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AbstractAbstractAbstractAbstract    

Previous research has developed a formal methods-based (cognitive-level) model of 

the ICS central engine, with which we have simulated attentional capture in the 

context of Barnard's key-distractor Attentional Blink task. The same core system 

would be at work when human operators interact with computer interfaces. Thus, we 

have used this model to evaluate the performance trade-offs that would arise from 

varying key parameters in Stimulus Rich Reactive Interfaces (SRRIs). The results of 

these evaluations are presented in this paper. A strength of formal methods is that they 

are abstract and thus, the resulting specifications of the operator are general purpose, 

ensuring that our findings are broadly applicable.  

IntroductionIntroductionIntroductionIntroduction    

In this paper we will be looking at a particular type of stimulus rich reactive interface 

(SRRIs), where the stimuli are presented rapidly (Wyble et al., 2006). In order to 

evaluate the performance of the interface, we have made the following assumptions. 

Firstly, we assume that all stimuli are presented for the same length; we call each 

stimulus an item. Secondly, we consider two presentation rates, 1) 120ms per item, 

which is similar to the 10 items per second rate of Barnard’s key-distractor attentional 

blink task (Barnard et al., 2004), and 2) 240ms per item. Finally, items are either 

words or blanks. There are two types of words: target words and background words. 

The only difference between target and background words is that they belong to 

different categories. In our experiments, targets are jobs or occupations, e.g. waitress, 

and background words are things in the nature environment, e.g. river.  

 

A fundamental problem in perceiving such stimuli in real-time is information 

overload. Humans have limited attentional resources, which ensure some stimuli are 

processed more extensively than others. In the case of SRRIs, human operators will 
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potentially miss some targets. This is supported by experimental evidences on spatial 

and temporal attention (Driver, 2001; Duncan, 2000; Barnard et al, 2004; Barnard et 

al, 2005, Wyble and Bowman, 2005). For example, Barnard et al. have discovered 

that human subjects may miss target words following key-distractors by a few 

hundred milliseconds (Barnard et al, 2004). This pheromon is known as the 

attentional blink (Raymond, Shapiro, & Arnell, 1992), which has been reported by 

many researchers in many different forms. 

 

Many real world applications require both high reliability of detecting targets and also 

the ability to perceive information within a bounded time. These requirements lead to 

trade-offs when we vary some parameters in the interface. For example, one simple 

way to ensure that human operators have successfully perceived all targets is to ask 

them to fill in a “check list” at the end of the presentation. The system can then use 

this feedback to re-present the missed targets. This might even involve physiological 

feedback prediction of a users cognitive and perceptual state (Wyble, Craston & 

Bowman, 2006). However, there is a significant problem with this solution, i.e. the 

feedback step “pauses” the interface and delays the information to be processed. 

Alternatively, we can restrict the interface so that it avoids presenting targets, which 

can potentially interfere with other targets. We call the first solution a reactive 

approach, and the second a constructive approach. In this paper, we will concentrate 

on the second approach. A simple constructive approach is to separate targets by 

either blanks or background items, to ensure a target can be fully perceived before a 

further item arises. An obvious drawback is that such an approach also delays the 

information flow. Hence, it is necessary to explore these trade-offs during the design 

of efficient SRRIs. 

Modelling SRRIModelling SRRIModelling SRRIModelling SRRIssss    

In this section, we model the interface from the perspective of computer systems. We 

can use computer networks as a metaphor. Hence, a stimulus can be seen as a data 

packet and a stream of stimuli can be modelled as some type of traffic, e.g. network or 

disk I/O traffic. There are many models of traffic proposed by computer scientists, for 

example, the Poisson arrivals model or the self-similar model. We choose a particular 

traffic model called the b-model (Wang et al., 2002). It is a simple model with very 

few parameters, but it can generate self-similar and bursty traffic for a given time 

scale. The traditional Poisson arrival model is only bursty within a short time scale, 

but it will smooth out if it is applied to large time scales. However, the environment 

often has observable bursts on all time scales. Hence, self-similar models are 

desirable. 

 

The b-model 

There are a number of methods to generate self-similar traffic, such as the multiple 

ON/OFF source aggregation process (Wang et al., 2002). However, many of these are 

complex and hard to implement. In contrast, the b-model proposed by Wang et al. has 

relatively few parameters, e.g. the burstyness of the traffic can be characterised by a 

single parameter. Intuitively speaking, the b-model unevenly and randomly allocates 

events to two time periods with equal length. The model repeats this process until all 

events have been distributed. Wang et al. (2002) introduced the following algorithm 

to generate traffic using the b-model. 
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Inputs: 

• Bias b, which determines the burstyness of the traffic. The traffic is least 

bursty when 5.0=b . It becomes more bursty when the bias moves towards 0 

or 1.  

• Aggregation level n, which determines the total number of time intervals or 

the length of the traffic, i.e. n
l 2= .  

• Volume N, which denotes the total number of events. 

 

Output: Number of events distributed in the n2 time intervals following the b-model. 

 

Algorithm: The generation of the traffic uses a binary tree and a stack is used to 

traverse the tree. 

 

1) Push ),0( N  onto the stack. 

2) If the stack is empty, stop. 

3) Pop ),( vk  from the stack. If nk = , output v and go to Step 2), else, move 

to the next step. 

4) Flip a coin. If heads, push ),1( bvk ×+  and ))1(,1( bvk −×+ , else, push 

))1(,1( bvk −×+  and ),1( bvk ×+ . Go to Step 2). 

 

An example of its result is shown in Figure 1. A complete description of the model is 

presented in (Wang et al., 2002). 

 

 
Figure 1 Self-similar traffic (Wang et al., 2002) 

 

The System 

We suggest that the traffic generated from the b-approach is a good model of how 

stimuli occur in the environment. One important feature of the traffic is that multiple 

events/stimuli can arrive simultaneously. A computer interface can display them in 

different spatial locations or display them by using different modalities. However, we 

assume that our computer system avoids this by using a buffer, which stores events 

and presents them to the user serially. This assumption restricts our research to the 

area of temporal attention, rather than to spatial or cross-modality attentional issues. 

This approach enables us to focus here on temporal issues, as a precursor to follow-up 

research addressing more complete simulations of human interaction. 
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Modelling Human OperatorsModelling Human OperatorsModelling Human OperatorsModelling Human Operators    

Our previous research has developed a formal methods-based (cognitive-level) model 

of the ICS central engine, with which we have simulated attentional capture in the 

context of Barnard's key-distractor Attentional Blink task. The same core system 

would be at work when human operators interact with computer interfaces. The top 

level “box and arrow diagram” of our human model is shown in Figure 2, which is a 

subset of ICS (Barnard, 1985). The propositional subsystem (prop) and implicational 

subsystem (impic) are two of the central subsystems. The propositional subsystem 

considers one level of meaning, which encodes referentially specific relationships in 

semantic space. The implicational subsystem considers another level of meaning, 

which encodes an abstract schematic model. The source and the sink summarise the 

perceptual and response subsystems respectively. More details of this theory is 

presented in (Barnard, P.J. & Bowman, H., 2004) and (Bowman, H., Li Su & Barnard, 

P.J., 2006). 

 

 

 

Data channel 

Control channel: prop_implic 

Control channel: implic_prop 

Implic 

(Implicational 

subsystem) 

Prop 

(Propositional 

subsystem) 

source 

sink 
 

Figure 2 Top-level structure of the human model 

 

The distinction between prop and implic is critical in the study of the attentional blink 

(Barnard, P.J. & Bowman, H., 2004; Bowman, H., Li Su & Barnard, P.J., 2006). Here 

though we evaluate the performance of the human computer interface. This 

performance is an emergent property of the entire system, which involves both the 

computer system and human operator. Hence, we will regard the human model as a 

whole and test its performance in conjunction with the computer model explained 

previously. 

 

Accordingly, we will not discuss the interactions between implic and prop. Instead, 

we will view these as underlying mechanisms that are effectively hidden from the 

analysis we consider here. The only explicit knowledge available about the human 

operator will be the blink curve shown in Figure 3, which is an overall (global) 

property of the human operator. (In fact, we use this curve to derive a blink window 

size, which is used by the interface. We will explain this in more depth in the relevant 

sections.) The aim of this study is to investigate the change in performance after we 

have applied this explicit knowledge to the design of the interface. A strength of 

formal methods is that they are abstract and thus, the resulting specifications of the 

human operator are general purpose, ensuring that our findings are broadly applicable. 

For example, the models that were developed from the cognitive psychology 

perspective are used in this HCI context. 
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Figure 3 The basic blink curve (Barnard et al,. 2004). X-axis denotes the serial-position that the 

second target follows the first and Y-axis denotes accuracy as the probability of correct report of 

second target conditional on correct report of first target. 

Performance EvaluationPerformance EvaluationPerformance EvaluationPerformance Evaluation    

In this section, we will vary the parameters in the b-model and measure the 

probability of detecting targets by the human model. In our experiments, the interface 

is only active for a bounded period, i.e. the length of 200 items. All items in the buffer 

will be discarded after this period. Studies of HCI have developed a large number of 

techniques to enhance the salience of the stimuli presented to human users. However, 

a fundamental problem is that the computer may not be confident of what information 

is actually important for the user. This is why the human operator’s reaction/selection 

is essential. The human attentional mechanism results in an information bottleneck. 

So, it is not a good idea to overload the system with unnecessary warnings. In the next 

part of the paper, we will vary different parameters in our model and explore the 

consequences on performance.  

 

Varying Number of Targets 

In the first experiment, the presentation rate is 120ms/item, the aggregation level of 

the traffic is fixed at 6, i.e. the events are distributed to the first 64 (2 to the power of 

6) time points. At each time point, the computer system inputs the events that occur. It 

stores those events in its buffer. If there is no event at a particular time point, the 

buffer will be filled with a blank item. At the same time, the computer outputs the 

items to the human user from its buffer. It is shown in Figure 4 that when there are a 

small number of targets and the traffic is not very bursty, the probability of detecting a 

target is 0.6, which is close to the baseline performance of the AB experiments. The 

performance then decreases as the number of targets increases. It eventually stabilises 

on a level between 0.2 and 0.3, which is close to the worst performance in AB 

experiments. Note that the performance does not decrease any more after 60 targets. 

The reason for this is that the buffer contains a maximum of 64 targets if the 

aggregation level is 6. Hence, increasing the number of targets will only force the 

targets beyond the aggregation level. As a result, the performance stabilises when the 

number of targets is more than 60. However, we can predicate that the performance 

will become worse when the number of targets is more than 200. If we double the 



 6 

presentation length from 120ms to 240ms, we will observe very similar results (see 

Figure 5) except for a baseline shift. The reason for the shift is that increasing the 

presentation time will make the task easier.  

 

When we decrease the b value, the traffic becomes burstier. Hence, the performance 

decreases too, since targets are closer to each other and thus compete more in time 

with each other for limited attentional resources. Most of the AB experiments have 

very small numbers of targets, i.e. normally less than three. However, in the case of 

SRRIs, the human user may have to cope with much larger numbers of targets. This 

may potentially exceed the working memory capacity, and impair performance of the 

system. Note, during our simulations, we have ignored working memory capacity. It 

indeed may have a dramatic influence on the probability of reporting targets. 
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Figure 4 Probability of detecting a target with presentation rate of 120ms/item (Non-AB aware 

condition). A smaller b-value indicates increasing burstyness. 



 7 

0.1
0.2

0.3
0.4

0.5

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Probability of 

seen

b value

No. of targets

Random Presentation

0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1

 
Figure 5 Probability of detecting a target with presentation rate of 240ms/item (Non-AB aware 

condition). Reducing the b-value represents increased burstyness. 

 

From the study of temporal attention and AB experiments (Barnard et al., 2004), we 

have learned that the processing of previous targets impairs detection of the current 

target. Hence, a straightforward approach to improve performance is to separate the 

targets, so that their interference is minimised. We have also learned that performance 

is maximally impaired during lags 2, 3, and 4 (i.e., the serial-position that the second 

target follows the first) when the presentation rate is around 100ms/item. So, we 

should design our interface to avoid presenting targets during this blink window. We 

also do not want to take advantage of lag-1 sparing, since this only occurs when the 

SOA is around 100 ms and such SOAs are not typical outside the laboratory setting. 

So, in the case of SRRIs, it may not be possible to extract meaning in this case.  

 

We have designed an interface, which does not present any two targets within the 

blink window, as just defined. Figure 6 shows the probability of detecting targets 

using such an AB aware interface. The blink window size is set to the length of 5 

items. Figure 7 shows the difference in performance between the two systems. We 

find that, in general, performance is indeed improved when we make the system blink 

aware. There is little difference between the performances of these two systems when 

the number of targets is small. This is because, due to random perturbations, the 

targets are (in general) already well separated in the Non-AB aware condition and 

thus, the AB aware system changes the presentation stream very little. The AB aware 

system becomes more beneficial when we increase the number of targets. However, 

the performance of the AB aware system starts to decrease after the number of the 

targets gets more than 40. This is because the AB aware system is not able to present 

40 targets within the total time bound of 200 items.  
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Figure 6 Probability of detecting a target with presentation rate of 120ms/item (AB aware 

condition). Burstyness increases as b-value decreases. 
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Figure 7 Performance difference between AB aware and Non-AB aware system with presentation 

rate of 120ms/item. Burstyness increases as b-value decreases. 

 

Varying window size varies the value of the AB aware system Figure 6. We find that 

performance for the AB aware system is not dramatically influenced by changes in 

burstyness (expressed using the b value). Hence, we average results across different b 

values. Figure 8 shows the performance of the Non-AB aware system (which could be 

seen as a special case of the AB aware system with a blink window size 0) and AB 

aware systems using different blink window sizes. There is a trade-off in the AB 

aware system, i.e. if we want to ensure that the human user perceives as many targets 
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as possible, we should increase the blink window size. However, a large window size 

(for example, 10) will only improve the performance when the umber of targets is 

small. The performance will become slightly worse with a larger number of targets.  

 

AB aware presentation with different window sizes
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Figure 8 Probability of detecting a target using AB aware system with different window sizes. 

Random denotes the non-blink aware system. 

 

We will observe very similar results in Figure 9 and Figure 10 if we double the 

presentation length from 120ms to 240ms and set the window size to 5
1
. We can also 

see a baseline shift, which partly arises for the same reason. However, there is an 

additional reason. This is because the length of 5 items is 1200ms when the 

presentation rate is 240ms/item, and it is 600ms when the presentation rate is 

120ms/item. In other words, targets are further apart when the presentation rate is 

slow. Hence, the trade-off between perceiving targets accurately and also perceiving 

as many as possible is more pronounced now.  

 

                                                 
1
 In the rest of the paper, we use 5 as the default size for the blink window.  
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Figure 9 Probability of detecting a target with presentation rate of 240ms/item (AB aware 

condition). Burstyness increases as the b-value decreases. 
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Figure 10 Performance difference between AB aware and Non-AB aware system with 

presentation rate of 240ms/item  

 

Varying Aggregation Level 

In this section, we fix the number of targets to 20 and vary the aggregation level. The 

presentation rate is set to 120ms/item in this experiment. As is shown in Figure 11 the 

performance improves as we increase the aggregation level until a level of 8 is 

reached. This is because targets are better separated when the aggregation level is 

high. We can also see that performance is impaired when the b value decreases. This 

is consistent with our previous experiment. Note that performance does not improve 

continuously as the aggregation level increases. In particular, it starts to drop after the 
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aggregation level 8, since our simulation only presents the first 200 items (2 to the 

power of 7.645 is nearly 200) to the user and any item that arrives later will be 

discarded. When we change the presentation rate to 240ms/item, we obtained similar 

results, see Figure 12, except for a baseline shift. 
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Figure 11 Probability of detecting a target with presentation rate of 120ms/item (Non-AB aware 

condition). Burstyness increases as the b-value decreases. 

 

0.1
0.2

0.3
0.4

0.5

123456
78

9
10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Probability of 

seen

b value

Aggregation level

Random Presentation

0-0.1 0.1-0.2 0.2-0.3 0.3-0.4 0.4-0.5 0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9 0.9-1

 
Figure 12 Probability of detecting a target with presentation rate of 240ms/item (Non-AB aware 

condition. Burstyness increases as the b-value declines. 

 

We use the same AB aware system (blink window size 5) introduced in the previous 

section and evaluate its performance again. We can observe in Figure 13 that 
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performance improves before an aggregation level of 8, but it gets worse after that. 

The reason for this is the same as with the Non-AB aware system, i.e. some items 

arrive too late to be presented. This trade-off between accuracy and urgency occurs in 

almost every one of our experiments. Figure 14 shows the difference between the 

Non-AB aware and AB aware systems. It can be seen that beyond aggregation level 8, 

the performance is worse in the AB aware system than in the Non-AB aware system, 

since the AB aware system attempts to separate the targets. Hence, targets are more 

likely to arrive too late to be presented. 
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Figure 13 Probability of detecting a target with presentation rate of 120ms/item (AB aware 

condition. Burstyness increases as b-value declines. 
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Figure 14 Performance difference between AB aware and Non-AB aware systems with 

presentation rate of 120ms/item. Burstyness increases as b-value declines. 
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As shown in Figure 15 and Figure 16, we have obtained similar results when the 

presentation rate is 240ms/item. 
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Figure 15 Probability of detecting a target with presentation rate of 240ms/item (AB aware 

condition). Burstyness increases as b-value declines. Note, performance is at ceiling at 

aggregation levels up to 7. 
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Figure 16 Performance difference between AB aware and Non-AB aware systems with 

presentation rate of 240ms/item. Burstyness increases as b-value decreases. 
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Varying Traffic Length 

In this section, we increase, at the same speed, both the number of targets and the 

aggregation level. As a result, the only two variables in the traffic are the length and 

the burstyness. As is shown in Figure 17, this traffic gives a very unstable 

performance when the length of the traffic is very short, since missing one target can 

have dramatic effects on performance. However, intermediate lengths show stable 

performance. As discussed in previous sections, performance declines when the 

aggregation level is bigger than 8. 
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Figure 17 Probability of detecting a target with presentation rate of 240ms/item (Non-AB aware 

condition). The number of targets increases with the aggregation level. So, the overall effect is 

that the length of the traffic increases witht the affregation level and the rate of traffic is 

constant. Burstyness increases as the b-value declines. 

 

Figure 18 and Figure 19 show that the AB aware system improves performance 

consistently for the short and intermediate traffic length. However, the performance of 

the AB aware system is worse than the Non-AB aware system for long traffic lengths. 

This demonstrates a clear trade-off between accuracy and urgency. Finally, there is no 

significant effect of burstyness.  
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Figure 18 Probability of detecting a target with presentation rate of 240ms/item (AB aware 

condition). Burstyness increases as the b-value declines. 
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Figure 19 Performance difference between AB aware and Non-AB aware systems with 

presentation rate of 240ms/item. Burstyness increases as the b-value declines. 

ConclusionConclusionConclusionConclusion    

We have evaluated the performance of SRRIs in the context of temporal attention 

capture. Based on studies of the attentional blink phenomenon, we have designed an 

interface, which is called the AB-aware system. It attempts to avoid presenting target 

items when the human operator is not ready to perceive them. We have varied a 
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number of parameters in the stimulus stream, which is generated using the b-model. 

Then we evaluated the performance trade-offs arising in such an AB-aware system. 

As a result, we have discovered a number of properties of AB-aware interfaces.  

 

• They can reduce the effect of burstyness by smoothing traffic.  In a sense, they 

buffer stimuli until the user is ready to perceive them. Although this is done in 

a predictive (constructive) manner, i.e. the system predicts when the user will 

be ready to perceive an item. 

• They can improve the probability of detecting targets when urgency is 

ignored. 

• Their disadvantage is that they often delay the presentation of targets and 

breakdown absolute timing of the events.  

 

Future research may consider different approaches to improve SRRIs, for example, 

using EEG feedback as an acknowledgement from the human operator. This approach 

is introduced in (Wyble et al, 2006). Such EEG feedback cannot always accurately 

predict that the user has perceived the targets. Hence, we should extend our existing 

models to produce artificial EEG signals and use these signals to guide the interface. 

We will also evaluate how accurately the acknowledgement should be in order to 

make such an approach worthwhile.  
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