
Abstract: Nowadays many organisations share sensitive
services through open network systems and this raises the
need for an authorization framework that can interoperate
even when the parties have no pre-existing relationships.
Trust Negotiation is the process used to establish these first
relationships, through the transfer of attributes, embedded
in digital credentials, between the two parties. However,
these attributes may themselves be considered sensitive and
so may need protection from disclosure. In some
environments, the policies that govern the protected services
may also be considered sensitive and their release to
arbitrary strangers may leak confidential business
information. Thus, the electronic services, the policies that
control access to them, and the digital credentials used to
gain access may all be sensitive and require access
protections. This paper describes how to unify the protection
of services, sensitive credentials and policies in a
synchronised trustworthy manner. We propose a trust
authorization framework (TAF) that builds on the
capabilities of XACML to support the bilateral exchange of
policies and credentials through trust negotiation. Our
framework addresses privacy and trust issues, and considers
services, credentials, and authorization policies protected
resources whose access is subject to credential proof and
trust level validation

Keywords: XACML, authorization, privacy
protection, trust establishment, distributed
systems, access control

1.0 Introduction
Authorization ensures that resources can be

accessed only by parties who have the right privileges. Thus,
the resource gatekeeper requires some level of trust be
established before sensitive information can be released.
Service requesters are required to submit sufficient
authorization credentials before access will be granted.
Wherever people are involved in the exchange of digital
information, such as credentials, privacy becomes an issue
of some concern. The use of personal, sensitive information
to gain access to a resource in a distributed environment
raises an interesting paradox. On the one hand, in order to
make the services and resources accessible to legitimate
users the authorization infrastructure requires the users’
attributes. On the other hand, the users may not be ready to
disclose their attributes to a remote service provider without
determining exactly who the provider is and how personal
attributes will be used. Thus, privacy [1] [2] [7] is a critical
consideration for authorization environments. One approach
for addressing these privacy concerns is to employ a
bilateral exchange of policies and credentials between the
parties involved in the transaction, so that they can decide

what to give and/or get from each other. This process is
known as trust negotiation in the literature [8]. However, the
policies and credentials may themselves be sensitive.
Consider the following motivating example. A Secret
Service (SS) offers online training both for her agents and
friendly secret agent services. The service requires that each
participant present a role Attribute Certificate (certificate), a
security assertion digitally signed by the participant’s
security authority which binds the holder’s attributes to the
holder. Whilst the policy that governs this service prevents
unauthorized access to its resources, the policy does not
protect the fact that SS offers training to friendly
organisations, which is another sensitive piece of business
information. To address this vulnerability, it is desirable that
the policy that governs access to the training resources be
protected from being disclosed to arbitrary strangers. To
prevent arbitrary disclosure of sensitive policies, access to
the policies need to be protected. On the other hand, an
agent requester cannot give out her role certificate to any
service that poses as the SS webserver. The agent would
like some proof that shows the server can be trusted.
Imperatively, to solve the arbitrary disclosure of sensitive
policies [2] and digital credentials, parties require a
mechanism to gradually establish a trusted relationship.
Trust relationships can be established between service
providers and requesters through the exchange of
information in a well understood fashion [12]. The
information usually contains policies and security assertions,
issued by Attribute Authorities (AAs), which describe the
properties of the holders. The exchange of this information
is done in such a manner that the security assertions are
unforgeable and can be verified and validated [22].

One promising mechanism for this problem is the
eXtensible Access Control Markup Language (XACML),a
standard created in OASIS [3] that is gaining prominence
and enjoying wide spread support among major stakeholders
in authorization technology. This standard defines a general-
purpose, flexible authorization policy language and a
query/response format.. Though XACML is a rich
framework, it intentionally does not address how to preserve
the privacy of authorization entities. For this, we require
well-defined trust relationships between the participants, but
first time business partners may not have pre-existing
relationships. Therefore, a mechanism for gradual building
of trust is desirable.

Trust negotiation management systems have been
proposed by researchers as one effective way to guarantee
the confidentiality of authorization information. Trust
establishment is a well researched concept [5] [2] [6].
However, existing efforts in this area have not been
standardized and do not fit into any authorization standard
such as XACML. This work investigates how XACML can
fit into trust authorization management systems. Our

 Privacy Preserving Trust Authorization Framework Using XACML
U.M. Mbanaso, G.S. Cooper

Computing, Science and Engineering
University of Salford, UK

u.m.mbanaso@pgr.salford.ac.uk,
g.s.cooper@salford.ac.uk

D.W.Chadwick
Computer Department
University of Kent, UK

d.w.chadwick@kent.ac.uk

Seth Proctor
Sun Microsystems Laboratories

Burlington, MA USA
seth.proctor@sun.com

 2

approach and strategy is to explore existing concepts, and
where necessary, extend them to accomplish our goal.

Adding a trust component to XACML will extend
its usage in open systems where transaction parties require
trust establishment before they can share their sensitive
information. In this paper, we describe our proposed
XACML Trust Authorization Framework (XTAF). XTAF is
a loosely coupled architecture with a trust component that
protects authorization information (policies and credentials)
layered such that it integrates seamlessly into any XACML
compliant authorization engine with minimal effort. We
expose different ways that the XACML policy language can
be used to support bilateral exchange of policies and
credentials, and protect unauthorized access to services. We
introduce a Trust Authorization Service Handler (TASH) to
handle sensitive authorization information. This supports
runtime bilateral authorization operations between two or
more parties. The framework takes care of protecting
unauthorised access to enterprise resources such that users’
privacy is balanced against the business aspects and public
interests that may be adversely affected by transactions in an
unregulated privacy regime. Using existing standard such as
XACML has the benefit of promoting interoperability and
reducing the effort needed to integrate with existing
applications.

The rest of this paper is organised as follows: In
section 2, we highlight some of the security challenges in
open systems authorization. Section 3 gives a brief overview
of the XACML authorization framework. Section 4 presents
an overview of the XACML Trust Authorization
Framework, as well as showing how the XACML policy
language can be used for trust establishment, privacy, and
resource controls in a synchronized manner. In section 5 we
illustrate, through a hypothetical example, the usage of our
framework based on the concepts presented in this paper.
Section 6 presents related research work, and section 7
concludes the paper with a summary and future research
work.

2.0 Authorization in Distributed
Open Systems
Authorization is the mechanics of controlling

access to sensitive resources by comparing local policies
that govern access to resources against the credentials
submitted by requesters. Traditional authorization is a one-
shot process that requires the user to submit credentials
unconditionally, irrespective of whether the services adhere
to the privacy preferences of the users. Traditional
authorization systems also make an unrealistic assumption
that service requesters have previous knowledge of access
control requirements; in open systems with diverse and
unbounded users and service providers, this may not be the
case. Consequently, service requesters are made to submit
more attributes than necessary, which potentially exposes
them to privacy risks. Resources can grow and shrink,
making dynamic disclosure of access control requirements
desirable at runtime. This makes it possible to add or
remove services without worrying about the implications for
service requesters. At request time, the access requirements

can be made known to service requesters and they can check
whether they can meet those requirements. Conversely, the
service requesters need to evaluate the risk of giving out
their attributes by determining the degree to which they are
prepared to trust the service providers.
 Figure 1 gives a simple picture of entities involved
in authorization process and points of privacy concerns. To
enforce privacy in authorization, a loosely coupled
architecture is required to synchronise the protection of
business services, as well as users’ privacy in a manner that

guarantees information flow and availability. It is
worthwhile to note that these entities may not necessarily
exist within the same trusted environment. Thus, the
environment affects the kind of privacy concerns and
expectations. For instance, with authorization in a
distributed environment which is conducted over public
network such as the Internet, the users’ and the service
providers’ information is exposed to a number of threats. In
this section, we highlight some of the security challenges of
authorization particularly in distributed environments. .

2.1 Security Challenges
Authorization in distributed open systems presents a

number of significant challenges. First, the service providers
and requesters are unlikely to belong to the same security
domain in all scenarios. In some of these cases, service
requesters may include users with or without pre-existing
relationships with the service provider. Second, the
authorization credentials may not necessarily be issued by
one Attribute Authority (AA), thus a chain of third parties
may be involved in the authorization process. Thus, privacy
and trust are critical security constructs that must be

Figure 1 Privacy in Authorization Infrastructures

Privacy Concern
Personal identifiable
information may be

revealed undesirably

AA

PIP

PAP

PEP

Resource Target

Service Access Request

Attribute holder/issuer

Permit/Deny

Decision Response
PDP

Request Decision

PolicyQuery/Response

AttributeQuery/Response

Service Provider

Service Requester

Privacy Concern
Policy may contain sensitive
information that disclosure to

stangers is undesirable

Privacy Concern
Trust relationaship between
entities may be disclosed

unnecessarily

Privacy Concern
Service provider's
properties may be

revealed undesirably

Enterprise - full
control of resources

PEP-Policy Enforcement Point
PDP-Policy Decision Point
AA -Attribute Authority
PAP- Policy Administration Point
PIP- Policy Information Point

 3

addressed along side the effective control of service
providers’ resources. In this context, some of the key
authorization security issues can be summarized as follows:

 Service providers’ effective resource control
 Service requesters’ personal sensitive

attributes need privacy protection
 Service providers’ authorization information

requires privacy protection
 Privacy of third party affiliates –

unauthorised disclosure of trust relationship
between AAs and the credential holders

 Verification and validation of assertions
issued by AAs about the service providers
and requesters

 When service can be accessed by users with
or without pre-existing relationship, it is
desirable to devise an appropriate way to use
the same authorization engine to deal with
users across untrusted boundaries.

Authorization in distributed transaction processing

systems where strangers can engage in business transactions
without pre-existing relationships requires a gradual trust
building scheme, so that the parties can release their
attributes incrementally, while receiving the other party’s
attributes in an automated and synchronised manner. In this
way, the risk to which a party is exposed at any point in the
negotiation can be minimised. To handle this aspect of
security requires a trust establishment mechanism. Thus, the
XACML Policy Decision Point (PDP) needs to allow the
automated, gradual, selective release of policies and
comparison with locally available credential attributes
during the trust session.

3.0 The XACML Framework
 The eXtensible access Control Markup Language
(XACML) [3] is a general purpose policy language and
framework that includes common datatypes, functions, and
decision combining logic, and a query/response format,
expressed in XML. The XACML standard uses a generic
access control framework based on the IETF/DMTF model
that allows an enterprise to specify and deploy an access
control policy to match its access control requirements for a
variety of resources. The request/response language
describes the form of query and answer to flow between the
Policy Enforcement Point (PEP) and Policy Decision Point
(PDP) during the access control process. The wider
acceptance of XACML results, apart from its rich
capabilities, from the benefits of using a framework that can
interoperate in open systems with minimal effort. Again, the
XACML standard has defined profiles to integrate and
interoperate with other security protocols and requirements
such as SAML [27] and RBAC [28]. Interoperability is
critical in distributed open systems and can be addressed by
using and sharing common functionality within a standard
framework.

Figure 2 shows a simplified view of the XACML
authorization framework. The PEP is the mechanism which
provides access to resources, and which forms access

requests used to query the PDP. The Requests are
represented to the PDP through an abstract entity called the
Context Handler, which provides access to attributes from
the Request as well as other sources called Policy
Information Points (PIP). The PDP resolves an applicable
policy from its Policy Administration Points (PAPs),
evaluates the policy against the Context, and renders a
Decision that is passed back to the PEP.

In this general approach, the PIPs are made to
submit the requester’s credentials unconditionally or else the
service cannot be provided. A PIP has no way to verify that
the service provider can be trusted with the requester’s
attributes. This provides only a unilateral access control
scheme, which is not sufficient to protect the privacy of the

subject. Furthermore, such a one-sided authorization scheme
cannot address some legal issues, since the service requester
has no way of guaranteeing or proving that the service
provider’s privacy statements can be trusted. Thus, the
requester’s credentials are vulnerable to exploitation and
abuse.

3.1 XACML Policy Language
The XACML policy language structure depicted in

figure 3 comprises at the top level: PolicySet, Policy
Combining Algorithm, Target, and Policy. The PolicySet is
used to encapsulate a set of Policies and PolicySets. A
Policy Combining Algorithm is logic that resolves a single
decision out of multiple decisions (e.g., a single decision of
Permit overrides any number of decisions to Deny). The
Target defines simple applicability rules based on the
Subjects (the attributes of the potential resource requesters),
the Resources (attributes of the objects to which be access is

Service

Subject

PAP

PIP

PDP0. Policy Source

1. Service Access Request

2. request

5. AttributeQuery

0. Subject Attribute

PEP

4.Attribute Query

6. AttributeResponse Context Handler

9. Response

3.Request Notification7.Attributes
8.Response Context

Permit/Deny

Figure 2 XACML Access Control Model

 4

controlled), the Actions (the attributes of the action the
subject intends to perform on the resources), and the
Environments (any environmental or unclassifiable values).
A Policy comprises at the top level two sub-policy
components: Target and Rule. The Rule element comprises
an Effect (Permit or Deny), a Target, and an optional
Condition element, used to express the evaluation logic.

The XACML PolicySet can be considered as a tree,
which contains one or more children: PolicySet or Policy. A
policy in turn contains one or more child elements: Rule. In
an authorization process, the Target at each level in the tree
acts as a pre-condition for evaluating that part of the tree. If
a PolicySet Target is false, then none of the child Policies or
PolicySets are evaluated and the process returns “Not
Applicable” for that branch of the tree.

When matching Resource values in a Target, the
attributes of the Resources can match any of the Resource
Types the underlying policy governs. In our case, the
resource can be a credential attribute, a computing resource,
or a policy. If the resource match is a policy, then the policy
is considered sensitive and is not to be disclosed to arbitrary
strangers. To allow disclosure of the policy, subjects must
show sufficient credential attributes to satisfy the policy
governing the protected policy.

According to the XACML 2.0 specification, a PEP

SHALL grant access to the protected resources only if a
valid XACML Response Decision of “Permit” is returned by
the PDP. Conversely, the default behaviour of a PEP is that
it SHALL deny access to the protected resources in all other
cases of XACML, including “Indeterminate”. In XACML a
Request SHALL be evaluated as “Indeterminate” if the PDP
is “unable to evaluate the requested access”. XACML
interprets this behaviour in many ways, including cases such
as missing attributes, network errors while retrieving
policies, syntax errors in the decision request or in the
policy, etc. In privacy aware environments, where entities
are not sure whether the remote party can be trusted, they
may not include their sensitive attributes initially in the
service access Request(s). This can result in an
“Indeterminate” response if the PIP is unable to supply

them, which can be interpreted as an indicator to negotiate
for the values. This behaviour can be leveraged to enable
privacy and trust by controlling access to the attributes in the
PIP.

4.0 XACML Trust Authorization
Framework (XTAF)

 Simultaneously, to protect the privacy of parties in
a transaction and to control access to a service provider’s
resources, an architecture is required that can support trust
and confidentiality at the same time. Access control
techniques can be used to protect access to a party’s
credentials, but to establish trust requires a gradual and
progressive approach in the exchange of a party’s
credentials. To enable trust and privacy, a bilateral process
will empower both parties to use access control policies to
determine the way their attributes are given to each other.
This approach brings flexibility into the way privacy is
protected, so that parties can explicitly specify who, how
and when their credentials can be disclosed to others. Thus,
with trust negotiation, the exchange of policies and
credentials must be repeated several times as trust is
progressively increased. But in order to know which

credentials to release, a subject must be sent a policy of the
resource. If the subject is happy with the policy, it will
release further credentials. To address the privacy concerns
of both parties, we adopt a model in which the client and
server exchange sensitive credentials only after they know
that they are talking to the right party. To enable fine-
grained privacy control of sensitive information, we adopt
selective and progressive exchange of policies and
credentials, so that they can incrementally and sufficiently
learn about each other. This will allow each party to
determine what the other party proposes to do with their
sensitive resources. Rather than taking all the risk of
releasing sensitive attributes at once, parties are subject to
smaller risk on an incremental basis and are able to
withdraw at any point.

Figure 3 XACML Policy Language Structure

Target

Effect

PolicySet
PolicySet
Policy Set

PolicySet
PolicySet

Policy

Policy Set

RuleRuleRule

Subjects

Resources

Actions

Env ironments

Combining Algorithm

Target

 5

4.1 Trust Authorization Architecture
Figure 4 shows the basic building block of a Trust

Authorization Service Handler (TASH), a component added
to the core XACML model to address the aspects of privacy
and trust in distributed authorization environments. This
service is being implemented as a Trust Negotiation (TN)
server and SunXACML Attribute Finder Module (AFM)
[21] concept will interface it with core XACML engine. The
Negotiation Protocol Module (NPM) handles the trust
negotiation protocols and ordering of messages [12] during
the building of a trust relationship. The Attribute Validation
Engine (AVE) verifies and validates every credential
attribute and policy that is received by the system before
passing it to the trust decision engine. The Trust Information
Handler (TIH) is responsible for the canonical representation
of the inputs consumed by the TrustPDP and the outputs
from it.
The TrustPDP handles trust access management decisions
by comparing local policies with received credentials and
received policies with local credentials. The local policies
say what local resources (policies and credentials) can be
unlocked by the received credentials. The received policies
say what will become available by releasing further local

credentials. The TrustPDP performs access management
decisions in two ways:

 It checks if there are any local credentials (and
policies) that can be disclosed by comparing the
received credentials with the local policy. This is a
necessary but not sufficient step for releasing
further local credentials (and policies). It means
that the remote party is sufficiently trusted to
receive them.

 It checks the received policy to see if there is
sufficient benefit to be gained from releasing
further local credentials. When the recipient is a
human user, he or she can be asked to make a
decision. When the recipient is a service being
accessed by a user, then there may be no received

policy but it is still beneficial to the service to
release further local credentials and policies.

Figure 5 depicts the high level architecture for how our

proposed XTAF can perform trust negotiation in order to
preserve the service requester’s privacy and control access
to the enterprise’s services. Theoretically, as seen in figure
5, the TASH replaces the PIP in figure 2. In this way the
TASH serves as a gatekeeper to the attribute store and filters
all requests for authorization information. The two parties in
the authorization course require a TASH at both endpoints
to engage in a trust building session until trust is or fails to
be established. The XACML standard specifies that the PDP
shall request Attribute Values from the ContextHandler.
Then, the ContextHandler can query the PIP for the
attributes. This provision makes it possible to layer TASH to
work seamlessly with the access control engine in a manner
that privacy and trust are enabled. What follows is a
simplified illustration of how a client can preserve its
privacy while requesting access to a service that requires its
credentials. In step 1, Alice, sends a request for a particular
service to Bob, and the request has missing or insufficient
Subject credentials. The PDP attempts to evaluate the

request, and during evaluation calls its ContextHandler to
retrieve attributes, as shown by step2. The TASH uses the
parameters passed by the ContextHandler to contact a
similar TASH in Alice’s domain or sends its TASH details
via Alice’s client to get a TN session credential, as depicted
in step 4. Note that step 4 can take any number of rounds
provided trust negotiation can advance through the
exchanges of policies and credentials. If the session is
successful, Bob’s TASH returns a “TN successful” session
credential with the attributes requested to Bob’s
ContextHndler which passes the attributes to his PDP, which
will Permit or Deny access based on Alice’s credentials.

Figure 5 XTAF in Peer Mode

PEP

Context
Handler

PDP

XACML

NPM

TIH

TrustPDP

AVE

TASH

XACML Trust Authorisation Framework (XTAF)

1. Service Access Request (#identifier)

5.Permit or Deny

4. AttributeResponse

NPM

TIH

TrustPDP

AVE

TASH

AFM

Service Provider Domain

User Domain

3.Trust Negotiation Session (#identifier)

2. AttributeQuery

Figure 4 A Simplified TASH Architecture

TIHTrustPDP NPM

AVE

Domain Repository

Poliicies &
Attributes

2. Attribute Validation

3. Request Context

4. Response Context

1. Trust Request

5. Trust Reponse

0. Policy & Attribute supply

SunXACML AFM

AttributeQueryAttributeStatement

 6

4.2 XACML Trust Policy Set
 We examine two ways in which the XACML
policy language can be used to form an effective Trust
Negotiation Policy Set. One approach is to use the existing
PolicySet provision depicted in figure 6a, which can contain
one or more PolicySets or Policies. We mentioned in section
3.1 that PolicySet is a tree, which can contain other trees.
Each Target at any node of the tree is an intersection of
Targets in the path that leads to that branch of the tree.
During the policy evaluation, an ancestor Target is a pre-
condition for evaluating a descendant Target. Thus, a

PolicySet Target can be specified as a pre-condition for
disclosing any part of the policies contained in that
PolicySet. We give a simple example here.
 Alice wants to access webserver1. Access to this
service is defined by policy p2, which specifies that an
accessor must be a postgraduate student in the computing
department of the University of Salford. We assume that p2
is considered sensitive, so that its disclosure is controlled by
policy p1. p1 specifies that to read policy p2, the requester
must be a registered student of the University of Salford.
Alice is unwilling to give up her postgraduate role certificate
without determining whether the webserver can be trusted
with her attributes.
 We can implicitly place the requirement of p1 in
the PolicySet Target and the requirement of p2 in a Policy
Rule element. In this simple example, p2 is disclosed only if
p1 (in this case, the PolicySet Target) is evaluated to true.
For instance, in figure 6a, PolicySet combines Policies Id1,
2...n. The PolicySet Target is a pre-condition for the
evaluation of all the Policies or PolicySets contained in that
PolicySet. The Policy Target is a pre-condition for the
evaluation of all the Rules in that Policy. If PolicySet Target

evaluates to false, then none of the Policies are evaluated.
Likewise, if the Policy Target evaluates to false, then none
of the Rules in the Policy can be evaluated. Each Policy in
the PolicySet has a Target element and may have a number
of Rule Targets, n. So if we assume that policies Id1, 2, ..n
are a Trust Policy Set, in a trust session, the PolicySet
Target will be evaluated as a pre-condition, in addition to
each Policy Target as another pre-condition, as well as the
evaluation of each Rule Target in the Policy. Thus, the
concept of PolicySet, in theory can be used to construct
effective Trust Negotiation Policy sets. The PolicySet can be

used to define complex access control requirements that can
support trust negotiation sessions.
 Usually, in the trust negotiation domain, access
control policies are arranged as directed policy graphs or
trees [12]. It is apparent that the Target at any level is a pre-
condition for evaluating that branch of the policy tree and
for continuing to processing the other parts of the policy
tree. This ensures that if the Target at any level evaluates to
false, evaluating that branch of the tree becomes needless
and negotiation can fail. The main drawback of this
approach is that the structure maintains a strict hierarchy
which may not be flexible enough to represent all conditions
for trust building.

A second approach is to leverage the Rule RuleId
attribute of the Policy Rule as shown in figure 6b. In this
case, a Rule can be made to point to another Rule in order to
protect that Rule from disclosure to arbitrary strangers. This
model addresses the problems raised by the first approach,
but may require the inclusion of a rule combining algorithm.
However, additional constraints can be enforced in each rule
by using the XACML Conditions and Obligations without
extending the language. We adopt this approach as an

Figure 6a XACML PolicySet

Target

CombinerParameter

Rule-1

Target

Subjects

Obligations

Resources

Actions

Environments

Rule-2

Rule-n

PolicySet

Target

Policy Id-1

Policy Id-2

Policy Id-3

CombinerParameter

Policy Id-n

Pre-condition 1

Pre-condition 2

 7

efficient way to construct a simple effective trust policy set.
In some environments, the first approach can be more

effective, especially where policies are defined by a
hierarchy of authorities to protect authorization information
flow.

At trust session runtime, the TASH builds a
disclosure Trust Policy Set from applicable policies to form
the Trust Policy Layers, from which it can infer the
hierarchy of disclosure policies setting the source and sink
nodes [14]. Once this is determined, the TASH can use the
information deduced from the hierarchy to progressively
negotiate trust with a remote party. The nodes satisfied
during the negotiation phase are eliminated until the sink
node (last layer) is satisfied or the session terminates. The
ordering and sequence of the messages are important for the
building of trust and confidentiality. This determines the
trust level and what each party is ready to give in exchange
of his own information.

5.0 Example Scenario
In this example we show how a CIA agent can

surreptitiously gain access to a CIA web service that is
hidden behind a publicly accessible service. Alice, the CIA
agent, asks for http://www.cia.gv/training/ but is unwilling
to give up her CIA X509 Attribute certificate until she is
confident that she is communicating with a CIA server. But
the server wishes to protect the disclosure of this access
requirement to arbitrary strangers, redirects Alice to satisfy
other requirements, and negotiation starts.

We describe the relevant Trust Policy using Policy
Rule containers to define access requirements such that
sensitive rules are protected from arbitrary disclosure, as
well as the control of unauthorized access to the web
services. What follows is the description of the web service

Policy in plain English (figure 7a is a fragment of the
policy).1) Rule 4 states that a requester (Subject) with
attribute CIA X509 certificate can read (Action) the training

documents (Resource). (Details not shown.). 2) Rule 3 says
that a requester with attribute US government employee
certificate can be given access to: the access requirement for
Rule 4; the CIA server certificate; and the resource
http://www.us.govt.gv/. 3) Rule 2 states that a requester with
the attribute US citizenship certificate can see the access
requirement for Rule 3 and the US government server
certificate, as well as access the resource
http://www.us.public.gv/. 4) Rule 1 says anyone can access
http://www.us-gen-public.gv/ and see the access
requirements of Rule 2.

Conversely, Alice’s Attribute Release Policies
(ARPs) define the requirements for accessing her digital
attribute certificates as follows (see Figure 7b): 1) Rule 4
states that only CIA certified servers can be permitted to see
her CIA agent certificate. 2) Rule 3 says that the access
requirement for Rule 4 can only be seen by US government
certified servers. 3) Rule 2 states that only certified US
public servers can see her government employment
certificate and view the access requirement for Rule 3. 4)
Rule1 states that any requester can be shown the access
requirement for Rule 2. From this example, it can be seen
that the rules can form a chain defining the order in which
they must be disclosed and evaluated in a progressive
manner.

At any particular stage in the negotiation, each
party must release information to allow the negotiation to
move to the next stage. For example, in order to see the
access requirement for the CIA training resources Alice
must prove that she is a US government employee. Proving
this will also allow Alice to see the server’s CIA server

Figure 6b XACML Policy Rule elements

Target

CombinerParameter

Rule RuleId-1

Rule RuleId-2

Rule RuleId-n

Policy

Figure 7a Fragment of Our CIA server Policy

Policy policyId=#us-public-cia

Rule ruleId=r1 Effect=permit

Target
Subject AnySubject

Resource AttrValue=rule:r2

Resource AttrValue=http://www.us-gen-public.gv/

Action AttrValue=read

Rule ruleId=r2 Effect=permit

Rule ruleId=r4 Effect=permit

Rule ruleId=r3 Effect=permit

Target
Subject AttrValue=US-Govt-Employee.certificate

Resource AttrValue=rule:r4
Resource AttrValue=http://www.us-govt-emp.gv/

Action AttrValue=read

Resource AttrValue=cia-server-certificate

Target

 8

certificate, which satisfies her ARP regarding release of her
CIA Agent Certificate. In this way, the negotiation proceeds
in increments until Alice finally gains access to the training
resource.

In principle, the operation of the native XACML
authorization engine is synchronized with its TN server in
such a way that the engine’s information is visible to the TN
server. Figure 8 illustrates how the negotiation is performed
iteratively to build trust, protect privacy and gain access to
the training service.

5.1 Discussions
 Our example shows how hierarchical resources can
be protected and how, at the same time, building of trust
may be enabled to adequately protect the privacy of
authorization information. The secret agent requested the
training resources, but the server redirected the request to
initiate a trust building session. Theoretically, a native
XACML PDP asks its ContextHandler for the attributes
which were not submitted in the initial request context. In
our case, the ContextHandler contacts the TN server and a
trust session can start. However, this approach requires that
negotiators must possess other credentials that can be used
incrementally to satisfy successive access control
requirements. Arguably, the incremental attribute release
technique can also be used to hinder replay attacks [17]. In
this sense, for an adversary to launch replay attacks, he must
cache all the credential sets in order to succeed.
 Figure 8 presents the naïve trust negotiation
session. Alice is always seen issuing her privacy policies
and credentials that are unlocked by the credentials provided
by the server. Alice always requires the server to provide
credentials before she gives hers. Similarly the server
releases policies and credentials that are unlocked by Alice’s
credentials. The difference is that the server must have a
credential it is willing to release to the public before TN can
start. What is important is that the parties must co-operate
enough for trust to succeed whenever possible or fail

gracefully. The decision on whether to release credentials or
disclose policy depends on the access control policies and
the relationships between them. In [15] it was mentioned
that policy disclosures are vulnerable to probing attacks. As
a result an adversary can use policy disclosure techniques to
learn of a party’s possession or non-possession of the
information being asked for. It is also possible for an
attacker to lie by expressing constraints on credentials or
services that (s)he does not possess in order to gather
information from the attacked. In our example scenario, we
have shown how these pitfalls are addressed by a finer trust
policy layering. The example illustrates how Alice – a CIA
agent - can surreptitiously gain access to CIA online training
resources. Alice is not prepared to push her
CIA.agent.certificate to the server and the server is not ready
to disclose the policy that governs the training resources and
CIA.server.certificate to arbitrary strangers. Thus, Alice’s
request to http://www.cia.gv/training/ is redirected to a TN
session. From this example, the constraints in the first round
of policy and credential disclosures on both sides can be
reduced to:

It is apparent therefore that the first round of trust
negotiation which asked for the Where Are You From
certificates are not tightly coupled to any of the sensitive
resources: http://www.cia.gv/training/, CIA.server.certificate
and Alice’s CIA.agent.certificate. The assumption is that the
kick-off policies cannot explicitly reveal whether both
parties possess the required credentials or services. This
suggests that both Alice’s and the server's behaviour cannot
reveal non-possession or possession at the first round of
iteration. Again, if the server gives out WAYF.certificate
and Alice fails to respond with credentials that can satisfy
the server’s disclosure policy, the negotiation can fail at this
point. What is important is that whenever trust is to
succeed, it is desirable that policy and credential flow should
advance the level of trust, which minimizes the effect of
probing attack or lying under false policy expression. The
major drawback here is that negotiators are required to
possess a set of credentials (but this natural) in order that
access control policies can be used to address the order in
which those credentials can be released to advance the trust
building session.

6 Related Works
 Seamons et el [15] [16] [13] [14] and Bertino et el
[6] [8] have done useful works in the area of Trust
Negotiation and Management. Their work provides good
theoretical background on the concepts of trust with quite a
number of implementation scenarios. Seamons et el had
advanced the notion of trust negotiation protocol and
strategy with some practical demonstration of how they can
be implemented [12]. In the area of trust policy and
language, Bertino et el have proposed a number of ways to
encode policies and credentials [6]. Their various works on
privacy during trust negotiation have had considerable
influence on our work [15]. Their various works are

Subject.AttributeValue WAYF.certificate

Figure 7b Fragment of Alice’s ARP

Policy policyId=#ARP-Alice

Rule ruleId=r1 Effect=permit
Target
Subject AttrType=WAYF, AttrValue=US-public-server.certificate
Resource AttrValue=rule:r2
Action AttrValue=read

Rule ruleId=r2 Effect=permit

Rule ruleId=r4 Effect=permit

Target

Rule ruleId=r3 Effect=permit
Target
Subject AttrValue=US-govt-server-cert
Resource AttrValue=rule:r4

Action AttrValue=read
Resource AttrValue=US-govt-emp-certificate

 9

proprietary and cannot interoperate; this is where the
XACML framework, an open standard, is gaining
prominence with great potentials.
 Lorch et el presented their first experience using
XCAML in distributed systems. Their work included the
analysis of the performance of XACML with existing
models and highlighted its limitations. They drew the

experienc gained in the integration of SAML and XACML
in distributed open systems and performance results. Lorch
et el presented how the PRIMA model [19] leveraged
XACML to express policy requirements. PRIMA is
specifically designed for access control in grid computing
environments; users can assign and/or delegate privileges to
each other without involving policy administrators.
However, Lorch et el focused mainly on the analysis of
XACML’s performance and did not address the privacy
issues and trustworthiness in distributed environments. Our
work is among the first to look into how XACML can be
used to build trust relationship in distributed authorization
environments. This is a significant direction since XACML
is a generic access control model that has continued to
address wider access control requirements.

The Shibboleth infrastructure, in an attempt to
address privacy in an authorization environment, proposed
two kinds of policies: Attribute Release Policy (ARP) and
Attribute Acceptance Policy (AAP) [20]. Shibboleth is a
distributed authentication and authorization architecture
whose access control is based on users' attributes.
Shibboleth provides an Attribute Release Policy (ARP) on
the users' home site and an Attribute Acceptance Policy
(AAP) on the resource target site to protect users' privacy.
Although Shibboleth provided a means by which both users
and attribute authorities [20] could express their privacy
preferences at the home site, all users coming from different
sites visiting one target resource site may have the same

AAP of that target site. Privacy in Shibboleth is primarily
focused on using pseudonymity; however the use of
pseudonymity does not completely protect privacy in an
environment where the user may give other attributes in the
cause of using the authorised resources. For instance, an
institution may give a student a signed assertion to access a
discount online bookshop, which is the required

authorization token. But if the student wants to purchase a
book, (s)he needs to provide other personal attributes such
as credit card number, physical address for payment and
delivery. Shibboleth's provisions for privacy still fall under a
one-shot process: the parties in transaction cannot determine
if a party can be trusted with sensitive attributes. Lorch et el
[4] pointed out the current effort being made at Sun
Microsystems and Brown University to integrate Shibboleth
with XACML. This work used WSPL, a profile of XACML
that supports policy intersection to determine if two policies
are mutually amenable. This approach requires some policy
on the server side be released without negotiation, but then
provides a very simple means for calculating what the client
is willing to share.

PERMIS [11] [22] is a middleware authorization
framework which focuses mainly on the RBAC access
control model. PERMIS has successfully been implemented
in a number of application scenarios with interesting results
[23] [24] [22]. It fully supports role hierarchy and its policy
language is user friendly. It has a proprietary GUI policy
editing tool [25] and Privilege Allocation (PA) subsystems
for managing roles and permissions. The PERMIS language
is limited in expressions and semantics compared to
XACML which is very expressive with significant
functionality. The PERMIS framework does not provide
direct support for bilateral exchange of policies and
credentials to address privacy issue and trustworthiness in a
manner presented in this paper. The concepts presented in

Figure 8 A Trust Negotiation Process of the Example Scenario

Alice requests http://www.cia.govt.gv/training/

AttributeQuery(#Alice)
policyStatement(cia:rule 2)

policyStatement(ARP.rule2)

AttributeStatement(US.Public.cert)

AttributeStatement(US.Citizen.cert)

PolicyStatement(cia:rule 3)

PolicyStatement(ARP.rule 3)

AttributeStatement(US.Govt.server.cert)

AttributeStatement(US.govt.emp.cert)

Attribute(cia-alice:X509.cert)

Negotiation_Done_Success(#tsh)

https://www.cia-govt.gv/training

PolicyStatement(cia:rule 4)

PolicyStatement(ARP.rule 4)

AttributeStatement(US.govt-cia-server.cert)

AttributeStatement(cia-alice:X509.cert)

Alice
Alice TN server CIA'sTN server

Web service & Authz. Eng

 10

this paper could be implemented using the PERMIS
authorization model. PERMIS has in its architecture a
subsystem that signs, verifies and validates X.509 attribute
certificates used to represent authorization credentials in
PERMIS model. However, to use our framework in
PERMIS requires the introduction of a trust layer and the
inclusion of identifiers in the Target Access Policy (TAP)
element, so that a TAP can protect another TAP to form
effective trust policy set.

7. Conclusion and Future Work
 This paper proposes a way that the widely accepted
XACML standard can address three essential security
components: trust, privacy and service control in a
synchronised manner. It identifies some of the necessary
additions to core XAML model that allow for progressive
bilateral exchange of policies and credentials between two
parties in a way that privacy and trust are sufficiently
preserved while protecting access to sensitive services. We
have leveraged trust concepts already proposed by
researchers and demonstrated how our model can protect
hierarchical resources at the same time.

In particular, we examined the various ways that
the XACML language can be used in trust negotiation and
proposed how to construct effective trust policy sets which
can optimize trust establishment sessions. We have proposed
a trust layer in the primitive XACML model for gradual
building of trust relationships, so that multiple parties can
engage in secure, trusted transactions. The trust layer
includes NPM that implements trust protocols and controls
the way messages are exchanged, and the TrustPDP which
handles trust management decisions. Additionally, we have
introduced the trust session handle (tsh), an optional
parameter included in the AttributeStatement which controls
the way a TN server is invoked by the native XACML
authorization engine. The concepts discussed in this paper
are being implemented using the SunXACML
implementation [21] and the PERMIS Attribute Verifier
subsystem.
 Our approach has the capabilities to protect
complex hierarchical resources and policies, which will
guarantee a finer control of sensitive services. It provides the
flexibility to leverage a common framework for all the
authorization needs and lessen the burden in administrative
requirements. Interoperability is promoted among strangers
without trust relationships whilst sharing sensitive business
information. In our approach, we have a loosely coupled
architecture which provides flexibility in the way trust,
privacy, and services are protected synchronously. In this
way, if the client chooses to store credentials locally, a light-
weight Trust Establishment Engine can be deployed without
losing most of the functionality of an authorization
mechanism.

 Though policy disclosure during trust negotiation
is vulnerable to probing attacks, we have demonstrated how
our progressive policy and credential disclosures can
minimize this threat. That is, the progressive and
incremental paradigm allows the risk to be managed such
that exposure to risk at any particular point is limited. Again,

since the Trust level X determines what each party can
disclose, it is arguable that not much sensitive information is
lost during establishment of trust using our framework.
Though Seamons et el proposed the use of a dynamic policy
graph through policy transforming agents to address this
problem, which is similar to a static finer granularity in
policy expressiveness, we did not consider that adding
additional computational overhead is a better way to address
the problem. The system presented in this paper can be
adapted to an existing suite of negotiation strategy to allow
participants the option of selecting how fast they can
establish trust.

Presently, we are looking into how to include
SAML interfaces to handle the trust message contexts [27].
The SAML schema provides information to identify and
validate the content of assertions such as needed in the trust
negotiation sessions. Already, XACML version 2 has a
SAML 2.0 profile which describes its interface with
XACML. We are also looking into how to address the need-
to-know principle, so that only the relevant credentials that
contribute towards the client’s stated goals are exchanged
between the client and the server. Our goal is to find more
practical approaches in the way policies and credentials are
exchanged without too much computational overhead.

8. References
[1] A.Anderson, "Privacy Policy Languages: XACML vs EPAL,"

presented at 5th Annual Privacy & Security Workshop, 2004.
[2] K.E.Seamons, M.Winslett, and T.Yu, "Limiting the Disclosure

of Access Control Policies During Automated Trust
Negotiation," presented at Network and Distributed System
Security Symposium, San Diego, CA, Feb 2001.

[3] OASIS, "eXtensible Access Control Markup Language
(XACML) Version 2.0," http://www.oasis.org, Feb 2005.

[4] M.Lorch, S.Proctor, R.Lepro, D.Kafura, and S.Shah, "First
Experience Using XACML for Access Control in Distributed
Systems," presented at ACM Workshop on XML Security,
Fairfax Va US, 2003.

[5] W.H.Winsborough, K.E.Seamons, and V.E.Jones, "Negotiating
Disclosure of Sensitive Credentials," presented at 2nd
Conference on Security in Communication Networks, Amlfi,
Italy, Sept 1999.

[6] E. F. E.Bertino, A Squicciarini, "TNL: An XML-based
Language for Trust Negotiations," presented at IEEE 4th
International Workshop on policies for Distributed Systems
and Networks, Lake Como Italy, 2003.

[7] A.Acquisti, "Privacy and Security of Personal Information-
Economics Incentives and Technological Solutions," presented
at Workshop on Economics and Information Security,
University of California Berkeley, 2002.

[8] E. Bertino, E.Ferrari, and A. Squicciarini, "Trust Negotiations:
Concepts, Systems and Languages," IEEE Computer, pp. 27-
34, July/August 2004.

[9] M.Winslett, "An Introduction to Automated Trust
Establishment," presented at 1st International Conference on
Trust Management, Crete, Greece, May 2003.

[10] K. E. Seamons, M.Winslett, T. Yu, L.Yu, and R.Jarvis,
"Protecting Privacy during On-line Trust Negotiation,"
presented at 2nd Workshop on Privacy Enhancing
Technologies, San Francisco, CA, April 2002.

[11] D.W.Chadwick, "The X.509 Privilege Management
Infrastructure," presented at Proceedings of the NATO

 11

Advanced Networking Workshop on Advanced Security
Technologies in Networking, Bled, Slovenia, 2003.

[12] J.Holt and K.E.Seamons, "Interoperable Strategies in
Automated Trust Negotiation," presented at 8th ACM
Conference on Computer and Communications Security,
Philadelphia Pennsylvania, Nov 2001.

[13] W. Winsborough, K. Seamons, and V. Jones, "Negotiating
Disclosure of Sensitive Credentials," presented at Second
Conference on security in Communication Networks, Amalfi,
Italy, September 1999.

[14] T.Barlow, A.Hess, and K.E.Seamons, "Trust Negotiation in
Electronic Markets," presented at Eighth Research Symposium
in Emerging Electronic Markets, Maastrict Netherlands, Sept
2001.

[15] A.J. Lee, "Traust: A Trust Negotiation Based Authorization
Service For Open Systems" Master Thesis, Cornell University,
2003

[16] K.E.Seamons, M.Winslett, T.Yu, B.Smith, E.Child,
J.Jacobson, H.Mils, and L.Yu, "Requirements for Policy
Languages for Trust Negotiation," presented at 3rd
International Workshop on Policies for Distributed Systems
and Networks, Moneterey, CA, June 2002.

[17] B.Schneier, Secrets and Lies-Digital Security in a Networked
World, 2 ed: Wiley Publishing, Inc, 2004.

[18] W. Hommel, "Using XACML for Privacy Control in SAML-
Based Identity Federations." presented at "IFIP International
Federation for Information Processing CMS 2005 LNCS 3677
pp. 160-169, 2005

[19] M. Lorch and D.Kafura, "Supporting Secure Adhoc User
Collaboration in Grid Environments," presented at 3rd Int.
Workshop on Grid Computing, Baltimore USA, Nov. 2002.

 [20] S. Nazareth and S. Smith, "Using SPKI/SDSI for Distributed
Maintenance of Attribute Release Policies in Shibooleth,"
Computer Technical Report TR2004-485, 2004.

[21] S. Proctor, "Sun's XACML implementation APIs"
http://sunxacml.sourceforge.net/

[22] D.W.Chadwick and O.Otenko, "Implementing Role Based
Access Controls Using X.509 Attribute Certificates," IEEE
Internet Computing, pp. 62-69, 2003.

[23] D.W.Chadwick and D.P.Mundy, "The Secure Electronic
Transfer of Prescriptions," presented at HC2004, Harrogate,
UK, March 2004.

 [24] D.W.Chadwick and D.P.Mundy, "Policy Based Electronic
Transmission of Prescriptions," presented at IEEE 4th
International Workshop on Policies for Distributed Systems
and Networks, Como Italy, 2003.

[25] S. Brostoff, M. A. Sassea, D. Chadwick, J. Cunningham, U.
Mbanaso, and O. Otenko, "RBAC what? Development of a
role-based access control policy writing tool for e-Scientists,"
presented at Workshop on Grid Security Practice and
Experience, Oxford UK, 2004.

[26] OASIS, "Security Assertion Markup Language (SAML)
Version 2.0," http://www.oasis.org, Feb 2005.

[27] OASIS “SAML 2.0 Profile of XACML v2.0,
http://www.oasis.org/ Nov 2005

[28] Anne Anderson,” Core and hierarchical role based access
control (RBAC) profile of XACML v2.0, OASIS,
http://www.oasis-open.org/, Feb 2005

