
Communicating Process Architectures 2006
Peter Welch, Jon Kerridge, and Fred Barnes (Eds.)
IOS Press, 2006
c© 2006 The authors. All rights reserved.

377

Compiling CSP

Frederick R.M. BARNES

Computing Laboratory, University of Kent,
Canterbury, Kent, CT2 7NF, England.

frmb@kent.ac.uk

Abstract. CSP, Hoare’s Communicating Sequential Processes, is a formal language
for specifying, implementing and reasoning about concurrent processes and their in-
teractions. Existing software tools that deal with CSP directly are largely concerned
with assisting formal proofs. This paper presents an alternative use for CSP, namely
the compilation of CSP systems to executable code. The main motivation for this work
is in providing a means to experiment with relatively large CSP systems, possibly con-
sisting millions of concurrent processes — something that is hard to achieve with the
tools currently available.

Keywords. CSP, compilers, occam-pi, concurrency

Introduction

Hoare’s CSP [1,2] is a process algebra used to describe concurrent systems and their inter-
actions. CSP allows for reasoning about a system’sdenotationalsemantics in addition to the
relatively straightforwardoperationalsemantics. A significant use of CSP remains in for-
mal reasoning, for example, with theoccam2 [3] programming language [4,5], and more
recentlyoccam-π [6,7].

This paper presents another use for CSP, as a language for compilation to executable
code. This differs from CSP tools such as FDR [8], that are designed for formal reasoning
— e.g. proving that one system is a refinement of another. The work described here is much
less complete in the formal sense; FDR will cater for all possible traces of a CSP system, the
code generated by the compiler described here executes an arbitrary trace of the system. That
trace may be different each time the program is executed, or the same, consistent with the
expected rules of non-determinism. The advantage of the work described here is that it allows
relatively large CSP systems to be exercised, since state-space explosion is not an issue.

The compiler used by this system is an experimentaloccam-π compiler, intended to
replace the existing modified Inmosoccam compiler used by KRoC [9,10]. Although the
compiler is designed primarily foroccam-π, its structure allows other languages and code-
generation targets to be supported.

Section 1 describes the motivation for this work. An overview of the compiler infrastruc-
ture is given in section 2, followed by implementation details of the CSP support in section 3.
Initial conclusions, including a brief discussion of performance, and details of future work
are given in section 4.

1. Motivation

The main motivation for this work is to support the investigation and experimentation of large
CSP systems, possibly containing millions of concurrent processes. The system also provides

378 F.R.M. Barnes / Compiling CSP

the ability to experiment with CSP’s operational semantics— e.g. introducing prioritised
external choice as defined byCSPP [11].

Supporting the implementation also serves to exercise new multi-way synchronisation
mechanisms implemented inside theoccam-π run-time system, which are based on the tech-
niques described in [12].

2. The NOCC compiler

The majority of the work described here has been implementedinside an experimental
occam-π compiler named ‘NOCC’ (newoccam-π compiler). Unlike many compilers cur-
rently available, NOCC is not centred around a specific language or code-generation target.
Instead, NOCC attempts to provide an extensible compiler framework, into which new lan-
guage and code-generation ‘modules’ can be added.

The support for CSP within the compiler grew out of an experimentaloccam-π exten-
sion, allowing specifications of trace patterns (in the formof CSP equations) to be attached
to occam-π channel-bundle declarations. This reflects on another feature of the compiler,
namely the ability to support multiple source languages in asingle input file. Likewise, the
compiler is capable of generating multiple output formats,e.g. for mixed hardware/software
compilation.

Building compilers this way is certainly not a new idea [13],and there has been work on
multi-language and multi-target compilers elsewhere. Where this compiler differs from oth-
ers is in its treatment of concurrency. Theoccam/CSP concurrency model has been around
for some time, yet there have been few compilers capable of taking full advantage of it. Cre-
ating systems consisting of millions of interacting concurrent processes places some peculiar
requirements on the compiler. The two most important are efficient memory allocation (for
processes at run-time) and safety checks (freedom from parallel race-hazard and aliasing er-
rors). Also important is the efficiency of the generated code, particularly where large num-
bers of processes are involved — a responsibility shared with the run-time system. It appears
that many existing compilers fail to meet all these demands simultaneously, though some are
heading in that direction. It should be noted that these compilers, by and large, generally tar-
get sequential languages, or languages where concurrency has been added as an afterthought.
Checking the safety of parallel programs in cases where the language does not rigorously
police concurrency can be difficult [14] — as is the case with ‘threads and locks’ models of
concurrency (e.g. Java threads [15,16] and POSIX threads [17]).

In terms of compiler research, NOCC does not appear to add anything substantial to
what is already known about building compilers. However, itis maybe better suited to the
compilation of very finely grained parallel programs, compared with other compilers. In some
ways, the general structure of NOCC is similar to that of the existing Inmosoccam compiler
(now heavily modified foroccam-π), albeit a somewhat modernised version of it.

General information pertaining to NOCC can be found at [18].It is worth noting that
NOCC is a very experimental compiler, and that the C language(in which NOCC is written)
might not be the most suitable language for compiler implementation. The style of the com-
piler code itself is not too dissimilar toaspect-orientation, which has been used successfully
in building other compilers [19]. The particular feature common to both is the ability to alter
the behaviour of compiler parts at run-time. In aspect-orientation this is done in the language;
in NOCC it is handled by changing function-pointers in structures.

2.1. Structure of NOCC

Figure 1 shows the structure of the compiler as a series of tree-passes, that transform the
parse-tree at each stage. Modules inserted into the compiler may add their own passes, if the

F.R.M. Barnes / Compiling CSP 379

existing structure of the compiler is incapable of supporting something required.

lexer parser pre−scope scope

pre−check constant
propagation type−check

alias−check definedness
−check

fe−trans

be−map name−map pre−map be−trans

usage−check

pre−allocate allocate pre−code code−gen

end
back

end
front

language
specific

language
assisted

language to
target binding

target
specific

Figure 1. Structure of the NOCC compiler

Most of the compiler passes are obviously named. The ‘pre-scope’ pass is used to per-
form tree rewriting prior to scoping, e.g. for pushing name-nodes up the tree, where those
names are declared inside their effective scope. The ‘pre-check’ pass runs prior to the parallel-
usage, aliasing and definedness checks, and is used to set up tree nodes that require special
checking. The ‘fe-trans’ and ‘be-trans’ passes successively simplify the parse tree, making
it more suitable for code-generation. The ‘be-trans’ pass is the first point at which target in-
formation is available. The ‘name-map’ pass generates nodes representing memory reserva-
tions and memory references — e.g. describing the memory requirements of anoccam-π
‘INT’ variable on a 32-bit machine. The ‘be-map’ pass is primarily concerned with expression
evaluation, handling the allocation of temporary variables where required. The ‘pre-allocate’
and ‘allocate’ passes perform memory allocation proper. For the defaultvirtual transputer
ETC [20] target, this includes allocations intoworkspace(local process stack),vectorspace
(large process local objects) andmobilespace(a global memory space). These are statically
allocated memories, independent of memory dynamically allocated and managed at run-time.

The only code-generator currently supported by the compiler generates an extended ETC
code. This is transformed into native code by the existing KRoC tool-chain. Another code-
generator is under development that attempts to generaliseall register-based architectures
(which would ultimately remove the need for the existing native-code translator). The advan-
tage here is to avoid inefficiencies introduced by the intermediate code.

2.2. Parse Tree Structures

Internally, the representation of parse trees is generalised. This greatly aids in the automatic
processing of tree-nodes — e.g. when constructing new nodesin the parser, or when rewrit-
ing trees as part of compiler transformations. It also allows the set of node types to be mod-
ified at run-time, e.g. to support compiler extensions that add their own node types. More
importantly, it enables code in one part of the compiler to operate on another part’s tree
nodes without explicit knowledge of them. This is substantially different from the existing
Inmosoccam compiler, where the set of tree nodes is fixed, and the code makes extensive
use of ‘switch()’ statements. In terms of data structures, what NOCC ends up with is not
entirely unlike inheritance inobject orientation, except that the equivalent “class hierarchies”

380 F.R.M. Barnes / Compiling CSP

are setup at run-time. The similarity withaspect orientationis the ability to change these at
run-time.

Each tree node in the compiler is associated with a particular node-tag. These provide a
way of identifying the different tree nodes, e.g. “MCSPSEQ” and “MCSPPAR”. Associated with
each node-tag is anode-type, usually applied to a set of related tags. For example, ‘MCSPSEQ’
and ‘MCSPPAR’ are tags of a “mcsp:dopnode” type (dyadic operator). It is this node-type
that defines the operations performed on a node in different compiler passes — by having
the node type structure contain called function pointers. Acompromise between speed and
size is made here — the cost of calling a function is mostly constant, but the code called
(for a particular node type) will often have to perform a series of if-else tests to determine
which node tag is involved (and therefore how the pass shouldproceed). A constant-cost
‘switch()’ statement cannot be used as node tags are allocated dynamically.

Figure 2 shows the C structures used to represent parse-treenodes, together with their
linkage to node-tags and node-types.

tnode_t

ntdef_t *tag

lexfile_t *org_file

int org_line

void **items

void **chooks

ntdef_t

char *name

int idx

tndef_t *ndef

int flags

tndef_t

char *name

int idx

int nsub,nname,nhooks

compops_t *cops

langops_t *lops

int (*codegen_typeaction)(tnode_t *, tnode_t *, codegen_t *)

...

int (*getdescriptor)(tnode_t *, char **)

int (*isconst)(tnode_t *)

langops_t

compops_t

int (*prescope)(tnode_t **, prescope_t *)

...

int (*codegen)(tnode_t *, codegen_t *)

Figure 2. NOCC parse-tree structures

A lot of the node-specific code that sits behind these function pointers is concerned with
parse-tree rewriting. To aid these, a tree-rewriting mini-language is being developed within
the compiler. By generalising this it becomes possible for source codes to define their own
language extensions, together with the tree transformations required to produce compilable
parse-trees. In some ways, this is heading towards a compiler that implements a basic feature
set, then loads the required language ‘source’ at run-time before compiling code proper; not
entirely unlike compilers such as Peri Hankey’s “language machine” [21].

2.3. Deficiencies

With regard to NOCC’s plug-in extensions, there are currently no guarantees (beyond rig-
orous testing) that two or more extensions will coexist sensibly — even then, testing at
compiler-development time may not be an option; e.g. new syntactic structures defined inside
source files to be compiled. This issue will be addressed in the future once the compiler sup-
ports enough of theoccam-π language to be useful in practical applications1; existing work
has already investigated this issue [22], but for a compilerwritten in Scheme. The poten-

1At the time of writing, simple programs compile successfully but without many of the checks that the exist-
ing compiler applies. Basic tests for channel and variable parallel-usage have been implemented successfully.

F.R.M. Barnes / Compiling CSP 381

tial problems lie not so much with incompatibilities in treenodes, but with incompatibilities
in the language grammar — e.g. interaction between a module that provides multi-variable
declarations, “INT a,b:”, and one that provides for initialising declarations, “INT x=42:”.
The resulting problem is whether “INT f=3, g=24:” or “ INT f,g = 3,24:” would parse,
and if so, whether either would have the expected semantics (multiple initialised integer vari-
ables).

3. Compiling CSP

This section describes the details of generating executable code from CSP expressions,
within the NOCC compiler. It also sheds some further light onthe details of programming
within NOCC. The resulting language supported by the compiler is loosely termed ‘MCSP’
(machine-readable CSP), but is currently incompatible with other machine-readable CSP rep-
resentations (e.g. that used by FDR).

3.1. Syntax

The way in which NOCC operates requires front-end language modules to supply the parser
grammar BNF-style or as textual DFAs (deterministic finite automaton, or state machines).
This allows the language syntax to be readily changed, particularly within plug-in modules
which modify the grammar — or even within source files themselves. The following, for ex-
ample, describes how CSP fixpoints are represented (and is the literal text fed to the compiler
at run-time):

mcsp:fixpoint ::= [0 @@@ 1] [1 mcsp:name 2] [2 @@. 3]

[3 mcsp:process 4] [4 {<mcsp:fixreduce>} -*]

This is a DFA representation that will parse “@” followed by a name, “.” and a process.
‘mcsp:fixreduce’ is a reduction rule that specifies how to generate the tree-node result. In
this particular case it is ageneric reductionrule — a program for a miniature stack-machine
that operates on parse-tree nodes:

parser_register_grule ("mcsp:fixreduce",

parser_decode_grule ("SN0N+N+VC2R-", mcsp.tag_FIXPOINT));

The ‘tag FIXPOINT’ is a reference to anode-tag, defined earlier with:

mcsp.tag_FIXPOINT = tnode_newnodetag ("MCSPFIXPOINT", NULL,

mcsp.node_SCOPENODE, NTF_NONE);

This further references the ‘node SCOPENODE’ node-type, the compiler structure onto
which the MCSP module attaches various functions to handle transformations in the different
compiler passes. At the parser top-level, the ‘mcsp:fixpoint’ rule is incorporated statically
in the definition of ‘mcsp:process’. However, it could be added dynamically with the BNF-
style rule:

mcsp:process +:= mcsp:fixpoint

Using these descriptions, the resulting parser is able to handle fixpoints in the input such as:

PROCESS (e) ::= @x.(e -> x)

This represents a process that continually engages on the parameterised event ‘e’, and
could form a whole MCSP program. Figure 3 shows the resultingparse-tree structure, prior
to scoping.

382 F.R.M. Barnes / Compiling CSP

mcsp:declnode
MCSPPROCDECL

MCSPNAME
mcsp:scopenodemcsp:rawnamenode

"e"
mcsp:rawnamenode

"PROCESS"

MCSPNAME MCSPFIXPOINT

mcsp:rawnamenode
"x"

mcsp:dopnode

mcsp:rawnamenode
"e"

mcsp:rawnamenode
"x"

MCSPNAME MCSPTHEN

MCSPNAMEMCSPNAME

Figure 3. Tree structure after parsing

3.2. Semantics

The semantics implemented by the compiler remain faithful to CSP. External choice between
two or more offered events is resolvedarbitrarily . This allows, for example, the following
program to choose ‘e’ over ‘f ’ (if both are ready):

PROCESS (e,f) ::= @x.((e -> x) [] (f -> x))

There is a difference concerning the scoping of names. In theshort examples seen so
far, all events are bound to parameters. This need not be the case, however. Unbound events
are automatically inserted into parameter lists by the compiler and collected together at the
top-level. In traditional CSP, which does not support parameterised events, the definition of
something (e.g. ‘PROCESS’) is entirely in the meta-language — the right-hand-sides of such
definitions could be literally substituted without changing the semantics of the system. This
is not the case here, for example:

FOO ::= e -> SKIP

BAR (e) ::= e -> FOO

There are two ‘e’ events in this system — one free and one bound to ‘BAR’. It is equivalent to
the system:

BAR (f) ::= f -> e -> SKIP

Literal substitution of ‘FOO’ would produce a different system.
The two behaviours not currently supported are interleaving and interrupts. Interrupts

are not too much of a concern for implementation — event synchronisations in affected pro-
cesses becomes a choice between the existing event and the interrupt event, followed by the
equivalent of a ‘goto’ into the interrupt process.

3.2.1. Interleaving

Interleaving gives rise to difficulties in the implementation, but only where ‘shared’ events
are involved. For example:

PROCESS (e,f,g) ::= (e -> f -> SKIP) ||| (e -> g -> SKIP)

In such a system, either the left-hand-side synchronises on‘e’ or the right-hand-side
does, but they do not synchronise on ‘e’ between themselves. The implementation of events is
handled using a new version of the multi-way synchronisation described in [12]. At present,

F.R.M. Barnes / Compiling CSP 383

however, these only support synchronisation betweenall processes enrolled on the event —
providing an implementation for interleaving is complex.

A possible solution is to re-write the affected expressions, separating out the affected
events. This, however, does not scale well — memory occupancy and run-time cost increase.

The solution to be implemented involves a change to the implementation of multi-way
events, such that interleaving is explicitly supported. Parallel synchronisation is await-for-
all mechanism; interleaving iswait-for-one. These represent special cases of a more general
synchronisation mechanism,wait-for-n. Although CSP provides no model for this (the deno-
tational semantics would be very complex), it does have usesin other applications [23], and
is something that could be supported foroccam-π.

3.3. Code generation

Supporting multiple back-end targets creates some interesting challenges for the compiler.
Currently this is handled by abstracting out ‘blocks’ and ‘names’, that describe the run-time
memory requirements. The compiler uses this information toallocate variables, parameters
and other memory-requiring structures.

Figure 4 shows the transformed sub-tree for the ‘FIXPOINT’ node from figure 3, sim-
plified slightly. The new nodes whose names start ‘krocetc’ belong to the KRoC ETC code-
generator within the compiler. The CSP (oroccam-π) specific portions of the compiler are
only aware of these nodes as back-end blocks, block-references, names or name-references.

MCSPILOOP
mcsp:loopnode

MCSPSEQNODE
mcsp:cnode

krocetc:name
KROCETCNAME

MCSPALT
mcsp:snode

MCSPGUARD
mcsp:guardnode

MROCETCNAMEREF
krocetc:nameref

MCSPSKIP
mcsp:leafproc

(namehook)

MCSPSKIP
mcsp:leafproc

Figure 4. Sub-tree structure after name-map

The ‘krocetc:nameref’ node is a reference to the parameterised event involved, which
has since been transformed into a ‘krocetc:name’ describing memory requirements and
levels of indirection. The ‘krocetc:name’ node left in the tree reserves space for theoccam-
π style ‘ALT’ (needed by the run-time). Handling these in a language and target independent
manner is only partially complete. The back-end definition within the compiler maintains
details of the memory required for constructs such as ‘ALT’s and ‘PAR’s, and this is a fixed
set. In the future it may be desirable to generalise these features, but so far this has not
been necessary. The combination ofoccam-π and ETC appears to produce a fairly broad set
of compiler features, certainly more than sufficient for purely sequential languages, or for
languages with more primitive concurrency models (e.g. threads and locks).

384 F.R.M. Barnes / Compiling CSP

The complete resulting parse-tree is much larger than the ones shown here. Inserting
the various back-end nodes will often double the size of the existing tree, including name-
nodes for entities such as a procedure’s return-address, orstatic-links to higher lexical levels.
Furthermore, the top-level process (and main program) generated by the compiler is not the
program’s top-level process. It is instead the parallel composition of the program’s top-level
process with a newly created ‘environment’ process. It is this environment process which
produces the program’s output at run-time, by writing bytesto the KRoC top-level ‘screen’
channel. For example, the earlier system:

PROCESS (e) ::= @x.(e -> x)

is transformed by the compiler into the following (illegal)code:

PROCESS (e) ::= @x.(e -> x)

ENVIRONMENT (out,e) ::= @z.(e -> out!"e\n" -> z)

SYSTEM (screen) ::= (PROCESS (k) || ENVIRONMENT (screen,k)) \ {k}

When executed, this system simply outputs a continuous stream of “e”s, each on a new
line. Normally such code would be illegal since the ‘out’ event is really anoccam channel;
the compiler also currently lacks the support to parse the output syntax shown. An explicit
syntax and semantics for handlingoccam-style communication may be added at a later date.

The ETC generated by the compiler is not too dissimilar to what might be expected
from a comparableoccam-π program. The main difference is the use of new multi-way
synchronisation instructions, implemented in the run-time kernel (a modified CCSP [24]).
Because the CSP parts of the compiler generate code intendedfor the KRoC run-time, there
is no reason why the two cannot be used together within the same program — once the
necessary support for multi-way synchronisation has been incorporated into theoccam-π
code within NOCC.

3.3.1. Other compiler output

In addition to the ETC or other code output, the compiler generates a ‘.xlo’ file. This is
an XML file that describes the compiled output. These files areread back by the compiler
when separately compiled code is incorporated, e.g. through a ‘#USE’ directive. Included in
the output is all the information necessary to instance the separately compiled code, typically
memory requirements and entry-point names.

Optionally included is a digitally signed hash-code of the generated code and related
information in the ‘xlo’ file. Public/private key-pairs areused, allowing verification that code
was generated by a particular compiler. This will typicallybe useful in distributedoccam-π
mobile-agent systems, when a node that receives precompiled code needs to guarantee the
origin of that code.

3.4. Run-time support

In order to support MCSP programs, multi-way synchronisation instructions have been added
to the KRoC run-time. These consist of modified ‘ALT’ start, end and wait instructions plus
additional enable-guard and disable-guard instructions.As can be seen in figure 4, single
synchronisations are transformed into an ‘ALT’ structure with only one guard — an explicit
synchronisation instruction may be added in the future.

In order to support the new compiler, various other changes have been made to the trans-
lator and run-time. The most significant is the removal of thefixed workspace-pointerad-
justment on subroutine calls and returns (the ‘CALL’ and ‘RET’ transputer instructions [25]).
As a result, the ‘CALL’ instruction no longer expects to have subroutine parameters on the
stack — which would normally be copied into space reserved bythe fixed workspace adjust-

F.R.M. Barnes / Compiling CSP 385

ment. The new compiler instead generates ‘CALL’ and ‘RET’ instructions with an extra ‘off-
set’ operand, that specifies the necessary workspace adjustment. This makes code-generation
and the general handling of subroutine calls simpler, and potentially less expensive.

3.5. Supported constructs

Table 1 provides an overview of the supported constructs andtheir MCSP syntax. Although
much of traditional CSP is supported, the language lacks features that may be useful from
a pragmatic perspective — for example, variables and basic arithmetic. Such features move
the system away from traditional CSP and more towards process calculi such asCircus [26].
Additional features currently being considered are covered in section 4.

CSP MCSP

skip SKIP SKIP

stop STOP STOP

chaos CHAOS CHAOS

divergence div DIV

event prefix e→ P e -> P

internal choice (x → P) ⊓ (y → Q) (x -> P) |~| (y -> Q)

external choice (x → P) 2 (y → Q) (x -> P) [] (y -> Q)

sequence P o

9 Q P; Q

parallel P ‖ Q P || Q

interleaving P 9 Q P ||| Q

hiding P \ {a} P \ {a}

fixpoint µ X.P @X.P

Table 1. Supported MCSP constructs and syntax

A restriction is currently placed on the use of the fixpoint operator — it may only be
used to specify sequential tail-call recursion, as shown inthe previous examples. Effectively,
anything that can be transformed into a looping structure. More general recursion using the
fixpoint operator will be added at a later stage.

4. Conclusions and future work

This paper has described the basic mechanisms by which CSP programs are translated into
executable code. Although the work is at an early stage and there is much more to do, it does
show promise — particularly for expressibility and performance. In addition to providing a
means to compile and execute CSP programs, this work serves as a good exercise for the
newoccam-π compiler. Importantly, the incremental addition of MCSP language features to
the compiler has remained relatively simple. This is not thecase for the existingoccam-π
compiler, where certain optimisations made early on in the compiler’s development2 make
adding extensions awkward. For instance, modifying the source language syntax is trivial, as
NOCC generates the actual parser from high-level BNF or DFA definitions.

4.1. Performance

A standard benchmark foroccam-π is ‘commstime’, a cycle of processes that continuously
communicate. This has been re-engineered into MCSP, where the processes involved simply

2The originaloccam compiler was designed to run in 2 megabytes of memory, which led to a fairly complex
optimised implementation.

386 F.R.M. Barnes / Compiling CSP

synchronise, rather than communicate data. To make benchmarking slightly simpler, the pro-
posed sequential-replication addition (section 4.2.2) has already been added. The commstime
benchmark, with a sequential ‘delta’, is currently implemented as:

PREFIX (in,out) ::= out -> @x.(in -> out -> x)

SUCC (in,out) ::= @x.(in -> out -> x)

DELTA (in,out1,out2) ::= @x.(in -> out1 -> out2 -> x)

CONSUME (in,report) ::= @x.((;[i=1,1000000] in); report -> x)

SYSTEM (report) ::= ((PREFIX (a, b) || DELTA (b, c, d)) ||

(SUCC (c, a) || CONSUME (d, report))) \ {a,b,c,d}

When compiled and executed, the program will print ‘report’ on the screen for every
million cycles of the benchmark. Measuring the time betweenprinted ‘report’s gives a fairly
accurate value for synchronisation time. Each cycle of the benchmark requires 4 complete
multi-way synchronisations, or 8 individual multi-way ‘ALT’s. On a 2.4 GHz Pentium-4, the
time for a complete multi-way synchronisation is approximately 170 nanoseconds (with each
synchronisation involving 2 processes).

In fact, this figure is a slight over-estimation — it includesa small fraction of the cost
of printing ‘report’, and the loop overheads. More accurate benchmarking will require the
ability to handle timers, something which is considered in the following section. When using
a parallel delta, the synchronisation cost is increased to around 250 nanoseconds, giving a
process startup-shutdown cost of around 160 nanoseconds.

4.2. Planned additions

This section describes some of the additions planned for theMCSP language, to be imple-
mented in the NOCC compiler. These are largely concerned with practical additions to the
language, rather than semantic updates. It should be noted that some of the planned additions
potentially modify the operational semantics. However, they should not modify the denota-
tional semantics — i.e. systems should not behave in an unexpected way.

4.2.1. Alphabetised parallel

The current parallel operator ‘||’ builds its alphabet from the intersection of events on either
side. This makes it difficult to express two parallel processes that synchronise on some events,
but interleave on others. For example:

SYSTEM ::= (a -> b -> c -> SKIP) |{a,c}| (a -> b -> c -> SKIP)

4.2.2. Replicated processes

Table 2 shows the proposed operators to support replicated processes. In each case, the repli-
cator may be given as ‘[i=n,m]’ for replication of(m− n) + 1 processes, or more simply as
‘[n]’ for n replications. For the former, the name ‘i’ is a read-only integer variable, in scope
for the replicated process only.

CSP MCSP

sequential replication ;[i=1,n] P

parallel replication ‖{i=1..n} P ||[i=1,n] P

interleave replication 9{i=1..n}P |||[i=1,n] P

Table 2. Proposed replicator constructs

F.R.M. Barnes / Compiling CSP 387

4.2.3. Variables and expressions

Including variables and expressions within the language adds an amount of computational
power. The three types initially proposed are ‘bool’s, ‘int’s (signed 32-bit integers) and
‘string’s. These should provide enough computational functionality for many MCSP pro-
grams, at least those which we currently have in mind.

Table 3 shows the proposed additions. These, however, are not consistent with similar
CSP functionality described in [2], where input and output of integers is modelled with a
set of events — one for each distinct integer. Here there is only a single event and data is
transferred between processes. A restriction must be imposed on outputting processes, such
that outputs never synchronise with each other — i.e. one output process synchronising with
one or more input processes. Interleaving outputs would be permitted, however.

MCSP

variable declaration and scopename:type P

assignment process name := expression

input process e?name

output process e!expression

choice if condition then P else Q

Table 3. Proposed variable and expression constructs

For expressions and conditions, we intend to support a ‘standard’ range of operators.
For example, addition, subtraction, multiply, divide and remainder for integer expressions;
equal, less-than, greater-than or equal and their inversesfor integer comparisons. For strings,
concatenation and equality tests only. Within the top-level ‘environment’ process, events that
are used for communication will input data from the system and display it on the screen.

One further consideration, particularly for benchmarking, is a handling of time. Keeping
some consistency withoccam-π, a possible implementation would be a global ‘timer’ event
on which all processes interleave. Input will produce the current time (in microseconds),
output will block the process until the specified time is reached.

The combination of features considered here should make it possible to write reason-
able extensive and entertaining CSP programs — e.g. a visualisation of the classic “dining
philosophers” problem. Over time it is likely that we will want to add, modify or entirely
remove features from the MCSP language. The NOCC compiler framework should make this
a relatively straightforward task, but only time will tell.

References

[1] C.A.R. Hoare.Communicating Sequential Processes. Prentice-Hall, London, 1985. ISBN: 0-13-153271-
5.

[2] A.W. Roscoe.The Theory and Practice of Concurrency. Prentice Hall, 1997. ISBN: 0-13-674409-5.
[3] Inmos Limited.occam2 Reference Manual. Prentice Hall, 1988. ISBN: 0-13-629312-3.
[4] M.H. Goldsmith, A.W. Roscoe, and B.G.O. Scott. Denotational Semantics foroccam2, Part 1. InTrans-

puter Communications, volume 1 (2), pages 65–91. Wiley and Sons Ltd., UK, November1993.
[5] M.H. Goldsmith, A.W. Roscoe, and B.G.O. Scott. Denotational Semantics foroccam2, Part 2. InTrans-

puter Communications, volume 2 (1), pages 25–67. Wiley and Sons Ltd., UK, March 1994.
[6] Frederick R.M. Barnes.Dynamics and Pragmatics for High Performance Concurrency. PhD thesis,

University of Kent, June 2003.
[7] P.H. Welch and F.R.M. Barnes. Communicating mobile processes: introducing occam-pi. In A.E. Abdal-

lah, C.B. Jones, and J.W. Sanders, editors,25 Years of CSP, volume 3525 ofLecture Notes in Computer
Science, pages 175–210. Springer Verlag, April 2005.

[8] Formal Systems (Europe) Ltd., 3, Alfred Street, Oxford.OX1 4EH, UK. FDR2 User Manual, May 2000.

388 F.R.M. Barnes / Compiling CSP

[9] P.H. Welch and D.C. Wood. The Kent Retargetable occam Compiler. In Brian O’Neill, editor,Parallel
Processing Developments, Proceedings of WoTUG 19, volume 47 ofConcurrent Systems Engineering,
pages 143–166, Amsterdam, The Netherlands, March 1996. World occam and Transputer User Group,
IOS Press. ISBN: 90-5199-261-0.

[10] P.H. Welch, J. Moores, F.R.M. Barnes, and D.C. Wood. TheKRoC Home Page, 2000. Available at:
http://www.cs.kent.ac.uk/projects/ofa/kroc/.

[11] A.E. Lawrence. CSPP and Event Priority. In Alan Chalmers, Majid Mirmehdi, and Henk Muller, editors,
Communicating Process Architectures 2001, volume 59 ofConcurrent Systems Engineering, pages 67–92,
Amsterdam, The Netherlands, September 2001. WoTUG, IOS Press. ISBN: 1-58603-202-X.

[12] P.H. Welch, F.R.M. Barnes, and F.A.C. Polack. Communicating Complex Systems. InProceedings of
ICECCS-2006, September 2006.

[13] Uwe Schmidt and Reinhard Völler. A Multi-Language Compiler System with Automatically Generated
Codegenerators.ACM SIGPLAN Notices, 19(6), June 1984.

[14] Zehra Sura and Xing Fang and Chi-Leung Wong and Samuel P.Midkiff and Jaejin Lee and David Padua.
Compiler techniques for high performance sequentially consistent java programs. InPPoPP ’05: Proceed-
ings of the tenth ACM SIGPLAN symposium on Principles and practice of parallel programming, pages
2–13, New York, NY, USA, 2005. ACM Press.

[15] B. Joy, J. Gosling, and G. Steele.The Java Language Specification. Addison-Wesley, 1996. ISBN:
0-20-163451-1.

[16] D. Lea. Concurrent Programming in Java (Second Edition): Design Principles and Patterns. The Java
Series. Addison-Wesley, 1999. section 4.5.

[17] International Standards Organization, IEEE. Information Technology – Portable Operating System In-
terface (POSIX) – Part 1: System Application Program Interface (API) [C Language], 1996. ISO/IEC
9945-1:1996 (E) IEEE Std. 1003.1-1996 (Incorporating ANSI/IEEE Stds. 1003.1-1990, 1003.1b-1993,
1003.1c-1995, and 1003.1i-1995).

[18] F.R.M. Barnes. NOCC: A New occam-pi Compiler. URL:http://www.cs.kent.ac.uk/projects/

ofa/nocc/.
[19] Xiaoqing Wu and Barrett R. Bryant and Jeff Gray and SumanRoychoudhury and Marjan Mernik. Separa-

tion of concerns in compiler development using aspect-orientation. InSAC ’06: Proceedings of the 2006
ACM symposium on Applied computing, pages 1585–1590, New York, NY, USA, 2006. ACM Press.

[20] M.D. Poole. Extended Transputer Code - a Target-Independent Representation of Parallel Programs. In
P.H. Welch and A.W.P. Bakkers, editors,Architectures, Languages and Patterns for Parallel and Dis-
tributed Applications, Proceedings of WoTUG 21, volume 52 ofConcurrent Systems Engineering, pages
187–198, Amsterdam, The Netherlands, April 1998. WoTUG, IOS Press. ISBN: 90-5199-391-9.

[21] Peri Hankey. The Language Machine. URL:http://languagemachine.sourceforge.net/.
[22] Matthew Flatt. Composable and compilable macros:: youwant it when? InICFP ’02: Proceedings of the

seventh ACM SIGPLAN international conference on Functional programming, pages 72–83, New York,
NY, USA, 2002. ACM Press.

[23] Mordechai Ben-Ari. How to solve the Santa Claus problem. Concurrency: Practice and Experience,
10(6):485–496, 1998.

[24] J. Moores. CCSP – a Portable CSP-based Run-time System Supporting C andoccam. In B.M. Cook,
editor,Architectures, Languages and Techniques for Concurrent Systems, volume 57 ofConcurrent Sys-
tems Engineering series, pages 147–168, Amsterdam, The Netherlands, April 1999. WoTUG, IOS Press.
ISBN: 90-5199-480-X.

[25] Inmos Limited.The T9000 Transputer Instruction Set Manual. SGS-Thompson Microelectronics, 1993.
Document number: 72 TRN 240 01.

[26] J.C.P. Woodcock and A.L.C. Cavalcanti. The Semantics of Circus. InZB 2002: Formal Specification and
Development in Z and B, volume 2272 ofLecture Notes in Computer Science, pages 184–203. Springer-
Verlag, 2002.

