
Using a Policy Language to Control Tuple-space Synchronization in a Mobile
Environment

Vorapol Jittamas and Peter F. Linington
University of Kent Computing Laboratory

Canterbury, Kent, UK
vj7@kent.ac.uk, pfl@kent.ac.uk

Abstract

Any sharing of information using a distributed platform
carries the risk of disconnection because of loss of network
access. This is particularly the case when considering mo-
bile communication, either using base stations or by form-
ing ad-hoc networks. Replication of shared data is one
way to increase data availability in such an environment,
but leads to the problem of inconsistency between copies of
data, and so requires some means of data synchronization.

This paper investigates how policies can be used to re-
solve data conflict in a way that can be tailored to meet
the needs of different types of application in different situa-
tions. It discusses a range of application requirements, and
describes a policy-based pervasive middleware to support
the sharing of data using a tuple-space paradigm. Policies
maintained within the middleware are used to trigger a wide
range of synchronization options to restore the consistency
of the data after periods of disconnected operation.

1. Introduction

Distributed applications are needed in a mobile environ-
ment both to allow interaction with fixed services and to al-
low direct communication between mobile peers. A shared
tuple space provides a model for communication which is
simple for the application designer to work with, but which
results in apparent continuity for the end-user. Such a model
can then be supported by middleware that handles commu-
nications problems, striking a balance between continuity of
operation and consistency between distributed data copies.

In many situations, such as coordination of diaries, con-
tinuity of operation is more important than absolute consis-
tency. However, isolated copies will gradually diverge as
changes are made, and some form of compensation is es-
sential. A synchronization process provides this. A set of
rules is needed that re-establishes consistency while provid-

ing users with a predictable view of the process. One solu-
tion is to use a policy language to express these rules so that
a manager can create policies causing the middleware to
react to inconsistency in ways that meet user expectations.
The aim is to increase the probability that synchronization is
handled automatically by the middleware. The first step in
designing a policy-based solution is to extract requirements
from applications and so establish the constraints needed
and the information they will reference.

This paper investigates the requirements for synchro-
nization policies in a range of applications. It also presents a
tuple-space-based mobile middleware called JavaSpace for
Mobile Environment (JSFM), built at the University of Kent
to experiment with synchronization policies.

2. Background and related work

The tuple-space paradigm was first introduced by the
Linda language [5]. It defines a body of storage called a
space and the groups of objects put into and retrieved from
the space are called tuples. It is attractive because of its sim-
plicity and its ability to provide time and space decoupling;
many mobile middlewares. such as LIME [11], TOTA [9],
and TIAMAT [10], have used this paradigm. However,
these systems do not store local replicas of remote informa-
tion; it is left to an application to make local copies explic-
itly. The middleware proposed here automates this process
and manages synchronization when needed.

There are also many systems providing data synchro-
nization at a file level; AdhocFS [3] is a file system for use
in a mobile ad-hoc environment, which uses data replica-
tion to make data available within a group of devices. The
Bayou replicated storage system [13] also provides conflict
resolution during data synchronization in a mobile environ-
ment. Clients store data on servers and each server is re-
sponsible for propagating data and resolving conflicts be-
tween data items. In this design, users provide, along with
the data, a definition of how conflict will be detected and



resolved. In Coda [7], file caching is used to provide in-
formation to a user whenever the system is disconnected.
The Coda file system tries to avoid user intervention during
conflict reconciliation by using a file of rules to control the
system behaviour.

Instead of trying to reconcile conflict, Mobisnap [12]
prevents conflict from happening between different mobile
devices by using reservation. Although this avoids the syn-
chronization problem, it does not support the continuous
disconnected operation we envisage here.

3. Application Requirements

Each application requires its data to be synchronized
whenever nodes are connected, and requires a policy to re-
solve any conflicts, but the rules for conflict resolution vary.
Review of a number of applications identifies requirements.

Basu and Little [1] describe an ad hoc network formed
by parking meters and cars wishing to park. Each parking
meter writes a tuple to a space to represent an individual
parking space that it is responsible for, and this tuple will be
propagated through each connected car and parking meter.
A car that decides to park in a specific parking space edits
the corresponding tuple so as to reserve it.

Conflict can occur if two cars try to reserve the same
parking space while not connected to each other, and poli-
cies are then used to determine the outcome. The simplest
policy would be to give priority to the car that reserved a
parking space first. Taking the earliest change is a resolu-
tion policy commonly used when there is only limited infor-
mation about the history of activities. However, extra con-
text data, such as a user’s role, allows priority in reservation
within a particular set of spaces.

Other applications have different context requirements
during synchronization. Examples include factory automa-
tion, shared devices in an office, warehouse inventory con-
trol systems, a number of which are reviewed in [4].

Most applications can be classified by the number and
type of contextual data items involved in synchronization
– what matters is the richness of the object model used to
support the policy definition.

The survey also revealed a number of applications
in which it was hard to find a separate synchro-
nization policy. One example is the SpotMe:People
Radar(www.spotme.com) which reminds users at a confer-
ence that they want to talk to someone they find themselves
close to. Here, the application is itself effectively just a syn-
chronization process.

In the original work on tuple spaces, a space is just an as-
sociative store, and there is no independent concept of tuple
identity. If a tuple is removed with a take operation, then
updated and written to the store, the result is a distinct tu-
ple. To base synchronization on the history of a tuple during

a series of changes, we need a stronger concept of identity.
This is constructed from a group of fields in the tuple, which
together make it unique, and can be used by the middleware
to track a tuple as its state evolves. The tuple identity is
based on the query processing performed when searching
for a tuple. Retrieval by identity is then essentially retrieve
by matching selected fields. In this way, the middleware can
track each tuple, even though it may have been deleted and
then written back into the space, and so can detect conflicts
when tuples with the same identity in different spaces differ
in their other fields.

The results of this survey have been used to create a li-
brary of scenarios, each defining a starting state and an as-
sumed sequence of user actions, network status changes and
subsequent synchronization events and stating the outcomes
a user expects. The scenarios can be categorized using the
supporting information needed.

A proposed policy is then assessed rapidly with a har-
ness in which the policy control components from the real
middleware are used to execute each scenario in turn, deter-
mining the state changes selected by the policy at each of
the synchronization events. The resulting state is compared
to the set of outcomes in the scenario to see if the policy is
successful.

However, the final test of a system must be based on real
experience to ensure that no factors have been overlooked.
For this the complete prototype implementation of the mo-
bile middleware is used, controlled by the same components
that have already been tested with the scenarios.

The selection of a suitable synchronization policies in
this way involves a balance between expressiveness and
simplicity; including more factors about the environment,
the history of events and the application can lead to better-
informed decisions, but at the expense of increased cost.
The approach outlined here allows us to to compare the ben-
efits of different control policies.

4. The JavaSpace for Mobile Environment

The aim of JSFM is to provide an application environ-
ment that is as close as possible to Sun’s traditional JavaS-
pace, so that existing applications can be transferred di-
rectly. It forms a value-added layer, handling problems of
distribution and synchronization above a slightly enhanced
version of the earlier JavaSpace system. Internally, the
JSFM architecture has three main components, shown in
figure 1:

• the Port-to-Space (PTS), which links to the applica-
tion, and maps items in the virtual space to those in the
local space.

• the Policy Engine (PE), which is the heart of the mid-
dleware, takes all the synchronization decisions, based



on policies it manages. Synchronization is initiated by
an event representing a change, either in a local space
or in the network connectivity.

• the Multicast Layer (ML), which maintains the peer-
to-peer configuration between spaces in the form of
a multicast tree, based on AMRoute [2], modified to
allow the use of heterogeneous networking environ-
ments. This tree is used to distribute events.

Figure 1. The JSFM architecture.

Synchronization is performed in three steps. First, the
synchronization type is determined by matching the prop-
erties of the current event with an entry in an Event Type
Tree. Then the Policy Main Engine loads policies matching
the event type, checks the policy constraints, selects policies
that apply and use them to attempt synchronization. First
matching by event type simplifies the policy definitions by
isolating the individual cases.

5. The Policy Language

The language used in the JSFM Policy Engine needs to
allow a policy to reference the current and historical state
of a space and its tuples during synchronization. It can be
divided into two sub-languages.

The first language defines the tree of event types (based
on subtyping) used to determine the policies that apply. Ba-
sically, event types are defined by assigning constraints on
predefined event attributes to each tree node; examples are
the number of times devices have been connected to each
other, or the existence of corresponding identities in local
and a remote spaces. OCL is used as a type definition lan-
guage because most users will already be familiar with it.

The second sub-language defines the policies used to
invoke synchronization actions when events occur. At
present, we have adopted the Ponder language [8] to ex-
press the policies for controlling the synchronization pro-
cess, rather than generate a new language needlessly. The

synchronization constraints are expressed in Ponder as obli-
gation policies triggered by events generated by the discov-
ery of inconsistent data. OCL constraints are heavily used
in the matching process and to define dynamic source and
target domains from the corresponding static types.

Apart from basic facts like the time at which an event
takes place, there are many other pieces of information used
for determining the synchronization action. For instance,
the number of times that a tuple has been accessed while a
device was disconnected can be used, because it indicates
that the application has used it for taking decisions.

OCL constraints are used to access such contextual in-
formation, and also other types, such as type of device (mo-
bile or stationary), or device parameters (bandwidth or re-
maining battery power). Several kinds of context informa-
tion can be applied in policies; for example, the time at
which a synchronization process takes place can be used to
change the priority a policy gives to different spaces. Policy
constraints can also refer to information in the tuple itself,
and this can be used in prioritizing the changes in differ-
ent spaces. Actions are currently taken from a pre-defined
set allowing, for example, copying or deleting of tuples, but
extension to application-specific actions is planned.

In more complex situations, the policy may need to allow
a user to assign a priority to each constraint. This could take
the form of a score or utility function, so that a score derived
from the constraints is used to determine the best course of
action, as in the policies in [6]. However, this just transfers
the problem of reflecting the designer’s intentions correctly
to the choice of utility function.

Consider an example where a device from a virtual space
becomes disconnected. While disconnected, the device
makes a series of five edits to a tuple (take/write sequences),
and the other participants in the virtual space perform three
editing sequences. Synchronization is clearly needed on re-
connection, and the policies in figure 2 might apply. Both
policies are triggered by the same type of synchronization
event, but their targets are different. This could be because
the application uses a number of different tuple-types, and
requires a different synchronization behaviour for each.

The first policy is applied to a tuple of type ”TypeA”;
it favours a tuple accessed several times, because its value
has had more impact on the application’s state. Chang-
ing a more frequently accessed tuple will potentially invali-
date more derived information than changing a tuple with a
lower access count.

On the other hand, the policy for a tuple with type
”TypeB” is based on the time since the tuple was last modi-
fied. The freshest tuple is used because it is the most up-to-
date. If a target satisfies both these types, there is a conflict
to be resolved at a higher level.

Sometimes a disconnection may disrupt the synchroniza-
tion process. If each tuple is processed independently, any



inst oblig pol1 {
on Normal Sync Both Side;
subject 〈space〉 s = /space;
target 〈tuple〉 t =/tuple→select(t1|t1.tupleType =

”TypeA”);
do s.propagate(t);
when /space→exists(s1,s2|s1.isLocal = true

and s2.isRemote = true
and s1.accessCount(t) >

s2.accessCount(t));
}

inst oblig pol2 {
on Normal Sync Both Side;
subject 〈space〉 s = /space;
target 〈tuple〉 t = /tuple→select(t1|t1.tupleType =

”TypeB”);
do s.propagate(t);
when /tuple→exists(t1,t2|t1.localtuple = true

and t2.remotetuple = true
and t1.identity = t2.identity
and t1.time lastmod >

t2.time lastmod);
}

Figure 2. Example of a more complex policy.

incomplete attempt can simply be abandoned; synchroniza-
tion will be retried when the connection is resumed. How-
ever, if a more complex policy tries to maintain the consis-
tency of groups of tuples, a transactional structure is needed,
and an incomplete synchronization may need to be resumed
until the group is complete or is rolled back.

However, as long as the synchronization process is com-
posed of a number of independent events, a sequence of dis-
connections will still eventually lead to correct synchroniza-
tion, if some of the periods of connection are long enough
to complete the processing of some tuples, and the rate of
modification is low enough for there to be a gradual reduc-
tion in the work remaining.

6. Conclusions and future work

This paper has shown the use of a policy language for
controlling synchronization processes in a mobile environ-
ment, both using working mobile middleware and in a test
framework that allows a much broader range of policies to
be investigated. The policy compiler used in the imple-
mentation is based on the compiler provided by the Ponder
group, modified to suit our experimental environment.

The work is still ongoing, but experience so far has
shown that selection of suitable policies can support a wide

range of applications. The library of scenarios is being ex-
tended to support a wider range of application types.

In the next phase of this work we are investigating the
problems of stability where policies in the various nodes
are being updated during use. At present, the project as-
sumes that all devices will use a similar policy, but, in real
life, users need to edit their policies at run-time, which leads
to the creation of conflicts, since policies in different nodes
may cause different actions during synchronization. One
way to resolve this is to define a meta-policy that can con-
strain the local policies, and hence limit the actions that are
going to take effect.

References

[1] P. Basu and T. Little. Networked parking spaces: Architec-
ture and applications. In Proc. 56th IEEE Vehicular Tech-
nology Conference, volume 2, pages 1153–1157, 2002.

[2] E. Bommaiah et al. AMRoute: Adhoc Multicast Rout-
ing Protocol. Internet Engineering Taskforce, INTERNET-
DRAFT, 1998. http://www.ietf.org/proceedings/98dec/I-
D/draft-talpade-manet-amroute-00.txt.

[3] M. Boulkenafed et al. AdHocFS: Sharing files in WLANs.
In Proc. 2nd Int. Symposium on Network Computing and Ap-
plications, Apr. 2003.

[4] I. Chlamtac, M. Conti, and J. Liu. Mobile ad hoc network-
ing: Imperatives and challenges. Ad Hoc Network Journal,
1(1), Jan.-Feb.-Mar. 2003.

[5] D. Gerlernter. Generative communication in Linda. ACM
Computing Surveys, 7(1), Jan. 1985.

[6] J. Kephart and W. Walsh. An artificial intelligence perspec-
tive on autonomic computing policies. In Proc. 5th Inter-
national Workshop on Policies for Distributed Systems and
Networks, 2004.

[7] J. Kistler and M. Satyanarayanan. Disconnected operation in
the Coda file system. In 13th ACM Symposium on Operating
Systems Principles, 1992.

[8] E. Lupu et al. Ponder: Realising enterprise viewpoint con-
cepts. In Proc. 4th Int. Enterprise Distributed Object Com-
puting (EDOC), Mukahari, Japan, 2000.

[9] M. Mamei et al. Tuples on the air: a middleware for
context-aware computing in dynamic networks. In Proc. 2nd
Int. Workshop on Mobile Computing Middleware; at 23rd
ICDCS, pages 342–347, Providence (RI), USA, May 2003.
IEEE CS Press.

[10] G. McSorley et al. Tiamat: Generative communication in a
changing world. In 1st Int. Workshop on Middleware for Per-
vasive and Ad Hoc Computing (MPAC), Middleware, 2003.

[11] P. Picco et al. Lime: Linda meets mobility. In Proc. 21st Int.
Conf. on Software Engineering, May 1999.

[12] N. Preguica et al. Reservation for conflict avoidance in a
mobile database system. In Proc. 1st Int. Conf. on Mobile
Systems, Application, and Services (MobiSys), 2003.

[13] D. Terry et al. Managing update conflicts in Bayou, a weakly
connected replicated storage system. In Proc. 15th Sympo-
sium on Operating Systems Principles (SOSP-15), Copper
Moutain, Colorado, Dec. 1995.


