tools and Texts (H4)
Perhaps the major impediment to the adoption of J2ME as an
initial teaching language is the availability of suitable pedagogic
tools and text books for beginners to programming.

Many professional IDEs (e.g. NetBeans [10], Eclipse [6], and
JBuilder [4]) have facilities (usually optional) for developing,
testing, debugging and deploying J2ME applications, and for
simulating the target environment. However, these IDEs are
notoriously hostile to beginning programmers even in their basic
forms, let alone with the addition of plug-ins designed for
professional developers. A number of cellphone manufacturers
provide their own development environments, although they are
for the most part simply a collection of the (sometimes vendor-
specific) libraries supported by particular target devices and a
bunch of batch scripts to tie things together. Again, this is
acceptable for the professional developer, but intimidating for
beginning students.

Sun Microsystems “Wireless Toolkit” [11] offers an interesting
approach to the problem of providing access to necessary
functionality without implementing a complete IDE. It does not
concern itself at all with source code creation, management or
editing, but provides a simple interface through which J2ME
applications can be compiled, simulated and deployed. In
combination with a simple text editor, it provides some of the
facilities and simplicity required for teaching beginners to
programming, without approaching the support that
pedagogically-focused IDEs can provide, for example DrJava [2]
and BlueJ [9].

The only text books currently available for J2ME programming
are firmly targeted at experienced Java developers moving into
J2ME. This is a significant impediment to the adoption of J2ME
as a first language, but no more so than it was for J2SE when it
first emerged.

4. Where Next?
Fitting students’ initial experience of programming to their
experience as users of computers is a well known challenge for
teachers of newcomers to programming. This is particularly hard
in the resource-rich environment of desktop or web-based
applications, where the sorts of applications students see around
them as users are well beyond their ability to produce as
beginning programmers.

The use of wireless devices, with their constrained resources, as
the target for students’ first programs has a number of advantages:

• A large number of students have access to such wireless
devices (typically cellphones), but may be new to the
realisation that they are programmable devices, still less
that they are in a position to program them.

• Given the restrictions on GUI complexity for wireless
devices, students can soon come to produce programs

similar in look and feel, to the sorts of applications they
use “in real life”.

As well as these motivational aspects, the J2ME environment is
significantly simpler and smaller than J2SE, but has the massive
advantage over all other alternatives in that it is still Java.
Existing CS1 courses which take an “objects first” and “graphics
early” approach (whether via a simplified graphics toolkit like
ObjectDraw or through “code provided” as suggested by the
BlueJ authors) should find that their order-of-presentation of
material requires little change and that, although their graphical
applications need to be translated to use the J2ME approach, the
underlying principles they are trying to communicate are much
more simply illustratable in J2ME than in J2SE.

5. REFERENCES
[1] ACM Java Task Force: Project Rationale.

http://www.acm.org/education/jtf/. Accessed 16 January
2006.

[2] Allen, E., Cartwright, R. and Stoler, B. (2002): DrJava: A
lightweight pedagogic environment for Java, in Proceedings
of the 33rd SIGCSE technical symposium on Computer
science education. Washington DC, ACM Press.

[3] Austin, C (2004): J2SE 5.0 in a Nutshell, Sun Microsystems.
http://java.sun.com/developer/technicalArticles/releases/j2se
15/. Accessed 17 August 2005.

[4] Borland JBuilder, Borland,
http://www.borland.com/jbuilder/. Accessed 16 january
2006.

[5] Bruce, Kim B (2001): Bruce, K. B., Danyluk, A., and
Murtagh, T. A library to support a graphics-based object-
first approach to CS 1. In SIGCSE Bulletin. 33, 1 (Mar.
2001), 6-10

[6] Eclipse.org, http://www.eclipse.org. Accessed 16 January
2006.

[7] Java 2 Platform, Micro Edition (J2ME), Sun Microsystems.
http://java.sun.com/j2me/index.jsp. Accessed 16 January
2006.

[8] Jensen, K. and Wirth, N. (1974): Pascal User Manual and
Report. New York, Springer Verlag, New York, NY, 1974.

[9] Kölling, M., Quig, B., Patterson, A. and Rosenberg, J.,
(2003): The BlueJ system and its pedagogy. In Journal of
Computer Science Education, Special issue on Learning and
Teaching Object Technology, Vol 13, No 4 (Dec 2003),
Swets and Zeitlinger, Rotterdam.

[10] Netbeans.org, http://www.netbeans.org. Accessed 16 January
2006.

[11] Sun Java Wireless Toolkit, Sun Microsystems,
http://java.sun.com/products/sjwtoolkit/. Accessed 16
January 2006.

196

