
Communicating Complex Systems

Peter H. Welch, Frederick R.M. Barnes
Computing Laboratory

University of Kent, Canterbury
Kent, CT2 7NF, England

{p.h.welch, f.r.m.barnes}@kent.ac.uk

Fiona A.C. Polack
Department of Computer Science

University of York
Yorkshire, YO10 5DD, England

fiona@cs.york.ac.uk

Abstract

This paper presents efficient mechanisms for thedirect
implementation of formal models of highly concurrent dy-
namic systems. The formalisms captured are CSP (for con-
currency) and B (for state transformation). The technol-
ogy is driving the development ofoccam-π, a multiprocess-
ing language based on a careful combination of ideas from
Hoare’s CSP (giving compositional semantics, refinement
and safety/liveness analysis) and Milner’sπ-calculus (giv-
ing dynamic network construction and mobility). We have
been experimenting with systems developing as layered net-
works of self-organising neighbourhood-aware communi-
cating processes, with no need for advanced planning or
centralised control. The work reported is part of our TUNA
(‘Theory Underpinning Nanotech Assemblers’) project, a
partnership with colleagues from the Universities of York,
Surrey and Kent, which is investigating formal approaches
to the capture of safe emergent behaviour in highly com-
plex systems. A particular study modelling artificial blood
platelets is described. A novel contribution reported here
is a fast resolution of (CSP external) choice between mul-
tiway process synchronisations from which any participant
may withdraw its offer at any time. The software technology
scales to millions of processes per processor and distributes
over common multiprocessor clusters.

1. Introduction and Motivation

We are interested in engineering for complex emergent
systems, and specifically for deriving simulations. Such
systems comprise many simple components (or unintelli-
gentagents) following simple rules; emergent properties –
the consequences of collective individual behaviour – are
detected at a higher level. Often-cited examples of com-
plex emergent systems include network navigation by ants
(real or simulated), construction by termites, swarming and
flocking, for example by birds or their simulated equivalent,

boids. Our example case study operates at a finer level of
granularity: a nanite system for haemostasis.

This is the third of three papers in these proceedings from
the TUNA [22] project. Our overall approach to engineer-
ing for emergence is described in [23], with specific formal
models presented and analysed in [21]. This paper looks in
detail at one part of this, focussing on its CSP modelling
and transformation into a faithfull and efficient executable
simulation.

To model a complex emergent system, we need to de-
scribe the agents, the parts of the environment with which
they interact, and the way in which emergence is detected
[19]. In simulation terms, the detection is generally visual,
so we must describe the basis of visualisation. In this pa-
per, we focus on the development of the agents and their
interaction with the environment.

An agent in a complex emergent system can move within
its environment. It has:

• simple internal state;
• the ability to monitor some (not many) environmental

parameters;
• a small number of outputs that may change the value

of some environmental parameters (which may or may
not be the same parameters that the agent monitors);

• basic operations that take the value of a monitored en-
vironmental parameter, change the internal state and
(or) produce output.

Agents do not necessarily communicate directly with
each other, but operate concurrently within their environ-
ment: influencing, and being influenced by, local factors.

In researching options for the modelling of systems of
such agents, we seek well-defined modelling and imple-
mentation languages that can express all these properties.
Concurrency is addressed by Hoare’s CSP [10] and derived
languages, and necessary concepts for mobility exist in Mil-
ner’sπ-calculus [17]. However, we also need state and op-
erations, dictating the need for a model-based language el-
ement.

For our explorations, we are using two composite formal
modelling languages and one implementation language.
Modelling usesCircus [29] (a synthesis of CSP and Z,
based on the unifying theory of programming [11]) and
CSP‖B [6] (B machines with CSP control). The rationale
for Circus is that it is completely well-defined, and admits
formal proof, refinement, and model-checking. The ratio-
nale for CSP||B is that it has been designed for use with ex-
isting tools, namely FDR2 (for CSP model-checking) and
the B-Tool or Atelier-B. The inventors of each formalism
are part of the TUNA research team.

For implementation, we are using and developing
occam-π [26], an extension of classicaloccam [15] that
includes mobile channels, barriers and processes.occam-
π semantics are closely related to those of CSP, and with
the evolution ofCircus. Through its links with these for-
malisms, we will be able to map cleanly from formal mod-
els of agents in their environment to simulation programs.

An example formal model is given in section 4.1, with
its translation tooccam-π in sections 4.2 and 4.4. Section
4.3 presents novel and fast protocols for resolving CSPex-
ternal choicebetween offers for multiway process synchro-
nisation, allowing those offers to be withdrawn at any time.

occam-π enables the direct expression and efficient exe-
cution of self-organising dynamic systems about which we
can formally reason (e.g. for safety analysis). Performance
details (memory and run-time overheads) are reported (sec-
tion 4.5) that will allowmassivesystems to be realised, giv-
ing the chance for interesting experiments and for complex
and unplanned behaviour to emerge.

2. Overview of occam-pi

Systems programmed inoccam-π are built as layered
networks of communicating processes.occam-π processes
are self-contained and self-executing components, inter-
acting with their external environment (other processes)
through parametrised communication channels, barriers
(for multiway synchronisation) and a few other primitives,
all built from CSP events. Compile-time alias analysis
of state and event variables, combined withConcurrent-
Read-Exclusive-Writeparallel access rules, enables strong
safety guarantees to be made. For example,race hazards
on shared data simply cannot happen inoccam-π systems.
Deadlock/livelock dangers can be eliminated at design time,
either through formal analysis of the specific CSP equations
informing the design or (where possible) by sticking to syn-
chronisation patterns for which there exist general safety
theorems [28, 13, 14].

A processencapsulates state and logic for manipulating
that state and synchronising with its environment. Process
state is strictly private – neither observable nor changeable
by other parties. A process runs its own life; its logic is

not executed (invoked) by foreign threads of control. The
events on which it synchronises, the patterns of synchroni-
sation and its commitment to synchronise may be formally
specified through CSP equations. We are looking to bind
more elements of such specification into theoccam-π lan-
guage, so that the compiler can perform even more safety
analysis (e.g. deadlock checks).

Theenvironmentof a process consists of other processes
running in parallel and synchronising on (subsets of) com-
mon events. A set of processes and events form anet-
work, which may itself be abstracted into a (super-)process
with events having only local relevance hidden from the
(super-)environment. Processes offer a natural and powerful
structure for any computational system:networks-within-
networks, explicit dependencies (throughvisible plumbing,
i.e. shared events), and explicit independencies (throughair
gaps, i.e. no shared events).

In this paper, sections 4.2-4.4 assume modest familiarity
with occam-π syntax and semantics [15, 3, 4, 26, 27, 2].
Key concurrency concepts not addressed by traditional pro-
gramming languages are: channels (CHAN), shared chan-
nels (SHARED and CLAIM), message structures (PROTOCOL),
synchronised unbuffered communications (! and?), mul-
tiway synchronisations (BARRIER and SYNC), abbreviations
(IS), the parallel construtor (PAR), passive waiting for and
choosing between events (ALT), and mobility (MOBILE). Data
may be declaredmobile, in which case communications and
assignmentsmove(rather thancopy) them from source to
destination, leaving the source variableundefined. Mobile
items only have a single reference. Definedness analysis
(with application mandated run-time checks, if not resolve-
able by the compiler) eliminatesnull-pointererrors.

This paper needs the choice constructor (ALT) to be ex-
tended to cover multiway synchronisation, describes how
this can be done and provides (and uses) a mechanism for
achieving this in the interim. This is a significant extension
and the implementation isfast (linear with respect to the
number of offers to synchronise – there is no backtracking).

Execution overheads for most concurrency mechanisms
(e.g. process startup/shutdown, channel communication)
are unit time and in the low tens of nanoseconds on cur-
rent commodity processors. For anALT, overheads are lin-
ear over the width of the choice. For a multiwaySYNC, they
are linear over the number of participants. Memory over-
heads for parallel processes are at most 32 bytes.

We have listed only theoccam-π concurrency support
relevant to this paper. The language encompasses much
more: priorities, fairness, extended rendezvous, channel
bundles, mobile channel-ends, mobile barriers, mobile pro-
cesses, dynamic network construction, distribution across
local clusters and the internet (with no change in seman-
tics), etc. We leave them to be followed up by the interested
reader – on-line resources are available from [2].

3. Simulating Complex Systems

Our work with occam-π allows increasingly elaborate
models of an artificial platelet system to be modelled ef-
ficiently. The formal basis ofoccam-π allows formally-
verifiable structures (e.g. the multiway synchronisation or-
acle presented later in section 4.3) to be added to the core
occam-π functionality, permitting a direct implementation
of the CSP model.

Distributed processing and the ultra-lightoccam-π con-
currency primitives allow naturalistic real-time operation
with low-cost support for visualisation (through graphi-
cal rendering of platelet movements and, potentially, en-
vironmental features such as chemical gradients). The re-
quired emergence can be observed, studied, and bench-
marked across implementations [5].

The occam-π mobility mechanisms allow us to cre-
ate a model of self-contained neighbourhood-aware au-
tonomous agents that roam around a virtual world (so far,
a one-dimensional world, but ultimately a realistic three-
dimensional simulation) that we create for them. We can
experiment with the simulation in interesting ways, such
as changing the ‘world’ dynamically andjust-in-timecon-
struction [20].

Theseoccam-π extensions break the direct correspon-
dence with CSP, whose primitives do not address the needed
dynamics. However, work is in progress to re-establish that
correspondence (through a further layer of CSP modelling)
and this will be reported elsewhere.

In relation to nanotech assembler theory, the ability to
experiment easily allows exploration of rule migration tech-
niques and the layering of rule-spaces [19]. Whilst such
simulated experimentation is not intended as a general tech-
nique for engineering real emergent systems, it is an impor-
tant part of the development of a sound engineering par-
adigm for such systems.

Modelling for simulation is not completely equivalent
to modelling with the aim of developing a nano-scale sys-
tem (or, more accurately, system of systems). What direct
role might be envisaged for simulation in the engineering
of nanotech assemblers? We simulate emergent systems in
the hope of gaining insight into the necessary and sufficient
conditions for the required emergent properties to arise.

Simulation of agents builds on abstract models of agents,
in the same way as development of physical nano-scale
agents. However, the simulation only expresses the gross
state and behaviour of the agent, making the assumption
that the physics (and chemistry and biology, as appropriate)
of the agent establishes these features. It is worth noting that
the validity of this assumption in general, when working at
the nano-scale, remains to be tested.

A simulation needs to capture those features of the envi-
ronment that are sampled by the agents, and those features

which the agents affect by their behaviour. In reality, of
course, the environment is “given”; it cannot be controlled
by the produced system. The simulation typically extracts
what are believed to be pertinent characteristics of the en-
vironment, and models these as faithfully as is practical.
A crucial feature for a simulation of emergent properties
is that the environment is modelled independently of the
agents. An agent is a particle in the environment; it owns
the ability to monitor the environment, and can output to the
environment, just like any other particle.

In the TUNA project, both the formal and the simulated
modelling have spent much effort capturing relevant prop-
erties of the environment. In [19, 21], physical space is ex-
pressed independently from the platelet (agent). The simu-
lations also model blood flow, the immediate environmental
context for the platelets, although this is implicit. Platelets
(or clotted clumpsof platelets) move at a speed that is out-
side their control, simulating the platelet being carried along
in the bloodstream. In addition, [21] starts to explore the
environmental chemistry that is responsible for activating
platelets. This exploits physical space and flow. Earlier CSP
andoccam-π models captured only the physical space.

There is much scope for elaborating the modelling of the
environment. For instance, we need better models of chem-
ical diffusion, more dynamic flow, and the introduction of
many varieties of chemical. If our aim were to replicate real
platelet behaviour in simulation, perhaps to complement bi-
ological studies, we would need to invest considerable re-
sources in establishing a realistic environment.

The requirements of environmental simulation for engi-
neering nano-scale systems are less clear. If we wish to rea-
son about the precise behaviour of the artificial platelet in
a real blood stream, we need a good environmental model.
Ultimately we want to reason about the behaviour of the
platelet in abnormal, and perhaps unforeseen, environmen-
tal situations. It is not yet clear what contribution a simu-
lated environmenti, that is only ever an approximate model
of reality, can play in assurance-driven engineering – but it
is worth investigating.

4. Formal Design and Analysis

We consider the simplest of the CSP models being de-
veloped in the TUNA work programme. It describes the
movement ofactivated(i.e. sticky) platelets along a one-
dimensional bloodstream, capturing the rule that they must
stick together should they ever bump.

The model heavily exploitsmultiway synchronisation
combined withexternal choice– two of fundamental prim-
itives of CSP. Unfortunately, in common with classicaloc-
cam and all practical realisations of CSP to date [15, 1, 25,
24], this combination is specifically excluded from the cur-
rentoccam-π language. The reasons for this exclusion have

always been cost (the only known implementation mecha-
nisms requiring a2-phase commit protocol[12, 16]) and the
difficulty in getting this logic right.

The traditional way to work around this problem has
been to apply formally verified transformations from the
CSP equations to equivalents (or refinements) that avoid the
idiom. This introduces extra processes, channels, and the 2-
phase commit logic (with its attendant overheads). Without
automated tools, this transformation is error prone. The re-
sulting system operates at a lower level that is hard to main-
tain. Maintenance, therefore, takes place at the higher level
and the transformations have continually to be re-applied.

The example model (like many of the more com-
plex TUNA models) relies on thechoice-over-multiway-
synchronisationidiom as its core structuring mechanism.
We would like to remove the need for its removal (by en-
abling its direct expression inoccam-π) and considerably
reduce its cost (by finding an implementation faster than a
2-phase commit).

In the rest of this section, 4.1 presents a very simplified
bump-and-stickmodel of blood clotting. 4.2 proposes an
extension to the multiway synchronisation (BARRIER) prim-
itive of occam-π, allowing it to be used as a guard in exter-
nal choice (ALT) and enabling (for the first time)directcap-
ture of the CSP equations in executable form. 4.3 presents
the fast algorithm, using existingoccam-π mechanisms,
for resolving choice over multiway synchronisations. 4.4
applies this to translate the 4.1 code into actual executable
code – of course, this will not be needed if the 4.2 proposal
is accepted and implemented. 4.5 reports on observed be-
haviour and performance, noting and correcting a problem
of under-specification in the original CSP specification that
became apparent.

4.1. Sticky Platelet Model

This example has been distilled from richer models [21]
developed by colleagues in the TUNA project.

SYSTEM is a parallel array ofSITE processes representing
the (one-dimensional) bloodstream. For each position in
the stream, with indexi, there is an eventpass.i that rep-
resents the arrival of an activated platelet. The eventtock

represents the passing of one time unit:

EVENTS (i) =

{pass.i, pass.i+1, pass.i+2, tock}

SYSTEM =

|| i:{0..(N-1)} @ [EVENTS (i)] SITE (i)

whereN is the number of positions in the bloodstream.
The system diagram is shown in figure 1.

EachSITE (i) process monitors the arrival of a platelet
at its own position (pass.i), its movement to the next po-
sition (pass.i+1), the movement of a platelet from the next

site(0) site(1) site(n−1)

pass.0 pass.1 pass.n−1 pass.n+1pass.n

tock

Figure 1. One-dimensional bloodstream
model of sticky platelet flow

position to the next-but-one (pass.i+2), and time (tock).
So, each eventpass.i (other than those on the boundaries)
requiresthreeprocesses to engage before it can occur. The
tock event requiresall processes to engage. These are mul-
tiway synchronisations.

Note: thepass.i+2 movement only plays a significant
role whenSITE (i) is in its full state (see below). However,
that role brings that movement into the alphabet ofSITE

(i) for all its states. To ignore it in other states (emptyand
almost-full), it must be passively accepted.

TheSITE processes exercisechoicebetween overlapping
sets of these multiway syncs. Eachsitestarts offempty:

SITE (i) = EMPTY (i)

where:

EMPTY (i) =

pass.i -> ALMOST (i) []

pass.i+2 -> EMPTY (i) []

tock -> EMPTY (i)

An emptysite has no platelet to pass upstream – hence,
it refusesthe pass.i+1 event. It allows, but is unaffected
by, a platelet movement from positioni+1 to i+2 (i.e. the
eventpass.i+2). Time may pass and it remains empty. An
arriving platelet (pass.i) changes this site’s state toalmost-
full:

ALMOST (i) =

pass.i+2 -> ALMOST (i) []

tock -> FULL (i)

This state converts to thefull state by the passing of time.
Until then, it does not allow the newly arrived platelet to
move on (by refusingpass.i+1), thereby imposing aspeed
limit on the movement of platelets (to at most one site per
tock). Like the emptystate,almost-fullallows the move-
ment of any platelet next to it further upstream (by accept-
ingpass.i+2). This is because that movement is in the same
clock cycleas the movement of the platelet into this site –
i.e. the two platelets do not touch and, therefore, stick to-
gether. Finally, it prevents the arrival of further platelets (by
refusingpass.i), imposing a space limit of one platelet per
position.

[It is a subtle aspect of CSP that lines of codenot written
(the events refused in each state) are as significant as the
lines thatare written(the events offered in each state).]

FULL (i) =

pass.i+1 -> EMPTY (i) []

pass.i+2 -> pass.i+1 -> EMPTY (i) []

tock -> FULL (i)

This state also refuses a new platelet arrival (by refus-
ing pass.i). However, at least onetock has happened
since that arrival and, so, the platelet is allowed to move
on (pass.i+1). Time (tock) may also pass. In this state,
it is very interested in a platelet moving from positioni+1
to i+2 (the eventpass.i+2). That platelet must have been
adjacent to the one in this position and, therefore, stuck to
it. Hence, if that platelet moves, itdragsthe one here in its
wake (in thesametime unit – i.e. without atock) and this
position becomes empty.

The above system has been analysed by its designers us-
ing the FDR2 [9] model checker (forN < 10) and found to
be deadlock and livelock free. Further analysis has verified
that once-touching platelets remain stuck together. Such
analysis uses ancillary equations that explicitly describe this
clumpingproperty, but this is not reported here. The con-
sidered point is thatSYSTEM is safe and satisfies the key con-
straint. Our task is to turn this into something executable
so that we can confirm its behaviour (with some additional
visualisation) and start to perform experiments.

4.2. Language Binding

occam-π already has aBARRIER synchronisation type.
Instances may be created dynamically, communicated and
shared. Process enrolment and resignation is implicit and
managed automatically by theoccam-pi compiler and run-
time kernel. Multiway synchronisation on such a barrier is
committedand individual: a process cannot offer to syn-
chronise on several barriers, select one that completes and
back off the rest. Yet these extra properties are precisely
what is required by the above CSP model.

We propose a new synchronisation type,ALT.BARRIER,
thatcanbe used as a guard in external choice (anoccam-
π ALT), giving us the property we need. We preserve the
original BARRIER type since committed multiway synchro-
nisation is also a common idiom – and we do not want to
suffer the overheads of allowing withdrawal when that is
not needed. Separate compilation ofoccam-π components
means the distinction between these barrier types (which re-
quire very different code generation) cannot be resolved at
compile time.

With the new type,occam-π code directly reflects the
CSP equations. To avoid an unbounded demand for stack
space, we replace the recursions (which are alltail recur-
sions) with a simple state machine:

PROC site (ALT.BARRIER me, me.1, me.2, tock)

VAL INT EMPTY IS 0:

VAL INT ALMOST IS 1:

VAL INT FULL IS 2:

INITIAL INT state IS EMPTY:

WHILE TRUE

CASE state

... EMPTY case

... ALMOST case

... FULL case

:

The parameters tosite abstract the process away from
the actual events on which it engages – these must be passed
into each instance. We could have defined it with just an in-
dex number and accessed its events as globals (as we did in
section 4.1 for the CSPSITE). However, the above abstrac-
tion makes the process self-contained, separately analysable
and compilable, as well as faster executing. The system is
put together with the following code:

[N+2]ALT.BARRIER pass:

ALT.BARRIER tock:

PAR i = 0 FOR N

site (pass[i], pass[i+1], pass[i+2], tock)

In the body of site, the three state cases exercise
choiceover the multiway synchronisations (ALT.BARRIERs)
the process offers. These choices directly reflect the CSP
equations in section 4.1. Here is the most interesting of
them:

{{{ FULL case

FULL

ALT

SYNC me.1

state := EMPTY

SYNC me.2

SEQ

SYNC me.1

state := EMPTY

SYNC tock

SKIP

}}}

Of course, a useful system would include additional
mechanisms (processes, channels, barriers, state and code)
for visualisation, user interaction and performance monitor-
ing. Such a system is outlined in section 4.5 below.

4.3. Implementation Oracle

The two-phase commit protocols employmanager
processes for each multiway synchronisation event
(ALT.BARRIER). Each manager receives offers to synchro-
nise and counts down to zero as they arrive. Offers may
be withdrawn at any time – including, sadly, after a count

reaches zero! On reaching zero, the manager signals all
offering processes to cancel whatever other offers they
have made and commit to the one it is managing. Offers,
withdrawals and commit requests fly around in parallel and
a 2-phaseprotocol is needed to secure the operation. This
is moderately expensive, especially when managers that
had reached a zero count find a cancel message arriving and
have tocollapsetheir current operation, undoing previous
work.

Describing this to a colleague at Kent (Ian Marshall), he
wondered why we did not integrate all managers into a sin-
gle server that operated serially and dealt with offers one at
a time. We wondered too! The parallel offers, countdowns,
cancel messages and collapses all disappear, leaving deci-
sion costs that are linear with respect to the number of of-
fered events.

Some things are lost though. For instance, some viable
choices may never be made because of the particular se-
quence in which the offers are processed. However, the
choices delivered will always be legal – i.e. we still have
a valid refinementof the original CSP specification. If it
matters to the system that all viable choices shouldsome-
timesbe selected, the specification needs to be modified to
say so (see section 4.5).

A distributed implementation requires remote communi-
cation between the offering processes and the centralised
server; but this would be no worse than that needed for
multiple managers. [There may be an elegant optimisation
for a distributed implementation as a cascade of individ-
ual servers for each machine (dealing with local application
processes only), occasionally forwarding locally completed
synchronisations for resolution by a central super-server.]

We have a CSP description for this multiway synchroni-
sation server with which we are working to prove correct-
ness (i.e. that any system employing this server is arefine-
mentof one with actual choice over multiway events). That
work will be reported elsewhere. FDR scripts are available
from the TUNA website [22].

Here, we present anoccam-π realisation of this server,
which is calledoracle. It is very short and simple. Cur-
rently, this only supports afixednumber of multiway syn-
chronisation events and afixednumber of processes mak-
ing choices over them. However,occam-π is sufficiently
dynamic to allow these numbers to change at run-time and
support will be added later. This is the process header:

PROC oracle (MOBILE []ENROLLED enrolled,

CHAN ORACLE.QUESTION in?,

[]CHAN ORACLE.ANSWER out!)

... oracle code body

:

Each event has a unique index. Each applicant process
has a unique index. These indices range from zero upwards
and are consecutive.

The first parameter tooracle is an array indexed by the
events. Each element is the list of indices of processes en-
rolled on the associated event. These lists have type:

DATA TYPE ENROLLED IS MOBILE []INT:

We assume that each of these lists has at least one mem-
ber – i.e. that there are no redundant events (events on which
no processes engage).

Applicant processes compete with each other to send
their synchronisation offers through aSHARED channel to the
oracle:

DATA TYPE OFFER IS MOBILE []INT:

PROTOCOL ORACLE.QUESTION IS INT; OFFER:

where anOFFER lists the indices of the offered events and
the first component of the message protocol is the index of
the offering process.

Applicant processes are connected toseparateelements
of the output channel array from theoracle. Having made
an offer, an applicant process must wait on itsindividual
answer channel for a reply:

PROTOCOL ORACLE.ANSWER IS INT; OFFER:

where the first component is the index of the chosen event
and the second is the original offer. The former will, of
course, be an element of the latter. The latter is returned be-
cause theoracle no longer needs it and the applicant prob-
ably does! [Note: occam-π MOBILE componentsmovebe-
tween sender and receiver processes, the sender losing it.
So, having sent its offer, the applicant needs it back.]

Here is code for the applicant:

SEQ

CLAIM to.oracle!

to.oracle ! id; my.offer

from.oracle ? answer; my.offer

TheCLAIM blocks this process in aFIFO queue for exclu-
sive access to the writing end of the channel to theoracle.
That writing end is declaredSHARED, so the writing line
would not compile without its precedingCLAIM. Theanswer
in the last line above is the index of the chosen synchroni-
sation event.

Here is the code body for theoracle:

{{{ oracle code body

MOBILE []INT count:

MOBILE []OFFER offer:

SEQ

count := MOBILE [SIZE enrolled]INT

SEQ j = 0 FOR SIZE count

count[j] := SIZE enrolled[j]

offer := MOBILE [SIZE out]OFFER

... oracle server loop

}}}

where:

{{{ oracle server loop

WHILE TRUE

... loop invariant

INT applicant:

INITIAL INT chosen IS -1: -- not chosen

SEQ

in ? applicant; offer[applicant]

... decrement counts (may set chosen)

IF

chosen >= 0

... process the decision

TRUE

SKIP

}}}

Thecount array is constructed and initialised to the num-
ber of processes enrolled on each event. Theoffer array is
constructed to hold offers currently open from each appli-
cant – initially, with all elementsundefined.

Theloop invariantstates that, for eachj, count[j] holds
the number of offers still needed to complete multiway sync
j – and that these counts are all currently greater than zero.
It also states that, for eachi, offer[i] is definedif and only
if applicanti has made that offer and is awaiting an answer.
Clearly, this is true on loop entry.

At the start of its loop body,oracle waits for a ques-
tion, which contains theapplicant index and offer. It saves
that offer and, for each element of the offer, decrements the
associated count and checks for zero:

{{{ decrement counts (may set chosen)

OFFER this.offer IS offer[applicant]:

SEQ j = 0 FOR SIZE this.offer

VAL INT this.offer.j IS this.offer[j]:

INT count.offer.j IS count[this.offer.j]:

SEQ

count.offer.j := count.offer.j - 1

IF

(count.offer.j = 0) AND (chosen < 0)

chosen := this.offer.j

TRUE

SKIP

}}}

This setschosen to the first event (index) found whose
count decrements to zero – if any so do.First is an arbitrary
choice –anyzeroed event would work.

If no counts have reached zero,oracle loops back to
await another offer. Otherwise a decision on a multiway
synchronisation has been made; all processes enrolled on
the chosen event must be informed and the counts incre-
mented for all the events in their offers.

{{{ process the decision

ENROLLED release IS enrolled[chosen]:

SEQ i = 0 FOR SIZE release

VAL INT release.i IS release[i]:

OFFER next.offer IS offer[release.i]:

SEQ

SEQ j = 0 FOR SIZE next.offer

INT count.offer.j IS count[next.offer[j]]:

count.offer.j := count.offer.j + 1

out[release.i] ! chosen; next.offer

}}}

The above returns all processed offers to the applicants,
leaving the corresponding elements of theoffer arrayun-
defined. The relevant counts have all been restored. The
loop invariant is re-established.

Optimisations on the above algorithm are possible. For
instance, the decrementing sequence could be stopped as
soon as a zero count is found. This would yield a mod-
est improvement in execution speed but it would complicate
this presentation. We leave such things for a later day.

4.4. Applying the Oracle

Theoracle process sets out logic for a fast resolution of
choice between multiway synchronisations. We are binding
this into a newoccam-π compiler and kernel to support the
ALT.BARRIER synchronisation type described in section 4.2.

An extension to JCSP (version 1.0-rc6 [25]) has been de-
rived to provide the necessary (AltingBarrier) guard type.
The extra controls needed for this are the same as those
needed for theoccam-π kernel. This version of JCSP and
the extendedoccam-π will allow multiway synchronisation
guards that can be freely mixed with existing guard types
(channel inputs, timeouts andSKIPs) within an individual
choice structure (ALT).

Direct translation to executable code will then become
possible for almost all CSP equations. [The remaining prob-
lem area lies in supportingarbitrary patterns of eventin-
terleaving. occam-π provides onlystructuredinterleaving
abstractions: shared channels, mobile channels, mobile bar-
riers and mobile processes.]

Meanwhile, we can use theoracle at the application
level to implement choice over multiway synchronisation.
The system example from sections 4.1 and 4.2 becomes:

PROC site (VAL INT id,

VAL INT me, me.1, me.2, tock,

SHARED CHAN ORACLE.QUESTION to.oracle!,

CHAN ORACLE.ANSWER from.oracle?)

... site code body

:

whereid is the index ofthis site process andme, me.1,
me.2 andtock are respective indices of the relevant multi-
way synchronisation events. The channel endsto.oracle!

andfrom.oracle? will be connected to theoracle process.
[Note: id andme are not necessarily the same value.]

Thesite implementation constructs the same state ma-
chine as before (section 4.2), but needs extra variables to
hold all varieties of synchronisation offer it makes:

{{{ site code body

... VAL INT EMPTY, ALMOST, FULL

INITIAL INT state IS EMPTY:

... INITIAL OFFER empty, almost, full, drag

WHILE TRUE

CASE state

... EMPTY case

... ALMOST case

... FULL case

}}}

where:

{{{ INITIAL OFFER empty, almost, full, drag

INITIAL OFFER empty IS [me, me.2, tock]:

INITIAL OFFER almost IS [me.2, tock]:

INITIAL OFFER full IS [me.1, me,2, tock]:

INITIAL OFFER drag IS [me.1]:

}}}

As in section 4.2, we expand here only the most interest-
ing case:

{{{ FULL case

FULL

INT answer:

SEQ

CLAIM to.oracle!

to.oracle ! id; full

from.oracle ? answer; full

CASE answer

me.1

state := EMPTY

me.2

SEQ

CLAIM to.oracle!

to.oracle ! id; drag

from.oracle ? answer; drag

state := EMPTY

tock

SKIP

}}}

Thedrag offer has, of course, only one possible answer
(me.1) – but this still must be processed through theoracle.

This system is put together with the following code:

... declare and set up ‘enrolled’ array

SHARED ! CHAN ORACLE.QUESTION to.oracle:

[N]CHAN ORACLE.ANSWER from.oracle:

PAR

oracle (enrolled, to.oracle?, from.oracle!)

PAR i = 0 FOR N

site (i, i, i+1, i+2, N+2,

to.oracle!, from.oracle[i]?)

This works – but it is hard work! Considerable care
must be taken to enumerate all the events and processes
in the system and pass the right indices to the rightsite

processes. For this system, we have chosen to number the
site processes from0 throughN-1 inclusive. Thepass
events have no explicit declaration but are also numbered
from 0 throughN+1 inclusive, leaving thetock event to be
represented byN+2. Particular care must be taken in set-
ting up theenrolled argument (which specifies which pro-
cesses engage on which events – see section 4.3) for the
oracle. None of this care will be necessary once we have
the ALT.BARRIER type, which gives us explicit declaration
of the events. – as shown in section 4.2.

4.5. Behaviour and Performance

The model in section 4.1 is a little under specified! For
instance, one resolution of all choices made by allSITE pro-
cesses would be simply totock (an event always offered by
all sites, whatever their states). In this case, no platelets
would ever move – let alone stick together.

Another legal resolution would be for all platelets always
to move forward one site after everytock. A FULL site in the
middle of a clump sticks to the one on front anyway. AFULL

site at the head of a clump also makes an offer to move on
its platelet (pass.i+1); the EMPTY site ahead offers to ac-
cept that platelet (pass.i); the site behind (whetherEMPTY,
ALMOST full or FULL) is happy to let it go as well (pass.i+2).
These are the three offers needed for the event. Hence, it
may always be chosen.

If the above resolution always happens, platelet clumps
remain isolated and flow forward in perfect synchrony – one
movement pertock. They will never bump into each other
and stick to formlarger clumps.

For this SYSTEM, always-moveis the resolution our
oracle always delivers. The reason is that it makes deci-
sions as soon as it has enough offers to complete one multi-
way event. It does not wait to see if further offers may arise
that would allow an alternative choice.

The movement forward of the head platelet of a clump
requires only 3 offers. Staying still requires the passing of
time – i.e. atock offer from all N sites, whereN will usu-
ally be considerably greater than 3. Hence, no contest – the
platelets always move.

This is not very interesting. To allow the intended be-
haviour (bumping and clumping) to emerge, theFULL state
of a site is therefore modified as follows:

FULL (i) = FULL_A (i) |~| FULL_B (i)

whereFULL A is what we had before:

FULL_A (i) =

pass.i+1 -> EMPTY (i) []

pass.i+2 -> pass.i+1 -> EMPTY (i) []

tock -> FULL (i)

andFULL B is the same except that it does not allow a for-
ward move (unless dragged):

FULL_B (i) =

pass.i+2 -> pass.i+1 -> EMPTY (i) []

tock -> FULL (i)

A FULL site now has a non-deterministic (internal) choice
between the behavioursFULL A (which allows clump head
platelets to move forward) andFULL B (which does not).
Formal analysis shows the same safety and liveness proper-
ties for this changed system.

The benefit is that implementations are free to resolve
these internal choices any way they like – for example,
randomly. If a 50-50 random policy is employed, aver-
age flow speed for the platelets is halved (i.e. one site every
two tocks). However, no platelets maintain that speed uni-
formly. All experiencejitter in their flow – sometimes not
moving for severaltocks and sometimes moving for sev-
eral consecutivetocks. The result is bumping and, at last,
clumping!

We have instrumented theoccam-π implementation of
this system to enable simple experiments. Agenerator
process injects sticky platelets into one end of the pipeline
(site (0)); they disappear automatically as they flow out
the other end.

After eachtock, all processes engage on another event
calleddraw. This is afast BARRIER – a committed multi-
way synchronisation, since no withdrawal is needed. Each
site process maintains its ownpixel from a display raster
– though not between atock anddraw. A display process
also cycles through these two events, rendering the raster
between thetock and draw (when all site processes are
blocked).

Thedisplay process also updates the screen with cycle
rates for the system and various parameters. Akeyboard

process allows user control of these parameters: the rate
at which thegenerator generates platelets, the raster sam-
pling rate of thedisplay, and the random decision ratio (be-
tweenFULL A andFULL B) used by thesite processes. It
also controls system freezing and termination.

This system (documentation, source code and exe-
cutable) is available from the TUNA website [22]. Table 1
lists cycle times persite, where a cycle is from onetock
to the next (and includes computing a random number in
theFULL state). Whole-system cycle times are these figures
multiplied by the number ofsites in the model (which hap-
pens to be 1800 in the reported experiments).

The figures were obtained from a PC powered by a
3.2 GHz Pentium 4, running under an otherwise unloaded
Linux. Timings were averaged over one second runs (ap-
proximately one to two millionsite cycles) and rounded to
the nearest 20 nanoseconds.

Performance dependsslightly on the generation rate of
sticky platelets (as shown in the table) and the random de-

Table 1. Site cycle times
Generation Rate(n/256) Cycle time(nanosecs)

0 480
1 480
2 500
4 520
8 540
16 600
32 700
64 880
128 1140
256 1160

cision rates forFULL sites (set to 1/2 here). The raster sam-
pling rate (for visualisation) was set low (1/256) so as not
to interfere with gathering these results.

With a zero generation rate, sites simplytock on empty.
As that rate rises, platelets are introduced and start bumping
and sticking as they flow through the system. Sites have
more work to do as platelets pass through them and their
cycle times increase. Clumps do not become arbitrarily big:
the larger they grow, the larger the gaps between them and
the less the likelihood of collision.

This 1-dimensional model has been a proving ground
for our formal modelling and implementation techniques.
Really useful experiments will need (two or) three dimen-
sions, many more sites (perhaps hundreds of millions) and,
of course, the layered models introducing realistic chemical
interactions described in [21, 19, 27].

These experiments show simple emergent behaviour
(clumping and limited growth) with performance suffi-
ciently fast to encourage our ambition. They are the first di-
rectly to exploit the full expressive power of CSP (allowing
choice over multiway synchronisation). We are developing
‘lazy’ modelling techniques, whereby sites in which no ac-
tions are happening (e.g.EMPTY sites) do not need schedul-
ing [20]. Such techniques may reduce processor loadings
by one or two orders of magnitude. We will probably need
them!

5. Related Work

Whilst formal modelling has been applied to agent sys-
tems [8, 7], there is little work on nano-scale complex adap-
tive systems. At the micro-scale, D’Inverno and others have
modelled stem cell activity as agents; their work, which is
aimed towards biologically-realistic simulation, uses the Z
formal notation, and models only the state and operations
of the agents. Their specification and implementation of the
environment, which interacts with each stem cell to deter-
mine its division and state, is not formal, nor is their model

of the operation of a system of stem-cell agents, as Z gives
no mechanism for modelling the necessary concurrent and
mobile interactions.

Calder and others have modelled biological systems such
as protein signalling and molecular interaction using pro-
cess algebras (PEPA,π-calculus). However, they do not aim
to capture emergence or to establish a formal environment
in which emergence is possible. For instance, the signalling
is modelled in direct channels, and not through casual envi-
ronmental interaction.

There is a wealth of biological simulation work, ranging
from academic research models (Denis Noble’s long-term
cardiac modelling [18]) to pure entertainment. These simu-
lations have a different goal to the TUNA work — they cap-
ture aspects of reality in ways that exhibit particular proper-
ties or illuminate understanding.

6. Conclusion and Future Work

Whilst the role of simulation in development of real
nanoscale complex emergent systems remains to be deter-
mined, simulation can help us to understand emergence.
Simulation is also necessary to demonstrate that a proven-
correct model of an emergent systems can produce the re-
quired emergent properties.

This paper presents aspects of theoccam-π simulation
of the TUNA platelet case study, together with a novel and
fast mechanism for resolving CSPexternal choicebetween
multiway synchronisation eventsfrom which any partici-
pant may withdraw its offer at any time. This latter item
provides the technique for efficient realisation of a proposed
occam-π language extension directly capturing the pattern.
It will considerably simplify the programming task and sig-
nificantly broaden the range of CSP system that can be di-
rectly implemented (i.e. without further transformation and
proof).

occam-π has existing and potential features that make
it uniquely suited to modelling nano-scale systems of sys-
tems; it has natural support for mobility and concurrency,
and a highly-efficient model of execution. TUNA is chal-
lenging and extendingoccam-π with coding patterns and
kernel features needed to fully exploit its potential.

Several approaches are being considered. Just as the
CSP models have been extended to CSP‖B and toCircus
models, allowing different properties to be analysed, so
theoccam-π systems include direct implementation of the
CSP platelet models described in this paper, an indepen-
dent CA model, and a very efficient lazy implementation
based on the rule migration principles of [19]. At this stage,
all approaches are potentially useful, and further analysis is
needed to establish useful guidance in the implementation
of nanotech simulations.

Our occam-π models faithfully implement the indepen-
dent process layers (e.g. platelets, blood and chemical flow
in physical space), and can elegantly capture the decompo-
sition of the environment. Ultimately, this makes the imple-
mentation flexible; changes in the chemical model, for ex-
ample, can easily be fed in to the simulation, without rewrit-
ing the rest of the environmental or platelet simulation.

Our (very) long-term goal is an engineering framework
for dependable nanotech assemblers; our modelling and
simulations will be ultimately useful only if they provide
evidence for assurance arguments on real nano-scale sys-
tems of systems.

Acknowledgements

The TUNA project is funded by the UK EPSRC. It has
given us the opportunity to interact with modellers working
close to formal theory, system engineers making some sharp
concurrency technology, and strategic thinkers in the con-
text of emergent behaviour and novel computing paradigms.
We thank our TUNA consortium colleagues (Ana Caval-
canti, Steve Schneider, Helen Treharne, Heather Turner,
Susan Stepney, Jim Woodcock) for continuing discussions,
criticism and encouragement. Special thanks go to Ian Mar-
shall for striking the spark that led to the construction of the
oracle for choice over multiway synchronisation. Finally,
we record our gratitude to the anonymous referees, whose
constructive comments were of considerable value both in
the preparation of this paper and for our future work.

References

[1] M. Aubury, I. Page, G. Randall, J. Saul, and R. Watts. hcc:
A Handel-C Compiler. Technical report, Oxford University
Computing Laboratory, UK, Aug. 1996.

[2] F. Barnes, D. Dimmich, C. Jacobsen, M. Jadud, A. Sampson,
and P. Welch. Theoccam-pi Home Page, 2006. Available
at: http://www.occam-pi.org/.

[3] F. Barnes and P. Welch. Mobile Data, Dynamic Allocation
and Zero Aliasing: anoccam Experiment. In A. Chalmers,
M. Mirmehdi, and H. Muller, editors,Communicating Pro-
cess Architectures 2001, volume 59 ofConcurrent Systems
Engineering, pages 243–264, Amsterdam, The Netherlands,
Sept. 2001. WoTUG, IOS Press. ISBN: 1-58603-202-X.

[4] F. Barnes and P. Welch. Prioritised dynamic communicat-
ing and mobile processes.IEE Proceedings – Software,
150(2):121–136, Apr. 2003.

[5] F. Barnes, P. Welch, and A. Sampson. Barrier synchro-
nisations for occam-pi. In H. R. Arabnia, editor,Pro-
ceedings of the 2005 International Conference on Paral-
lel and Distributed Processing Techniques and Applications
(PDPTA’2005), pages 173–179, Las Vegas, Nevada, USA,
June 2005. CSREA press. ISBN: 1-932415-58-0.

[6] M. Butler. csp2B: A Practical Approach to Combining CSP
and B. Formal Aspects of Computing, 12(3):182–198, Nov.
2000.

[7] M. Calder, S. Gilmore, and J. Hillston. Modelling the In-
fluence of RKIP on the ERK Signalling Pathway using the
Stochastic Process Algebra PEPA. InTrabsactions on Com-
putational Systems Biology, LNCS. Springer, 2006. to ap-
pear.

[8] M. d’Inverno and R. Saunders. Agent-based Modelling of
Stem-Cell Organisation in a Niche. In S. Bruekner, G. D. M.
Serguendo, A. Karageorgos, and R. Nagpal, editors,Engi-
neering Self-Organising Systems – Methodologies and Ap-
plications, volume 3464 ofLNAI. Springer, 2005.

[9] Formal Systems (Europe) Ltd., 3, Alfred Street, Oxford.
OX1 4EH, UK. FDR2 User Manual, May 2000.

[10] C. Hoare.Communicating Sequential Processes. Prentice-
Hall, London, 1985. ISBN: 0-13-153271-5.

[11] T. Hoare and H. Jifeng.Unifying Theories of Programming.
Prentice Hall, Apr. 1998. ISBN: 0-134-58761-8.

[12] G. Jones. On Guards. In T. Muntean, editor,7th oc-
cam Users Group & International Workshop on Parallel
Programming of Transputer Based Machines, pages 15–24,
Grenoble, 1987. IOS Press, The Netherlands.

[13] J. Martin and P.H.Welch. A Design Strategy for Deadlock-
free Concurrent Systems. Transputer Communications,
3(4):215–232, Oct. 1996.

[14] J. M. Martin and Y. Huddart. Parallel Algorithms for Dead-
lock and Livelock Analysis of Concurrent Systems. In
P. Welch and A. Bakkers, editors,Communicating Process
Architectures, Proceedings of WoTUG 23, volume 58 of
Concurrent Systems Engineering, pages 1–14, Amsterdam,
the Netherlands, Sept. 2000. WoTUG, IOS Press. ISBN: 1-
58603-077-9.

[15] D. May. OCCAM. ACM SIGPLAN Notices, 18(4):69–79,
Apr. 1983.

[16] A. A. McEwan. Concurrent Program Development. DPhil
thesis, The University of Oxford, Submitted Trinity Term
2006.

[17] R. Milner. Communicating and Mobile Systems: the Pi-
Calculus. Cambridge University Press, 1999. ISBN-10:
0521658691, ISBN-13: 9780521658690.

[18] D. Noble. Oxford Cardiac Electrophysioogy Group – Home
Page, 2006. Available at:http://noble.physiol.ox.
ac.uk/.

[19] F. Polack, S. Stepney, H. Turner, P. H. Welch, and F. R.
Barnes. An Architecture for Modelling Emergence in CA-
Like Systems. In M. S. Capcarrère, A. A. Freitas, P. J.
Bentley, C. G. Johnson, and J. Timmis, editors,Advances
in Artificial Life, 8th European Conference on Artificial
Life (ECAL 2005), volume 3630 ofLecture Notes in Com-
puter Science, pages 433–442, Canterbury, UK, Sept. 2005.
Springer. ISBN: 3-540-28848-1.

[20] A. Sampson, P. Welch, and F. Barnes. Lazy Simulation
of Cellular Automata with Communicating Processes. In
J. Broenink, H. Roebbers, J. Sunter, P. Welch, and D. Wood,
editors, Communicating Process Architectures 2005, vol-
ume 63 ofConcurrent Systems Engineering Series, pages
165–175, Amsterdam, The Netherlands, Sept. 2005. IOS
Press. ISBN: 1-58603-561-4.

[21] S. Schneider, A. Cavalcanti, H. Treharne, and J. Woodcock.
Bloody CSP: A Layered Behavioural Model of Platelets. In
Proceedings of ICECCS-2006, Sept. 2006.

[22] S. Stepney, A. Cavalcanti, F. Polack, S. Schneider, H. Tre-
harne, P. Welch, and J. Woodcock. TUNA: Theory underpin-
ning nanotech assemblers (feasibility study), Jan. 2005. EP-
SRC grant EP/C516966/1. Available from:http://www.
cs.york.ac.uk/nature/tuna/index.htm.

[23] S. Stepney, H. Turner, and F. Polack. Engineering Emer-
gence. InProceedings of ICECCS-2006, Sept. 2006.

[24] P. Welch. Process Oriented Design for Java – Concurrency
for All. In PDPTA 2000, volume 1, pages 51–57. CSREA
Press, June 2000. ISBN: 1-892512-52-1.

[25] P. Welch and P. Austin. The JCSP (CSP for Java) Home
Page, 1999. Available at:http://www.cs.kent.ac.uk/
projects/ofa/jcsp/.

[26] P. Welch and F. Barnes. Communicating mobile pro-
cesses: introducing occam-pi. In A. Abdallah, C. Jones, and
J. Sanders, editors,25 Years of CSP, volume 3525 ofLec-
ture Notes in Computer Science, pages 175–210. Springer
Verlag, Apr. 2005.

[27] P. Welch and F. Barnes. Mobile Barriers for occam-pi: Se-
mantics, Implementation and Application. In J. Broenink,
H. Roebbers, J. Sunter, P. Welch, and D. Wood, editors,
Communicating Process Architectures 2005, volume 63 of
Concurrent Systems Engineering Series, pages 289–316,
Amsterdam, The Netherlands, Sept. 2005. IOS Press. ISBN:
1-58603-561-4.

[28] P. Welch, G. Justo, and C. Willcock. Higher-Level
Paradigms for Deadlock-Free High-Performance Systems.
In R. Grebe, J. Hektor, S. Hilton, M. Jane, and P. Welch,
editors,Transputer Applications and Systems ’93, Proceed-
ings of the 1993 World Transputer Congress, volume 2,
pages 981–1004, Aachen, Germany, September 1993. IOS
Press, Netherlands. ISBN 90-5199-140-1. See also:http:

//www.cs.kent.ac.uk/pubs/1993/279.
[29] J. Woodcock and A. Cavalcanti. The Semantics of Circus. In

ZB 2002: Formal Specification and Development in Z and B,
volume 2272 ofLecture Notes in Computer Science, pages
184–203. Springer-Verlag, 2002.

