Communicating Process Architectures 2006 377
Peter Welch, Jon Kerridge, and Fred Barnes (Eds.)

I0S Press, 2006

(© 2006 The authors. All rights reserved.

Compiling CSP

Frederick R.M. BARNES

Computing Laboratory, University of Kent,
Canterbury, Kent, CT2 7NF, England.

frmb@kent.ac.uk

Abstract. CSP, Hoare’s Communicating Sequential Processes, is afdamguage
for specifying, implementing and reasoning about coneurnpeocesses and their in-
teractions. Existing software tools that deal with CSPaliyeare largely concerned
with assisting formal proofs. This paper presents an ater@ use for CSP, namely
the compilation of CSP systems to executable code. The maiiwation for this work
is in providing a means to experiment with relatively larggfCsystems, possibly con-
sisting millions of concurrent processes — something thatird to achieve with the
tools currently available.

Keywords. CSP, compilers, occam-pi, concurrency

I ntroduction

Hoare’s CSP [1,2] is a process algebra used to describe wentsystems and their inter-
actions. CSP allows for reasoning about a systelitotationaksemantics in addition to the
relatively straightforwardperationalsemantics. A significant use of CSP remains in for-
mal reasoning, for example, with tliecam2 [3] programming language [4,5], and more
recentlyoccam-1t[6,7].

This paper presents another use for CSP, as a language f@ilabom to executable
code. This differs from CSP tools such as FDR [8], that arégdesl for formal reasoning
— e.g. proving that one system is a refinement of another. Tdr& described here is much
less complete in the formal sense; FDR will cater for all gusdraces of a CSP system, the
code generated by the compiler described here executebigaigrtrace of the system. That
trace may be different each time the program is executetheosame, consistent with the
expected rules of non-determinism. The advantage of thk described here is that it allows
relatively large CSP systems to be exercised, since spaieesexplosion is not an issue.

The compiler used by this system is an experimeataiam-1t compiler, intended to
replace the existing modified Inmascam compiler used by KRC [9,10]. Although the
compiler is designed primarily fasccam-t, its structure allows other languages and code-
generation targets to be supported.

Section 1 describes the motivation for this work. An ovemved the compiler infrastruc-
ture is given in section 2, followed by implementation distaf the CSP support in section 3.
Initial conclusions, including a brief discussion of perfance, and details of future work
are given in section 4.

1. Motivation

The main motivation for this work is to support the investiga and experimentation of large
CSP systems, possibly containing millions of concurreatpsses. The system also provides

378 F.R.M. Barnes / Compiling CSP

the ability to experiment with CSP’s operational semanties.g. introducing prioritised
external choice as defined BgPP [11].

Supporting the implementation also serves to exercise nelti-may synchronisation
mechanisms implemented inside thezam-1trun-time system, which are based on the tech-
niques described in [12].

2. The NOCC compiler

The majority of the work described here has been implememside an experimental
occam-1t compiler named ‘NOCC’ (newaccam-1t compiler). Unlike many compilers cur-
rently available, NOCC is not centred around a specific lagguor code-generation target.
Instead, NOCC attempts to provide an extensible compitanéwork, into which new lan-
guage and code-generation ‘modules’ can be added.

The support for CSP within the compiler grew out of an expentaloccam-T1t exten-
sion, allowing specifications of trace patterns (in the f@hC€SP equations) to be attached
to occam-1t channel-bundle declarations. This reflects on anotheuffeaif the compiler,
namely the ability to support multiple source languages smgle input file. Likewise, the
compiler is capable of generating multiple output formatg, for mixed hardware/software
compilation.

Building compilers this way is certainly not a new idea [1&}d there has been work on
multi-language and multi-target compilers elsewhere. W'leis compiler differs from oth-
ers is in its treatment of concurrency. Tbecam/CSP concurrency model has been around
for some time, yet there have been few compilers capableofgdull advantage of it. Cre-
ating systems consisting of millions of interacting coment processes places some peculiar
requirements on the compiler. The two most important areiefft memory allocation (for
processes at run-time) and safety checks (freedom froniglasece-hazard and aliasing er-
rors). Also important is the efficiency of the generated ¢qagticularly where large num-
bers of processes are involved — a responsibility shardativi run-time system. It appears
that many existing compilers fail to meet all these demairdslsaneously, though some are
heading in that direction. It should be noted that these densp by and large, generally tar-
get sequential languages, or languages where concurrestyelen added as an afterthought.
Checking the safety of parallel programs in cases whereahgulage does not rigorously
police concurrency can be difficult [14] — as is the case witindads and locks’ models of
concurrency (e.g. Java threads [15,16] and POSIX thready [1

In terms of compiler research, NOCC does not appear to adthiagysubstantial to
what is already known about building compilers. Howeveis imaybe better suited to the
compilation of very finely grained parallel programs, comgobwith other compilers. In some
ways, the general structure of NOCC is similar to that of tkisteng Inmosoccam compiler
(now heavily modified fooccam-1), albeit a somewhat modernised version of it.

General information pertaining to NOCC can be found at [1i8] worth noting that
NOCC is a very experimental compiler, and that the C langyisgehich NOCC is written)
might not be the most suitable language for compiler impletatgon. The style of the com-
piler code itself is not too dissimilar @spect-orientationwhich has been used successfully
in building other compilers [19]. The particular featureraoon to both is the ability to alter
the behaviour of compiler parts at run-time. In aspectrataton this is done in the language;
in NOCC it is handled by changing function-pointers in stanes.

2.1. Structure of NOCC

Figure 1 shows the structure of the compiler as a series efgasses, that transform the
parse-tree at each stage. Modules inserted into the campelg add their own passes, if the

F.R.M. Barnes / Compiling CSP

379

existing structure of the compiler is incapable of suppgrsomething required.

lexer |—»| parser |—| pre-scope —| scope
+ language
specific
front _ constant _
oot pre—check |-e— propagation -.— type—check
) definedness language
alias—check —®|usage—-check—» —check ™ fe-trans assisted
be- -+—{ name—-map|-e— pre-map (-e-— be-t language to
e P P p e target binding
back | foo + ——
ed | Y -
target
pre-allocate—| allocate —| pre-code —| code—gen specific

Figurel. Structure of the NOCC compiler

Most of the compiler passes are obviously named. The ‘popesgass is used to per-
form tree rewriting prior to scoping, e.g. for pushing naneeles up the tree, where those
names are declared inside their effective scope. The fpeelc pass runs prior to the parallel-
usage, aliasing and definedness checks, and is used to seeumtles that require special
checking. The ‘fe-trans’ and ‘be-trans’ passes succelgssmnplify the parse tree, making
it more suitable for code-generation. The ‘be-trans’ paghe first point at which target in-
formation is available. The ‘name-map’ pass generatesu@@esenting memory reserva-
tions and memory references — e.g. describing the memounjiresgents of aroccam-Tt
‘INT’ variable on a 32-bit machine. The ‘be-map’ pass is prinyardncerned with expression
evaluation, handling the allocation of temporary varigbldnere required. The ‘pre-allocate’
and ‘allocate’ passes perform memory allocation proper.tke defaultvirtual transputer
ETC [20] target, this includes allocations intamrkspacelocal process stackyectorspace
(large process local objects) ambbilespacda global memory space). These are statically
allocated memories, independent of memory dynamicalbhcated and managed at run-time.

The only code-generator currently supported by the comgéaerates an extended ETC
code. This is transformed into native code by the existingp&Rool-chain. Another code-
generator is under development that attempts to genemllisegister-based architectures
(which would ultimately remove the need for the existingvetode translator). The advan-
tage here is to avoid inefficiencies introduced by the ineztiate code.

2.2. Parse Tree Structures

Internally, the representation of parse trees is generhliBhis greatly aids in the automatic
processing of tree-nodes — e.g. when constructing new riadae parser, or when rewrit-
ing trees as part of compiler transformations. It also adldle set of node types to be mod-
ified at run-time, e.g. to support compiler extensions tiuat #neir own node types. More
importantly, it enables code in one part of the compiler terafe on another part’s tree
nodes without explicit knowledge of them. This is substhtidifferent from the existing
Inmosoccam compiler, where the set of tree nodes is fixed, and the codesnaktensive
use of switch()’ statements. In terms of data structures, what NOCC endsitlpisvnot
entirely unlike inheritance inbject orientationexcept that the equivalent “class hierarchies”

380 F.R.M. Barnes / Compiling CSP

are setup at run-time. The similarity witspect orientatioms the ability to change these at
run-time.

Each tree node in the compiler is associated with a particulde-tag These provide a
way of identifying the different tree nodes, e.CSPSEQ” and “MCSPPAR”. Associated with
each node-tag ismode-typeusually applied to a set of related tags. For exampESPSEQ’
and MCSPPAR’ are tags of a ficsp:dopnode” type (dyadic operator). It is this node-type
that defines the operations performed on a node in differ@mipder passes — by having
the node type structure contain called function pointersofApromise between speed and
size is made here — the cost of calling a function is mostlystamt, but the code called
(for a particular node type) will often have to perform a esrof if-else tests to determine
which node tag is involved (and therefore how the pass shprddeed). A constant-cost
‘switch()’ statement cannot be used as node tags are allocated dyallgmic

Figure 2 shows the C structures used to represent parsaddss, together with their
linkage to node-tags and node-types.

tnode_t ntdef _t tndef_t
ntdef_t *tag ey char *name char *name
lexfile_t *org_file int idx int idx
int org_line tndef_t *ndef=— int nsub,nname,nhooks
void **items int flags compops_t *cops —

void **chooks langops_t *lops —
langops_t :

int (*getdescriptor)(tnode_t *, char **)
int (Yisconst)(tnode_t *)

int (*codegen_typeaction)(tnode_t *, tnode_t *, codegen_t *)

compops_t
int (*prescope)(tnode_t **, prescope_t *)

int (*codegen)(tnode_t *, codegen_t *)

Figure2. NOCC parse-tree structures

A lot of the node-specific code that sits behind these fungiiminters is concerned with
parse-tree rewriting. To aid these, a tree-rewriting namguage is being developed within
the compiler. By generalising this it becomes possible émrse codes to define their own
language extensions, together with the tree transformatiequired to produce compilable
parse-trees. In some ways, this is heading towards a cantipgieimplements a basic feature
set, then loads the required language ‘source’ at run-tiefier® compiling code proper; not
entirely unlike compilers such as Peri Hankey’s “languageinme” [21].

2.3. Deficiencies

With regard to NOCC'’s plug-in extensions, there are culyemb guarantees (beyond rig-
orous testing) that two or more extensions will coexist g#ps— even then, testing at
compiler-development time may not be an option; e.g. nevesyit structures defined inside
source files to be compiled. This issue will be addressedariuture once the compiler sup-
ports enough of theccam-Ttlanguage to be useful in practical applicatirexisting work

has already investigated this issue [22], but for a compiletten in Scheme. The poten-

LAt the time of writing, simple programs compile successfbilit without many of the checks that the exist-
ing compiler applies. Basic tests for channel and variabatalfel-usage have been implemented successfully.

F.R.M. Barnes / Compiling CSP 381

tial problems lie not so much with incompatibilities in tneedes, but with incompatibilities
in the language grammar — e.g. interaction between a mobtateprovides multi-variable
declarations, INT a,b:”, and one that provides for initialising declarationsNT x=42:".
The resulting problem is whetheINT f=3, g=24:" or “INT f,g = 3,24:” would parse,
and if so, whether either would have the expected semamtigkiple initialised integer vari-
ables).

3. Compiling CSP

This section describes the details of generating exeautedtle from CSP expressions,
within the NOCC compiler. It also sheds some further lighttlo@ details of programming
within NOCC. The resulting language supported by the coenjisl loosely termed ‘MCSP’
(machine-readable CSP), but is currently incompatible wiher machine-readable CSP rep-
resentations (e.g. that used by FDR).

3.1. Syntax

The way in which NOCC operates requires front-end languaggutes to supply the parser
grammar BNF-style or as textual DFAs (deterministic finitecgnaton, or state machines).
This allows the language syntax to be readily changed,quéatily within plug-in modules
which modify the grammar — or even within source files thews®l The following, for ex-
ample, describes how CSP fixpoints are represented (anel lisafal text fed to the compiler
at run-time):

mcsp:fixpoint ::= [0 @@ 1] [1 mcsp:name 2] [2 @0. 3]
[3 mcsp:process 4 1 [4 {<mcsp:fixreduce>} -*]

This is a DFA representation that will pars& ‘followed by a name, *” and a process.
‘mcsp:fixreduce’ is a reduction rule that specifies how to generate the toskemesult. In
this particular case it is generic reductiomule — a program for a miniature stack-machine
that operates on parse-tree nodes:

parser_register_grule ("mcsp:fixreduce",
parser_decode_grule ("SNON+N+VC2R-", mcsp.tag_FIXPOINT));

The ‘tag_FIXPOINT is a reference to aode-tag defined earlier with:

mcsp.tag_FIXPOINT = tnode_newnodetag ("MCSPFIXPOINT", NULL,
mcsp.node_SCOPENODE, NTF_NONE) ;

This further references the@éde_SCOPENODE' node-typethe compiler structure onto
which the MCSP module attaches various functions to hanahstormations in the different
compiler passes. At the parser top-level, thesp: fixpoint’ rule is incorporated statically
in the definition of mcsp: process’. However, it could be added dynamically with the BNF-
style rule:

mcsp:process +:= mcsp:fixpoint
Using these descriptions, the resulting parser is ableridledixpoints in the input such as:
PROCESS (e) ::= @x.(e -> x)

This represents a process that continually engages on tampterised event’, and
could form a whole MCSP program. Figure 3 shows the resufiarge-tree structure, prior
to scoping.

382 F.R.M. Barnes / Compiling CSP

MCSPPROCDECL
mcsp:decinode

MCSPNAME MCSPNAME MCSPFIXPOINT
mcsp:rawnamenode mcsp:rawnamenode mcsp:scopenode
"PROCESS" "e"

MCSPNAME MCSPTHEN
mcsp:rawnamenode mcsp:dopnode

LN

MCSPNAME MCSPNAME
mcsp:rawnamenode mcsp:rawnamenode
ng" e

Figure 3. Tree structure after parsing

3.2. Semantics

The semantics implemented by the compiler remain faitlof@$P. External choice between
two or more offered events is resolvadbitrarily . This allows, for example, the following
program to choosee” over ‘f’ (if both are ready):

PROCESS (e,f) ::= @x.((e -> x) [1 (f -> %))

There is a difference concerning the scoping of names. Irshiogt examples seen so
far, all events are bound to parameters. This need not beades however. Unbound events
are automatically inserted into parameter lists by the atenpnd collected together at the
top-level. In traditional CSP, which does not support patansed events, the definition of
something (e.g.PROCESS’) is entirely in the meta-language — the right-hand-sidesuch
definitions could be literally substituted without chargiithe semantics of the system. This
is not the case here, for example:

FOO ::= e -> SKIP
BAR (e) ::= e -> FOO

There are twoé€' events in this system — one free and one boun®®”. It is equivalent to
the system:

BAR (f) ::=f -> e -> SKIP

Literal substitution of F00’ would produce a different system.

The two behaviours not currently supported are interlegand interrupts. Interrupts
are not too much of a concern for implementation — event syorghkations in affected pro-
cesses becomes a choice between the existing event andetvaph event, followed by the
equivalent of a ‘goto’ into the interrupt process.

3.2.1. Interleaving

Interleaving gives rise to difficulties in the implemendatj but only where ‘shared’ events
are involved. For example:

PROCESS (e,f,g) ::= (e => £ -> SKIP) ||| (e -> g -> SKIP)

In such a system, either the left-hand-side synchroniseé€ aor the right-hand-side
does, but they do not synchronise eldetween themselves. The implementation of events is
handled using a new version of the multi-way synchronisadiescribed in [12]. At present,

F.R.M. Barnes / Compiling CSP 383

however, these only support synchronisation betwakeprocesses enrolled on the event —
providing an implementation for interleaving is complex.
A possible solution is to re-write the affected expressi@eparating out the affected
events. This, however, does not scale well — memory occypamd run-time cost increase.
The solution to be implemented involves a change to the imefgation of multi-way
events, such that interleaving is explicitly supportedala synchronisation is aait-for-
all mechanism; interleaving isait-for-one These represent special cases of a more general
synchronisation mechanismvait-for-n. Although CSP provides no model for this (the deno-
tational semantics would be very complex), it does have usether applications [23], and
is something that could be supported émcam-T1t

3.3. Code generation

Supporting multiple back-end targets creates some iritegeshallenges for the compiler.

Currently this is handled by abstracting out ‘blocks’ andrires’, that describe the run-time
memory requirements. The compiler uses this informatioalltwcate variables, parameters
and other memory-requiring structures.

Figure 4 shows the transformed sub-tree for thEXPOINT' node from figure 3, sim-
plified slightly. The new nodes whose names start ‘krocettoig to the KRC ETC code-
generator within the compiler. The CSP @rcam-1) specific portions of the compiler are
only aware of these nodes as back-end blocks, block-refesemames or name-references.

MCSPILOOP
mcsp:loopnode

MCSPSEQNODE
mcsp:cnode

— T

KROCETCNAME MCSPSKIP
krocetc:name mcsp:leafproc

T

MCSPALT (namehook)
mcsp:snode

'

MCSPGUARD
mcsp:guardnode

MROCETCNAMEREF MCSPSKIP
krocetc:nameref mcsp:leafproc

Figure4. Sub-tree structure after name-map

The krocetc:nameref’ node is a reference to the parameterised event involverthwh
has since been transformed intokadcetc:name’ describing memory requirements and
levels of indirection. Thekrocetc:name’ node left in the tree reserves space fordiceam-
Tistyle ‘ALT’ (needed by the run-time). Handling these in a language amgegt independent
manner is only partially complete. The back-end definitiathim the compiler maintains
details of the memory required for constructs suchAag’s and PAR’s, and this is a fixed
set. In the future it may be desirable to generalise theseirfes but so far this has not
been necessary. The combinatiorootam-tand ETC appears to produce a fairly broad set
of compiler features, certainly more than sufficient forgyrsequential languages, or for
languages with more primitive concurrency models (e.geatis and locks).

384 F.R.M. Barnes / Compiling CSP

The complete resulting parse-tree is much larger than ties shown here. Inserting
the various back-end nodes will often double the size of #igtiag tree, including name-
nodes for entities such as a procedure’s return-addresgta-links to higher lexical levels.
Furthermore, the top-level process (and main program)rgéet by the compiler is not the
program’s top-level process. It is instead the parallel position of the program’s top-level
process with a newly created ‘environment’ process. It is @mvironment process which
produces the program’s output at run-time, by writing bytethe KRoC top-level ‘screen’
channel. For example, the earlier system:

PROCESS (e) ::= @x.(e -> x)

is transformed by the compiler into the following (illegabde:

PROCESS (e) ::= 0x.(e —> x)
ENVIRONMENT (out,e) ::= @z.(e —-> out!"e\n" -> z)
SYSTEM (screen) ::= (PROCESS (k) || ENVIRONMENT (screen,k)) \ {k}

When executed, this system simply outputs a continuouarstd “e”s, each on a new
line. Normally such code would be illegal since that’ eventis really aroccam channel;
the compiler also currently lacks the support to parse thputisyntax shown. An explicit
syntax and semantics for handlingcam-style communication may be added at a later date.

The ETC generated by the compiler is not too dissimilar totwheyht be expected
from a comparableccam-1t program. The main difference is the use of new multi-way
synchronisation instructions, implemented in the runetikernel (a modified CCSP [24]).
Because the CSP parts of the compiler generate code intémdib@ KRoC run-time, there
IS no reason why the two cannot be used together within thee ggnogram — once the
necessary support for multi-way synchronisation has beeorporated into theccam-1t
code within NOCC.

3.3.1. Other compiler output

In addition to the ETC or other code output, the compiler gates a 'x10’ file. This is
an XML file that describes the compiled output. These filesraagl back by the compiler
when separately compiled code is incorporated, e.g. thr@ugUSE’ directive. Included in
the output is all the information necessary to instanceépaately compiled code, typically
memory requirements and entry-point names.

Optionally included is a digitally signed hash-code of tlemgrated code and related
information in the ‘xlo’ file. Public/private key-pairs aused, allowing verification that code
was generated by a particular compiler. This will typicddly useful in distributedccam-Tt
mobile-agent systems, when a node that receives precahqolde needs to guarantee the
origin of that code.

3.4. Run-time support

In order to support MCSP programs, multi-way synchrongsaitistructions have been added
to the KRoC run-time. These consist of modifiesl.T’ start, end and wait instructions plus
additional enable-guard and disable-guard instructidsscan be seen in figure 4, single
synchronisations are transformed into ahT’ structure with only one guard — an explicit
synchronisation instruction may be added in the future.

In order to support the new compiler, various other changge been made to the trans-
lator and run-time. The most significant is the removal of fiked workspace-pointead-
justment on subroutine calls and returns (tt&LL’ and ‘RET’ transputer instructions [25]).
As a result, theCALL’ instruction no longer expects to have subroutine pararsair the
stack — which would normally be copied into space reservethbeyixed workspace adjust-

F.R.M. Barnes / Compiling CSP 385

ment. The new compiler instead generat®d.L’ and ‘RET’ instructions with an extra ‘off-
set’ operand, that specifies the necessary workspace mejustThis makes code-generation
and the general handling of subroutine calls simpler, andmi@lly less expensive.

3.5. Supported constructs

Table 1 provides an overview of the supported constructgtaeid MCSP syntax. Although
much of traditional CSP is supported, the language lacksifea that may be useful from
a pragmatic perspective — for example, variables and baisioreetic. Such features move
the system away from traditional CSP and more towards psatadsuli such a€ircus [26].
Additional features currently being considered are cayanesection 4.

CsP MCSP
skip SKIP SKIP
stop STOP STOP
chaos CHAOS CHAQS
divergence div DIV
event prefix e—P e > P
internal choice (x—P)MN(y—Q) (x ->P) |"| (y > Q)
external choice (x—P)O0(y—Q) (x ->P) [1 (y > Q
sequence PsQ P; Q
parallel PllQ P Il Q
interleaving PllQ PIlIlQ
hiding P\ {a} P\ {a}
fixpoint uX.P X.P

Table 1. Supported MCSP constructs and syntax

A restriction is currently placed on the use of the fixpoinemior — it may only be
used to specify sequential tail-call recursion, as showhemrevious examples. Effectively,
anything that can be transformed into a looping structureteMeneral recursion using the
fixpoint operator will be added at a later stage.

4. Conclusions and future work

This paper has described the basic mechanisms by which Gfglpaprs are translated into
executable code. Although the work is at an early stage asre ik much more to do, it does
show promise — particularly for expressibility and perfamee. In addition to providing a
means to compile and execute CSP programs, this work sesvagyaod exercise for the
newoccam-ttcompiler. Importantly, the incremental addition of MCSRdaage features to
the compiler has remained relatively simple. This is notdase for the existingccam-T1t
compiler, where certain optimisations made early on in tgiler's developmeAtmake
adding extensions awkward. For instance, modifying thesolanguage syntax is trivial, as
NOCC generates the actual parser from high-level BNF or Dé&#ndions.

4.1. Performance

A standard benchmark faccam-ttis ‘commstime’, a cycle of processes that continuously
communicate. This has been re-engineered into MCSP, whengrocesses involved simply

2The originaloccam compiler was designed to run in 2 megabytes of memory, wieidhd a fairly complex
optimised implementation.

386 F.R.M. Barnes / Compiling CSP

synchronise, rather than communicate data. To make bemkimgalightly simpler, the pro-
posed sequential-replication addition (section 4.2.8)dleady been added. The commstime
benchmark, with a sequential ‘delta’, is currently implenes as:

PREFIX (in,out)

SUCC (in,out)

DELTA (in,outl,out2) ::
CONSUME (in,report)

out —> @x.(in -> out -> x)

@x.(in -> out -> x)

@x.(in -> outl -> out2 -> x)

@x.((; [1=1,1000000] in); report -> x)

SYSTEM (report)

((PREFIX (a, b) || DELTA (b, c, d)) ||
(sucC (c, a) || CONSUME (d, report))) \ {a,b,c,d}

When compiled and executed, the program will prirdport’ on the screen for every
million cycles of the benchmark. Measuring the time betwgented ‘report’s gives a fairly
accurate value for synchronisation time. Each cycle of #mechmark requires 4 complete
multi-way synchronisations, or 8 individual multi-wayLT’s. On a 2.4 GHz Pentium-4, the
time for a complete multi-way synchronisation is approxietal70 nanoseconds (with each
synchronisation involving 2 processes).

In fact, this figure is a slight over-estimation — it includesmall fraction of the cost
of printing ‘report’, and the loop overheads. More accurate benchmarking agllire the
ability to handle timers, something which is consideredmfbllowing section. When using
a parallel delta, the synchronisation cost is increaseddora 250 nanoseconds, giving a
process startup-shutdown cost of around 160 nanoseconds.

4.2. Planned additions

This section describes some of the additions planned foM@G&P language, to be imple-
mented in the NOCC compiler. These are largely concerneal pvdctical additions to the

language, rather than semantic updates. It should be rfraeddme of the planned additions
potentially modify the operational semantics. Howevesytshould not modify the denota-
tional semantics — i.e. systems should not behave in an @osxg way.

4.2.1. Alphabetised parallel

The current parallel operatof [’ builds its alphabet from the intersection of events onegith
side. This makes it difficult to express two parallel proesghat synchronise on some events,
but interleave on others. For example:

SYSTEM ::= (a -> b -> ¢ -> SKIP) |{a,c}| (a -> b -> ¢ —> SKIP)

4.2.2. Replicated processes

Table 2 shows the proposed operators to support replicabeggses. In each case, the repli-
cator may be given agi=n,m]’ for replication of(m— n) + 1 processes, or more simply as
‘[n]’ for nreplications. For the former, the namié is a read-only integer variable, in scope
for the replicated process only.

CcSpP MCSP
sequential replication ; [i=1,n] P
parallel replication | _, ,, P Il[i=1,n] P
interleave replication |[—1.yP 111 [i=1,n] P

Table 2. Proposed replicator constructs

F.R.M. Barnes / Compiling CSP 387

4.2.3. Variables and expressions

Including variables and expressions within the languagks &h amount of computational
power. The three types initially proposed are ‘bool’s, 'Snfsigned 32-bit integers) and
‘string’s. These should provide enough computational fiamality for many MCSP pro-
grams, at least those which we currently have in mind.

Table 3 shows the proposed additions. These, however, amonsistent with similar
CSP functionality described in [2], where input and outpluinbegers is modelled with a
set of events — one for each distinct integer. Here there lig @single event and data is
transferred between processes. A restriction must be ietbos outputting processes, such
that outputs never synchronise with each other — i.e. ongubpirocess synchronising with
one or more input processes. Interleaving outputs woulcebmitted, however.

MCSP
variable declaration and scopename: type P
assignment process name := expression
input process e?name
output process elexpression
choice if condition then P else Q

Table 3. Proposed variable and expression constructs

For expressions and conditions, we intend to support adstah range of operators.
For example, addition, subtraction, multiply, divide amgnainder for integer expressions;
equal, less-than, greater-than or equal and their invéss@steger comparisons. For strings,
concatenation and equality tests only. Within the top{leamvironment’ process, events that
are used for communication will input data from the systeh@isplay it on the screen.

One further consideration, particularly for benchmarkisg handling of time. Keeping
some consistency withccam-T1t, a possible implementation would be a global ‘timer’ event
on which all processes interleave. Input will produce therent time (in microseconds),
output will block the process until the specified time is ezt

The combination of features considered here should makesgiple to write reason-
able extensive and entertaining CSP programs — e.g. a igatiah of the classic “dining
philosophers” problem. Over time it is likely that we will wato add, modify or entirely
remove features from the MCSP language. The NOCC compéerdwork should make this
a relatively straightforward task, but only time will tell.

References

[1] C.A.R. Hoare.Communicating Sequential ProcessBsentice-Hall, London, 1985. ISBN: 0-13-153271-
5.

[2] A.W. Roscoe.The Theory and Practice of Concurrendgrentice Hall, 1997. ISBN: 0-13-674409-5.

[3] Inmos Limited.occam2 Reference ManuaPrentice Hall, 1988. ISBN: 0-13-629312-3.

[4] M.H. Goldsmith, A.W. Roscoe, and B.G.O. Scott. Denatatil Semantics fooccam2, Part 1. InTrans-
puter Communicationsolume 1 (2), pages 65-91. Wiley and Sons Ltd., UK, NoveriB83.

[5] M.H. Goldsmith, A.W. Roscoe, and B.G.O. Scott. Denatatil Semantics fooccam2, Part 2. InTrans-
puter Communicationyolume 2 (1), pages 25-67. Wiley and Sons Ltd., UK, March4199

[6] Frederick R.M. Barnes.Dynamics and Pragmatics for High Performance Concurren®hD thesis,
University of Kent, June 2003.

[7] P.H. Welch and F.R.M. Barnes. Communicating mobile psses: introducing occam-pi. In A.E. Abdal-
lah, C.B. Jones, and J.W. Sanders, editdbsYears of CSPvolume 3525 ol ecture Notes in Computer
Sciencepages 175-210. Springer Verlag, April 2005.

[8] Formal Systems (Europe) Ltd., 3, Alfred Street, Oxfd@k1 4EH, UK. FDR2 User ManuglMay 2000.

388 F.R.M. Barnes / Compiling CSP

[9] P.H. Welch and D.C. Wood. The Kent Retargetable occam j@l@m In Brian O’Neill, editor,Parallel
Processing Developments, Proceedings of WoTUGv&Rime 47 ofConcurrent Systems Engineering
pages 143-166, Amsterdam, The Netherlands, March 199ddWocam and Transputer User Group,
IOS Press. ISBN: 90-5199-261-0.

[10] P.H. Welch, J. Moores, F.R.M. Barnes, and D.C. Wood. KRoC Home Page, 2000. Available at:
http://www.cs.kent.ac.uk/projects/ofa/kroc/.

[11] A.E. Lawrence. CSPP and Event Priority. In Alan Chalspédajid Mirmehdi, and Henk Muller, editors,
Communicating Process Architectures 20@dlume 59 ofConcurrent Systems Engineerjpgges 67-92,
Amsterdam, The Netherlands, September 2001. WoTUG, IOS&PISBN: 1-58603-202-X.

[12] P.H. Welch, F.R.M. Barnes, and F.A.C. Polack. Commaiting Complex Systems. IRroceedings of
ICECCS-2006September 2006.

[13] Uwe Schmidt and Reinhard Voller. A Multi-Language Qaitar System with Automatically Generated
CodegeneratorsA\CM SIGPLAN Noticesl9(6), June 1984.

[14] Zehra Sura and Xing Fang and Chi-Leung Wong and SamiMidRiff and Jaejin Lee and David Padua.
Compiler techniques for high performance sequentiallysesiant java programs. PPoPP '05: Proceed-
ings of the tenth ACM SIGPLAN symposium on Principles andtjpa of parallel programmingpages
2-13, New York, NY, USA, 2005. ACM Press.

[15] B. Joy, J. Gosling, and G. SteelelThe Java Language Specificatioddison-Wesley, 1996. ISBN:
0-20-163451-1.

[16] D. Lea. Concurrent Programming in Java (Second Edition): Desigin€iples and Patterns The Java
Series. Addison-Wesley, 1999. section 4.5.

[17] International Standards Organization, IEEE. Infotiora Technology — Portable Operating System In-
terface (POSIX) — Part 1: System Application Program latesf (API) [C Language], 1996. ISO/IEC
9945-1:1996 (E) IEEE Std. 1003.1-1996 (Incorporating AMNHE Stds. 1003.1-1990, 1003.1b-1993,
1003.1¢-1995, and 1003.1i-1995).

[18] F.R.M. Barnes. NOCC: A New occam-pi Compiler. URlttp://www.cs.kent.ac.uk/projects/
ofa/nocc/.

[19] Xiaoging Wu and Barrett R. Bryant and Jeff Gray and SuiRapchoudhury and Marjan Mernik. Separa-
tion of concerns in compiler development using aspectrtai@on. INSAC '06: Proceedings of the 2006
ACM symposium on Applied computjpgges 1585-1590, New York, NY, USA, 2006. ACM Press.

[20] M.D. Poole. Extended Transputer Code - a Target-Inddpet Representation of Parallel Programs. In
P.H. Welch and A.W.P. Bakkers, editoisichitectures, Languages and Patterns for Parallel and-Dis
tributed Applications, Proceedings of WoTUG, blume 52 ofConcurrent Systems Engineerjmages
187-198, Amsterdam, The Netherlands, April 1998. WoTUGG Fess. ISBN: 90-5199-391-9.

[21] Peri Hankey. The Language Machine. URlt:tp: //languagemachine.sourceforge.net/.

[22] Matthew Flatt. Composable and compilable macros::waat it when? INCFP '02: Proceedings of the
seventh ACM SIGPLAN international conference on Functipragramming pages 72-83, New York,
NY, USA, 2002. ACM Press.

[23] Mordechai Ben-Ari. How to solve the Santa Claus proble@oncurrency: Practice and Experience
10(6):485-496, 1998.

[24] J. Moores. CCSP — a Portable CSP-based Run-time Sysiepo8ing C andbccam. In B.M. Cook,
editor, Architectures, Languages and Techniques for ConcurrestieBys volume 57 ofConcurrent Sys-
tems Engineering seriepages 147-168, Amsterdam, The Netherlands, April 1999.W& 10S Press.
ISBN: 90-5199-480-X.

[25] Inmos Limited. The T9000 Transputer Instruction Set Manu8IGS-Thompson Microelectronics, 1993.
Document number: 72 TRN 240 01.

[26] J.C.P. Woodcock and A.L.C. Cavalcanti. The SemanticSiiwus. InZB 2002: Formal Specification and
Development in Z and,Bolume 2272 ot ecture Notes in Computer Scienpages 184—-203. Springer-
Verlag, 2002.

