
Computer Science at Kent 

Dependable and Secure Storage in 
Pervasive Peer-to-Peer Systems 

Rudi Ball, Vicki Spurrett  
and Rogério de Lemos 

Technical Report No. 11-06 
September 2006 

 

 

 

Copyright © 2006 University of Kent  
Published by the Computing Laboratory,  
University of Kent, Canterbury, Kent CT2 7NF, UK 



 1

Dependable and Secure Storage  
in Pervasive Peer-to-Peer Systems

Rudi Ball, Vicki Spurrett, Rogério de Lemos 
Computing Laboratory 

University of Kent 
Canterbury, Kent CT2 7NF, UK 

 
ABSTRACT 
This paper describes an approach to dependable and secure 
storage for pervasive systems based on the fragmentation-
redundancy-scattering (FRS) technique. FRS is able to tolerate 
both accidental and intentional faults by fragmenting confidential 
information into insignificant fragments, and scattering these 
fragments in a redundant fashion across a system. The goal is that 
the original information that has been fragmented and scattered 
can only be reassembled by a trusted agent. The system 
architecture is based on the peer-to-peer architectural style in 
which each peer (agent) is able to request services for the storage 
of information, store information fragments, and forward to other 
agents those fragments that are to be stored elsewhere. The 
feasibility of the approach is demonstrated in the context of a 
multi-agent prototype implemented using IBM’s Aglet System. 
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1. INTRODUCTION 
 
Current static file storage systems store a file in a single 

location. This presents the problem of availability, as when that 
single storage location fails all the data stored on it is inaccessible 
until the failure is corrected. If a file on the storage becomes 
corrupted, then that file is lost. The benefit of peer-to-peer filing 
systems is their ability to store files in many different locations. 
However, simple file storage in peer-to-peer systems does not 
enforce the replication of data throughout the system. Data stored 
in a single location is lost when the peer within the system is lost.  

Users increasingly have many pervasive computing devices 
at their disposal with some of these devices containing reasonably 
large unused collections of storage capacity. Not only is there a 
proliferation of these devices, but also the mechanisms of 
communications and middleware between these devices have 
improved radically over the past decade. The increased 
connectivity of varying devices could provide increased and more 
available shared or pooled storage. Coupled with this, the usage 
and popularity of some decentralised data storage systems has 
grown with file sharing networks like Gnutella [9], information 
anonymity systems like Freenet [4] and Freehaven [7] and 
persistent storage systems like Oceanstore [11] being some of the 
examples. However the storage in some of these systems still 
requires the active knowledge of a storage location and data’s 
attributes (such as capacity and location). When storing data in 
these types of systems, data needs to be actively directed to the 
storage location and when retrieving information, that data 

location needs to be actively found. Replicated information is 
more easily found.   

Work on secure computing systems has focused mainly on 
intrusion prevention, that is, the means for preventing the 
occurrence of intrusions [15], and which is based on forecasting 
and preventing, as far as possible, the different intrusions that 
could damage overall system security. Such approaches become 
unfeasible in the context of open and decentralized systems 
containing a large number of components. Instead of attempting 
to prevent any type of intrusion, which in the context of ever 
changing environments may be very costly to achieve, some 
contributions have already been made in tolerating them. The 
basis for such approach is that, in case intrusions are successful, 
the whole system’s security will not be compromised since the 
intrusions will be handled in the same way faults are tolerated. 
Although the term “intrusion tolerance” has been introduced a 
while ago [8], only recently there has been a rising interest in this 
area [16], which can be confirmed from several major projects, 
such as, MAFTIA, OASIS and ITUA, that have been doing 
groundwork into concepts, mechanisms and architectures.  

Previous work has been done using fragmentation, 
redundancy and scattering (FRS) for file storage systems operated 
under the assumption of a static or unchanging system of nodes. 
This paper’s work has sought to investigate FRS in the scope of a 
peer-to-peer system. Utilising a peer-to-peer architecture takes 
advantage of storage and computational resources available 
within a potentially large network. The system is assumed to 
change with nodes entering and exiting the system without 
warning. Connections are made between peers, without the 
expressed or complete knowledge of all peers within the system. 

In this paper, we present an architectural solution for a 
dependable and secure storage system based on intrusion 
tolerance, which is application independent, and so it can be 
scalable to large pervasive systems. For such systems, some 
application dependent solutions, such as exception handling, are 
not amenable because of the costs involved in dealing with the 
combinatorial explosions of undesirable situations. The approach 
presented in this paper is based on the fragmentation-replication-
scattering technique [6][8], which has been one of the approaches 
used as a basis for building intrusion-tolerant computing systems. 
The rest of the paper is structured as follows. In Section 2, we 
present some background concepts in dependability and security, 
and describe the basis of the fragmentation-replication-scattering 
technique. Section 3 presents the overall architectural design of a 
dependable and secure storage system for pervasive systems. In 
Section 4, we describe an implementation of the proposed 
approach, and present some preliminary results of its evaluation. 
Related work is presented in Section 5. The last section presents 
some concluding remarks, and identifies future directions for 
research. 
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2. BACKGROUND 
Before proceeding to discuss the details of a dependable and 
secure storage system, in this section we contextualize 
dependability and security, and provide some basic concepts 
associated with fragmentation-replication-scattering. 

2.1 Dependability and Security 
The dependability of a system is the ability to avoid service 
failures that are more frequent and more severe than is acceptable 
[1]. There is a service failure when the delivered service deviates 
from fulfilling the intended function. A failure can be 
characterized as a security failure when there is the violation of a 
security policy. A security policy is normally expressed through 
properties, which are related to the absence of unauthorized 
access to, or handling of, system state. System failures are caused 
by faults, and an intrusion is a malicious external fault that might 
lead to a security failure. There are two complementary means for 
the provision of dependability and security: fault prevention and 
fault tolerance. The former prevents the occurrence or 
introduction of faults, while the latter avoids service failures in 
the presence of faults. Thus intrusion tolerance is regarded as the 
process for tolerating the violation of a security policy. The 
fragmentation-redundancy-scattering technique, to be presented in 
more detail in the following section, is an example of intrusion 
tolerance, which uses fault tolerant techniques as a means to avoid 
system failures and the violation of security policies. 

In the context of this work, a storage system is dependable if there 
is continuity (reliability) and readiness (availability) in the 
services it provides, and secure if it prevents the unauthorized 
disclosure of information (confidentiality), amendment or deletion 
of information (integrity), and withholding of information 
(availability).  

2.2 Fragmentation-Replication-Scattering  
One of the existing approaches for intrusion tolerance is 
fragmentation-redundancy-scattering (FRS) technique [6]. The 
aim of FRS is to tolerate both accidental and intentional 
faults/intrusions by fragmenting confidential information into 
insignificant fragments, and randomly scattering these fragments 
in a redundant fashion across nodes of a network. Fragments 
contain no significant information, so any intrusion into some part 
of the system only gives access to unrelated fragments, thus 
maintaining the confidentiality of the information (providing 
intrusion tolerance). By increasing the number of fragments a file 
is broken into, we can reduce the usefulness of a fragment, 
thereby improving the security of the system.  

Before fragmenting, the original information is encoded and 
signed. Incorporating fragment digests may also protect the 
integrity of the information. Redundancy is added to tolerate 
accidental or deliberate destruction, or alteration of fragments. 
Moreover, in case some nodes suffer denial of service attacks, 
information fragments can always be retrieved from other nodes, 
depending on the existing failure assumptions. The complete 
information that has been fragmented can only be reassembled by 
an authenticated user in a trusted computing base [6]. The 
motivation behind the FRS technique is that an intruder attacking 
an individual node has no access to all fragments. Even if an 
intruder gets access to all n fragments, n!/2 cryptanalysis have to 
be performed to re-constitute the whole information. 

3. DEPENDABLE AND SECURE STORAGE 
The fragmentation-redundancy-scattering (FRS) technique has 
shown to be useful in the implementation of dependable and 
secure storage for decentralized systems. These implementations 
are based on the client-server model, which is used primarily to 
manage small scale collaborations. However, the challenge is how 
to apply FRS in the context of pervasive systems in which devices 
may have both client and server roles.  
This paper considers objects or devices which exist within a 
pervasive system as agents. The interaction or co-operation of the 
multitude of agents is considered a multi-agent system.  
In this section, firstly, the problem domain is scoped by providing 
some intuitive concepts concerning the application of FRS to 
multi-agent systems, and then the architectural description of an 
FRS agent will be described in detail. 

3.1 FRS in a Pervasive Peer-to-Peer System 
Figure 1 provides an example how the FRS technique could be 
applied to a multi-agent system, where not all agents are 
connected to other agents, and where agents are expected to 
provide services and require services from other agents. As 
depicted in the diagram of Figure 1, we have an agent assuming 
the role of client in node #1, and the rest of the agents, for 
illustration purposes, are considered to be storage agents, though 
they could assume the dual role of client and storage.  

N#1

N#2

N#3

N#4

N#5

N#6

N#9

N#8

N#7

a

b

c

a

a

a

a

a

b

b

b b

b

c

c

c

c

c

c

b

a

N#1 nodes with client FRS agents

N#6

fragments

plain text
a x

nodes with storage FRS agents

x

y

x

x

x

y

y

y

y

 
Figure 1. FRS applied to a multi-node system. 

In this scenario, the client agent produces from the plain text 
information the fragments that are to be scattered within the 
system. These fragments will be multicast among the neighboring 
agents that will store and scatter them amongst their neighbors. 
This scattering process, based on multicast, relies on an agent 
sending a fragment to a randomly selected group of neighboring 
agents. Each fragments lifetime counter determines the scattering 
depth. Whether an agent stores a fragment depends on its storage 
policy. In the diagram of Figure 1, the fragments associated with 
two plain text files are scattered amongst several agents. It should 
not be a problem if all the fragments associated with a plain text 
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file are stored in a single agent. The agent should not be able to 
distinguish which fragment is related to which plain text, and it 
should not be able to identify the order of the fragments.  
Cycles are avoided by each storage node recording the occurrence 
of named fragments. Recording information concerning the 
scattering or retrieval of fragments could be seen as a failure point 
in the security of the system. When a sending peer seeks to 
retrieve a fragment, a requesting peer’s fragment name is recorded 
by a receiving peer so as to combat the likelihood of cycles 
occurring within the system. Any requested fragment name 
previously recorded is not forwarded on to other peers. During the 
scattering of fragments, an agent should know which agents have 
forwarded fragments for avoiding the fragments to be sent back, 
thus creating a loop. This information should be stored in the 
agent, and it should not be associated with the fragment. The 
process of scattering fragments will terminate when there are 
enough fragment replicas in the system. In the context of dynamic 
environments, there are no assurances whether this can be 
achieved. However, by exploiting the redundancies available in 
the system, it is assumed that all the fragments can eventually be 
retrieved. In a static system where the availability of resources is 
known, agents before scattering the fragments might enquire 
about their environment to find what resources are available. 
Concerning dynamic environments, it is assumed that both 
storage and communication are cheap. In mobile ad hoc networks 
this is not a reasonable assumption to be made, but for peer-to-
peer networks the above assumption is perfectly acceptable. 
However, in order to deal with those systems that have limited 
resources several optimizations can be envisaged for reducing the 
processing and storage costs. 
Although it is not represented in the diagram of Figure 1, the 
process for retrieving the fragments is very similar to that of 
scattering the fragments. When a client wants to retrieve a 
fragment, it sends a request to its neighboring nodes. An agent 
that receives that request will store its source. This allows an 
agent to send the fragments only to those agents that have 
requested it, thus forming a virtual path between the client 
requesting the fragment and the client storing it, and avoiding 
unnecessary loops to be formed when forwarding a request.  By 
sending the fragment back to the agent that has requested it, the 
fragment eventually reaches the client. In case the client receives 
several copies of the same fragment, the client discards the 
additional copies. Once the client receives all fragments related to 
a particular plain text, it joins all the fragments. This is decrypted 
to obtain the original plain text.   
In order to scope the problem, we consider in this paper only the 
operations for storing and retrieving fragments. A more complete 
approach would have considered other operations, such as, 
remove/delete fragments, update fragments, and query the 
environment of an agent for checking the availability of 
resources. 
Authentication and authorization will not be considered in this 
paper, although they provide key support for FRS technique [6]. 
Authentication, in particular, is important for retrieving the 
information scattered in the system, and it would prevent an 
intruder to have access to the fragments and their order. 

3.2 Architectural Representation 
The architecture of a multi-agent system can be represented in 
terms of the peer-to-peer architectural style. In this style, any 
component can interact with other components for providing 
services to them or requesting their services [5]. Peers can play 
the role of both client and server by directly interacting among 
themselves. The main type of connectors in the peer-to-peer style 
is the invoke-procedure connector, which can encapsulate 
complex interaction protocols reflecting the communication that 
may exist between two or more collaborating peers. The services 
provided and required by the peers are described in terms of 
interfaces. 
A fragmentation-replication-scattering (FRS) agent can be 
represented as component containing four interfaces, as 
represented in Figure 2(a). The provision of a dependable and 
secure storage by an FRSAgent is captured by the provided 
interface ds_storage. The provided and required interfaces 
f_storage capture the services associated with the storage and 
retrieval of fragments. Although authentication will not be 
discussed in the paper, we have nevertheless left the 
representation of the interface as a reference. In order to facilitate 
the description of the different services associated with an 
FRSAgent, this component has been specialized into two 
different components, as depicted in Figure 2 (b) and (c). In the 
following, we proceed to describe in more detail each of these 
components.  

 
Figure 2. Peer architectural component. 

3.2.1 Client Agent 
The client agent is responsible for the fragmentation and 
scattering of the information, and the retrieval of information that 
has been previously scattered. Before fragmentation, the 
information is encrypted, and once the fragments are obtained a 
message digest is obtained for purpose of naming the fragment 
and checking the integrity of the fragment. The named fragments 
are subsequently sent to neighbouring peers in pseudo random 
order. The process of retrieving the information involves 
collecting the fragments, checking their integrity, assembling all 
the fragments in their initial order, and decrypting the collection. 
The design of the ClientFRS is shown in Figure 3.  
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Figure 3. Client FRS Agent. 

The main components of ClientFRS are the following. The 
FragScat is responsible for the encryption and scattering of the 
information to be stored. First the information is encrypted by the 
AES component, and then fragmented by Fragmentation. The 
name of each fragment is obtained from the digest of the fragment 
plus the information name and fragment number, done by SHA-1, 
which uses the keyed Secure Hash Algorithm-1   (SHA-1) – the 
probability of obtaining two distinct fragments with the same 
name is possible but unlikely. The Hash function used for naming 
and integrity is limited to the client or owner of the information. 
The integrity of fragments is not processed elsewhere in the 
storage system and hence the system relies on communications 
protocols to provide integrity checks on data during 
communication between storing peers. For the purposes of this 
implementation SHA-1 was used, due to improved provision of 
uniqueness and security. The hashing algorithm serves the 
purpose of providing a “unique” naming quality for fragments and 
is also useful for checking the integrity of the fragment when it is 
retrieved. Figure 4 shows the different data representations of 
plain text information - as it can be observed, no other 
information is appended to the fragments except for their name 
otherwise, vulnerabilities might be introduced. Before scattering 
the fragments, the sequence and the names of the fragments are 
stored in the RefManager. It is assumed that this data, which 
provides the basis for retrieving the original information from its 
fragments, is stored in a trusted computing base (TCB). The 
component Scattering is responsible for multicasting all the 
fragments amongst the neighbors of the client agent. The 
scattering of the fragments is performed randomly and on 
individual basis to prevent an intruder  knowing the precise order 
and location of the fragments. In a situation in which an intruder 
might possess the secret key, the intruder does not know where 
the different fragments reside, or their order.  
A notion of coverage was introduced to describe the subset or 
full-set of nodes to which data was multicast. Taking an example, 
coverage of 0.5 with 10 available storage nodes would require 
that a single fragment would be redundantly scattered to 5 (half) 
of the available storage nodes. 
 

 
Figure 4. Data representation. 

For retrieving the information stored in the system, the client 
through Retrieval has to access the RefManager to obtain the 
fragments’ sequence and their names. The request for fragments is 
done through RequestFrag. Once Retrieval has obtained all the 
fragments, and after checking their integrity using MD5, all the 
fragments are put together. The original information is obtained 
by decrypting the collection of fragments. If additional assurances 
are necessary concerning the integrity of the original information, 
its digest could have been obtained before its fragmentation, and 
used at this point to check the integrity. If the integrity of the 
whole cannot be confirmed, all the fragments have to be 
discarded, and new fragments have to be requested. It is expected 
that the client might receive several copies of the same fragment, 
but once the original information is assembled and the integrity 
confirmed, these copies can be discarded.  
 

 
Get Data_Source 
Encrypt Data_Source 
Divide Data_Source into Fragments of 
constant length 
 
FOR-EACH Fragment 

Associate Digest with Fragment 
record Digest in sequential order 

END-FOR 
 
FOR-EACH Fragment 

pseudo-randomly scatter fragments to  
subset of neighbouring peers according  
to policy of coverage 

END-FOR 
 

Figure 5. Pseudo-code describing the Client Scatter Process. 
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Generate random ordered number list of 
recorded Digest size  
FOR-EACH number in list 

Send Request for recorded numbered  
Digest  

END-FOR 
 
FOR-EACH MessageEvent 

IF (Message == ReturnType) 
  Check Fragment Digest 
  Record Fragment in order 
 
  IF (HaveAllFragments == true) 
   Assemble Encrypted Data 
   Decrypt Encrypted Data 
  END-IF 
 
 ELSE-IF … 
   
 END-IF 
END-FOR 
 

Figure 6. Pseudo-code describing the Client Retrieval Process. 

3.2.2 Storage Agent 
The storage agent is responsible for storing fragments, scattering 
fragments amongst other agents, forwarding requests for 
fragments, and returning fragments to the source of the request. 
The design of the StorageFRS is shown in figure 5.  

 
Figure 7. Storage FRS Agent. 

 
The role of the main components of StorageFRS is the 
following. The StoreFrag when receiveing a request for storing a 
fragment, first checks whether a fragment with a same name 
already exist in the data base (DBFragments), if the fragment 
does not exist it stores the fragment in DBFragments. StoreFrag 
then sends the fragment to Scattering, for the fragment to be 
multicast to neighboring agents. FragManager manages the 
storage of fragments since they cannot be stored indefinitely in 
the data base. A policy is associated with the storae of fragments. 
Similarly, when there is a change in the storage policy, for 
example, reducing the amount of space allocated to fragment 
storage, the FragManager is responsible for identifying which 
fragments to remove. 
The process of retrieving the fragments amongst agents is more 
complex, but very similar to routing messages in mobile ad hoc 
networks. For the purpose of this paper, we have adopted a very 
simple algorithm for retrieving and forwarding the fragments to 

the client FRS agent. When FragRequest receives a request for a 
fragment, FragRequest checks whether there is a fragment with 
that name in DBFragments. If there is one, it sends back the 
fragment to the agent that has requested it. FragRequest also 
sends the request to ForwardRequest for the request to be 
multicast among a set of random neighboring agents. (A potential 
optimization to this process would be for an agent not to forward 
the request if it stores the requested fragment. However, if the 
client receives a corrupted fragment, then the client would send a 
request that should be forwarded by all the agents that receives it.) 
This request is stored so the agent knows which downstream 
agents have made the request. The fragment should be sent only 
to those agents that have requested the fragment. By keeping a 
record of the requests made for fragments, it is a way for tracking 
which agents have actually requested the fragments. With this 
approach only those agents that have forwarded a request for a 
fragment will receive a copy of that fragment. In case the security 
of an agent is breached only partial information about the 
fragments is revealed i.e. the previous requestor of a fragment 
could be determined. For an intruder to obtain the source of the 
request, it has to breach the security of several agents – the further 
away the intrusion occurs, the harder it becomes to find the source 
of the request. If this is achieved, the intruder might attempt to 
destroy fragments that seem to be correlated by the same request. 
Likewise, this is the reason for multicasting fragments’ requests, 
otherwise if they were to be broadcast, some agent would contain 
all the requests for fragments related to a particular data 
collection, thus introducing a major vulnerability into the system. 
Considering that no additional information can be appended to a 
fragment, the only way for retrieving a set of fragments is to 
establish a virtual path by recording the immediate source of a 
particular request, but not the original source of the request. In 
this way a collection of requestors is created to the location of a 
fragment (storage node), and the fragment traverses these links to 
return to the original source of the request. 
 
 
IF (Message == ScatterType) 
 Check Policy 
 
 IF (Store == true) 

Store Fragment 
 END-IF 
 
 IF (Forward == true) 

 Forward Fragment 
 END-IF 
END-IF 
 

Figure 8. Pseudo-code describing the Storage Node Scatter  
Process. 



 6

 

 
IF Message == Request THEN  
 IF Fragment Name Found Locally THEN 

 Return Fragment To Requestor 
 ELSE 

Record Request  
 
Associate Requestor with  
Fragment Name 
 
Modify Message Requestor as  
this Peer 
 
Forward Message to Neighbouring  
Peers 

END-IF 
END-IF 
 

Figure 9. Pseudo-code describing the Storage Node Retrieval  
Process. 

4. IMPLEMENTATION AND 
EVALUATION 
4.1 Implementation 
A prototyping methodology was used to incrementally build upon 
the static system described by Deswarte et al. [6] to produce this 
P2P system.  
For the encryption of information, we have employed the 
Advanced Encryption Standard (AES), which is a symmetric 
block cipher that uses a secret key encryption. Its combination of 
robustness, performance, efficiency, low memory requirements, 
ease of implementation and flexibility, make it desirable to use. 
AES supports key lengths of 128, 192 and 256-bit. There are two 
variants for 128-bit blocks: 128-bit key (likely to become the 
commercial norm), and 128-bit with 256-bit key. AES uses 
substitution, permutations and multiple rounds, the number of 
which depends of the key and block sizes (10 for 128/128 up to 
14 for largest key or largest block). Its also uses repeat cycles, 
9/11/13 for keys of 128/192/256-bit. The algorithm has been 
designed for achieving great security and speed, and is easily 
implemented on simple processors.  
For the provision of the fragment digest, which is used for naming 
the fragments and to check their integrity, we have adopted the 
keyed Secure Hash Algorithm-1 (SHA-1), which produces a 160-
bit digest providing robustness and improved uniqueness.  
It should be reiterated that while the components for encryption 
and integrity were chosen in this prototype to be AES and SHA-1, 
these components could be changed, with ease, depending on the 
desired improvement of security and integrity required by the 
users of such a system. The prototype implementation was more 
interested in the interactions within the multi-agent system and 
the investigation of how data was stored and retrieved by 
collaborating agents within the system. 
A HashMap was used for the storage of fragments on the storage 
agents providing complexity of O(1) access to stored fragments, 
while a Vector was used to store the reference list on the Client 
agent.  

The prototype of the decentralized storage system based on the 
FRS technique was implemented using the Aglet System, 
developed by IBM Research Japan [10]. This is a simulation 
environment that facilitates the implementation of multi-agent 
systems. In this environment, aglets are the software instantiation 
of an agent. Each aglet could be considered a persistent object, 
such that they live and interact within the Aglet System until 
actively disposed of. In the simulation of the FRS-based storage 
system, agents were implemented as aglets. After an agent is 
created, whether a client or a storage agent, it checks its 
environment to identify neighboring agents. Since the 
environment is assumed to be dynamic, these checks are 
performed periodically for the agents to have an accurate view of 
their environment.  
A limitation of the simulator was that the results viewed the 
system at a specific moment or state. The system was not 
autonomous in its action of repeatedly generating information, 
storing and retrieving that information in the system. The 
limitation was necessary to explore the sequential behaviour of 
the system with regards to the tests required. 
Aglets communicate with one another using message objects. 
Messages are managed by a MessageManager built into the 
Aglet System. Each Message object in the Aglet System contains 
parameters for the message “Kind”, message “Arguments” and 
message “priority”. The Kind parameter was modified, acting like 
an address, to specify the targeted aglet a message was sent to. 
For the implementation of the FRS-based storage system in terms 
of aglets, a Client, Storage and Tester were inherited from the 
Aglet class with overloaded methods. For the basic activities of 
encrypting, fragmenting and scattering fragments, the Client uses, 
respectively, the methods applyEncryption(String datasource), 
fragmentData(String encryptedString) and  
ReplicateAndScatterFragments(Fragment[] data), where the 
Fragment class was created as a temporary data structure to 
contain a fragment’s name and data payload. The Client retrieves 
fragments from the Storage by invoking retrieveFragments(). 
Identical to the scattering of fragments, their retrieval relies on the 
message handling provided by the Aglet class.  In a similar 
manner, the Storage aglet makes full use of the multicasting 
behavior of the Aglet System. An additional class (Tester) was 
implemented to generate the required number of instances of 
Storage and Client aglets for setting up or administering the 
simulation of a multi-agent system.  

4.2 Evaluation 
To evaluate the decentralized peer-to-peer storage system based 
on fragmentation-replication-scattering (FRS) technique several 
hypotheses were made and tested. The hypotheses were as 
follows: 
 
1. Increasing the number of fragments generated by the 

client from the initial data increases the number of 
messages generated in the system. This also increases 
the amount of time taken to scatter and retrieve the 
fragments. 

2. Restricting the node storage increases the retrieval time 
and the number of messages generated in the system 
during the scattering and retrieval phases. 
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3. If there are n replicas of a fragment, n-1 copies can be 
corrupted without affecting the ability of the client to 
retrieve the data from the system. 

4. Increasing the value of the fragment lifetime counter 
will increase the amount of time taken to complete the 
scattering process.  

 
Scalability was measured as the efficiency of the system with 
increased numbers of components added; hence we would expect 
a similar performance for multiple collection of resources 
provided to the system. The primary variables which affected the 
behaviour of the system included: a) the number of nodes in the 
system, b) the number of fragments required to be stored in the 
system, c) the variation of coverage (broadcasting or 
multicasting), d) message limitation methods (message lifetime or 
circular path limit), e) fragment integrity and f) node failure. A 
secondary affect was noted by the Aglet System on the 
performance of the P2P system. 
The systems’ ability to cope with the loss of all but one copy of a 
fragment, demonstrated the dependability of the system.  
From the perspective of security, the attributes of confidentiality 
and integrity are established by the intrinsic robustness of AES 
and SHA-1, respectively. One important security attribute that 
could have been tested was the availability from the perspective 
of denial-of-service attacks. This type of analysis, however, 
would be more related to a qualitative evaluation – through, for 
example, threat analysis, rather than the quantitative evaluation 
performed in this work. All the simulations using the Aglet 
System were performed on a Sun Microsystems Enterprise E450-
CA Server with 900MHz Quad Processors. The experiments were 
executed between five and ten times to obtain significant 
statistical data. In the following, we present some of the results 
obtained. For each experiment performed, the duration of the 
scattering process was timed from when the client sent the first 
fragment out to be stored to the latest time that a storage node 
stated that is had received a storage request. Once the storage 
nodes stopped reporting that they have received storage requests, 
it was assumed that there were no more messages traveling within 
the system. When an agent receives a fragment, whether that 
fragment is stored depends on the agent’s storage policy, but the 
agent has to forward that fragment to a subset or full set of 
neighbouring agents, depending on the lifetime counter of the 
fragment. The number of replicas produced depends on the 
resources available in the system, and this is not known when a 
client starts scattering a fragment – it is assumed that we are 
dealing with very dynamic environments. The lifetime counter 
removed the chance of flooding the system with replicas of a 
specific message. Figure 10 shows the number of fragments 
generated in the system, which is the total number of fragments 
that were forwarded by each agent.  

 
Figure 10. Number of fragments generated in the system. 

 
In Figure 10 the experiments, the number of storage nodes was 
kept constant (20) for each test. The lifetime counter of each 
fragment was set to a small value (4). Initially, coverage was set 
to 1.0 to make the system broadcast messages.  The tests were run 
then the coverage was lowered to 0.5 and the tests were run again. 
Figure 10 illustrates the results for this experiment, comparing the 
results for coverage of 1.0 (broadcast) to coverage of 0.5 
(multicast). It shows the number of messages generated in the 
system during the retrieval phase and also shows the time it takes 
to perform the retrieval. Figure 10 also shows that increasing the 
number of fragments increases the amount of time it takes for the 
client to retrieve those fragments. It also increases the number of 
messages generated in the system during the retrieval process. 
This was consistent with the hypothesis. The results for scattering 
produced a similar graph as that in Figure 10. Broadcasting 
requests resulted in both a longer retrieval process and the 
generation of more messages in the system than when requests 
were multicast. It was found that restricting a storage node’s 
capacity increased the retrieval time and the number of messages 
generated in the system during the scattering and retrieval phases. 
To investigate this phenomenon the number of storage nodes used 
in each test was 10 and the counter of each storage message was 
set to 4. The number of unique fragments generated by the client 
was 10. The probability that any storage node would store a 
fragment received was varied from 0.1 to 1.0. A probability of 1.0 
would signify that all the received fragments would be stored. 
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Figure 11. Increasing the probability of storing a fragment.  

 
By increasing the probability of fragment storage the total number 
of storage requests generated in the system was reduced (Figure 
11). There was no substantial effect on the number of retrieval 
requests, as retrieval requests were not linked to the storage 
probability in any way. The trend in the time to complete the 
scattering and retrieval processes is almost identical to that for the 
number of requests, although the time to scatter appeared to be 
quite erratic. To verify the dependability of the system all but a 
single replica of a fragment were deleted within the system at 
random locations within the system. The results illustrated that 
the system could retrieve the correct fragment as the data was 
successfully reconstructed (Figure 12). Had the final fragment not 
been found within the system, the retrieval time would have 
tended towards infinity. 
 

 

Figure 12. Corruption of all but a single copy of a fragment. 
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Figure 13. Varying the fragment lifetime counter. 

It was found that the system could handle fault similarly as long 
as a reasonable number of nodes were still available and at least 
one replica of each fragment was still stored within the system, 
the system could find those replicas for data retrieval. The more 
failed nodes in the system, the less time retrieval took, due to the 
decreased multiplicity of messages. To investigate whether the 
increasing the value of the fragment lifetime counter would 
increase the amount of time taken to complete the scattering 
process, the number of storage nodes was kept constant, as was 
the number of unique fragments generated by the client. The 
lifetime fragment counter was increased from 1 to 5 (Figure 13). 
As the fragment lifetime counter was increased, the number of 
fragments generated in the system during the scattering process 
increased. The time taken for the system to return to a stable state 
(no further communication) also increased. With both 
broadcasting and multicasting, the intermediate performance 
improvement exhibited by both limiting broadcasting and 
multicasting, produced a trade-off of relative availability of 
fragments in the system. An advantage was found whereby 
limiting the lifetime to low values reduced load on the network 
resources (improving performance of the network); however the 
disadvantage was a loss of replication in the system and a limiting 
effect on the retrieval of data within the system, as the scattering 
and searchable depth of nodes was reduced (fragments could only 
lie a certain distance of hops from the client). In conclusion the 
system was found to be of poor performance even for small 
numbers of initial fragments stored in the system and non-scalable 
as the efficiency of the system was not constant for increasing 
sized systems simulated. 
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5. RELATED WORK 
The idea of having a file system based on a decentralized solution 
is not new. File availability, confidentiality, and integrity on 
large-scale distributed file systems usually rely on the 
fragmentation of a file, and the scattering of these fragments 
among different nodes of the system [8][13]. The fragmentation 
principle, as already mentioned above, is based on splitting an 
encrypted file into fragments, where each fragment is then 
distributed. There are two different schemes based on 
fragmentation and scattering: fragmentation-scattering and 
replication [8][6], and fragmentation-scattering and threshold 
[15]. In both schemes, a file read accesses a subset of the 
fragments, while a file write has to be performed on all fragments. 
In fragmentation-replication-scattering (FRS), fragments of 
information with little value to a potential intruder are replicated 
and scattered across a large number of nodes. The approach 
presented in this paper based on the peer-to-peer models was 
inspired by [6], although seminal work was presented in [8]. The 
major disadvantage of this approach is the communication 
overheads. Moreover, most of work related to this scheme has 
focused on the client-server model, which is used primarily to 
manage small scale collaborations. The fragmentation-threshold-
scattering (FTS) scheme is based on the same principles of 
threshold cryptography [14]. Instead of replication, this scheme 
relies on the processing of information. Seminal work in this area 
is the Information Dispersal Algorithm (IDA) [13]. The algorithm 
reliably disperses the information in a file into n fragments, across 
n nodes. The file can be reconstructed from any m fragments. This 
approach can be viewed as belonging to the field of error 
correction codes, in which extra bits are added to a piece of 
information, so that if there are k errors within that information, 
the information can still be reconstructed. The FTS scheme 
contains some redundancy for tolerating both accidental and 
intentional faults with respect to integrity, but confidentiality is 
not clearly addressed. It is claimed that the scattering of fragments 
and the reconstruction of information can be made space efficient 
if n/m ~ 1. However, since threshold schema is based on 
polynomials, it may become computationally expensive. In the 
following, we summarize some recent approaches that appear in 
the literature that resemble the peer-to-peer architectural solution 
presented in this paper. In terms of fragments distribution, a 
dynamic allocation algorithm has been proposed in which 
fragments are moved between servers for achieving maximal 
assurance [10]. In order to avoid a single server to compromise 
the integrity of a file, a restriction was introduced in the 
movement of the fragments: no fragment can go through a server 
that either holds or has hold another fragment from the same file. 
In the context of the proposed approach, such a problem would 
not exist because there is no correlation among the fragments’ 
names of a particular file. However, an intruder might attempt to 
destroy all fragments of the same name. 
The Information Dispersal Algorithm (IDA) [13], proposed by 
Rabin, has been considered in the context of Redundant Residue 
Number System (RRNS) for encoding information [3], which 
provides uniform coverage of both erasures and errors. The 
objective of this work is to provide a dependable and secure data 
storage (DS2) to mobile wireless networks. It has been shown that 
this approach and IDA have almost the same performance in 
terms of code efficiency and complexity [2], even though DS2 
provides richer security features than IDA by exploiting the 

RRNS codes. An apparent drawback of this approach is that the 
system has to be reasonably static for it to be feasible. It is 
difficult to envisage the application of DS2 to extremely dynamic 
ad hoc mobile networks where large number of nodes can be 
joining or leaving the system at the same time. The solution 
presented for these possible scenarios was for client/user to adopt 
an appropriate level of redundancy during the creation of the file. 
Other work on decentralised storage peer-to-peer systems 
includes Gnutella [9], Freenet [4], Oceanstore [11] and Freehaven 
[7]. Gnutella uses the expensive flooding technique to find data in 
a system. A broadcasting approach using what is referred to as 
Ping-Pong and Query/Push routing is used for file searching, a 
costly approach to network resources. A hop counter is attached 
to every request where the hop counter is decremented at each 
location where a query is made, reducing the lifetime or search 
depth of a request. When the broadcast request find the file being 
search a direct peer-to-peer communication is made between the 
client and the holder of that file for download. Oceanstore seeks 
to provide access to persistent information stores from anywhere 
in the globe. With Oceanstore a fee is charged for access to the 
persistant storage. The data is then highly available from 
anywhere in the network, with automatic replication to allow for 
disaster recovery and strong security as a default. OceanStore is 
constructed from an untrusted infrastructure, i.e.: it consists of 
unreliable servers. The system uses cryptography and redundancy 
to protect data. The system monitors itself to improve its 
performance and guards against denial of service attacks and 
failure of nodes. Their method of naming also seeks unique names 
and information migrates to where it is needed in the form of a 
cache. Routing information is however transferred between nodes, 
replicas are managed and the updating of data stored in the system 
is achieved using multicasting. Freehaven seeks to provide an 
anonymous publication system, through information trading. The 
principles of adding and retrieving documents from the system are 
made anonymously. The system is considered dynamic where the 
frequent trading makes the failure of nodes “transparent”. Freenet 
is a P2P system designed for the provision freedom of speech 
using anonymity. All users donate a portion of their hard drives 
for the storage of files provided by other freenet users. Users are 
encouraged to encrypt their information before inserting it into the 
freenet network, but it is not mandatory. The aim is that 
information not be censored using decentralisation for the 
improving of system availability, reliability and tolerance to 
failure. Data is encrypted for confidentiality and the network’s 
routing is trained over a period of time, using spiders for finding 
information, but also allowing information to be published by 
individuals as indexed bookmarks.  
All of these systems contain various components which make up 
the P2P system we employed, however they are all differing in 
their approaches to data scattering and retrieval and not all seek to 
define assurances for dependability and the security of data in the 
relevant systems. 

6. CONCLUSIONS AND FUTURE WORK 
This paper has proposed an approach to a decentralised 
dependable and secure P2P storage system. The system utilises 
the mechanisms of fragmentation, replication and scattering 
(FRS), encryption block ciphers (AES) and cryptographic hash 
functions (SHA-1) to achieve this aim. This technique relies on 
encoding and fragmenting a piece of information, whose 
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fragments, subsequently, have to be scattered and replicated 
among the nodes of a system. The motivation for investigating the 
FRS technique in multi-agent systems was to evaluate the 
performance of FRS in very dynamic environments in which it is 
difficult to establish a stable system configuration. For dealing 
with this limitation, one of the potential solutions is to explore 
redundancies available in the system. But for that, it is required to 
flood the system with replicas, in order to be able to recover the 
original information even in the presence of a high number of 
malicious or accidental faults. There is a cost associated with such 
an approach, and purpose of this work was to have a preliminary 
insight of this cost.  
The paper, firstly describes an FRS-based decentralized storage 
system for large multi-agent systems in terms of the peer-to-peer 
architectural style, and then evaluates the feasibility of the 
proposed approach through a prototype implemented using Aglet 
System. It was claimed that the storage system should be both 
dependable and secure, so in the following we briefly analyze the 
compliance of the implemented approach towards key dependable 
and secure attributes. From the dependability perspective, 
reliability and availability were achieved by replicating fragments 
amongst several agents, which provides assurances that if at least 
one replica of each fragment is obtained, then original file or 
information can be retrieved. From the security perspective, 
confidentiality was achieved by ciphering the file or information 
to be stored, which provides assurances that only those which 
have the secret key are able to access the encoded file or 
information; integrity was achieved in two ways, first, by signing 
the file or information to be stored, which provides assurances 
that only the original file or information is retrieved, though 
different fragments may remotely have the same name; 
availability was achieved by replicating fragments, which 
provides assurances that in case a denial of service attack on some 
agents, for it to be successful all agents containing a particular 
fragment should be attacked, which should be unlikely because 
nowhere in the system such information exists.  
Another benefit of this P2P storage approach is that fragments 
stored have the side effect of being anonymous to all nodes of a 
system, except the client, which owns the fragment. With 
increased usage of such a model it could be expected that the 
security of data could be improved through the sheer volume of 
fragments which reside from different clients within the system. 
Every storage node if attacked holds obscure and meager 
information on the data which it is storing. However, all the above 
good qualities come with a price, there is a very high 
communication overhead associated with the scattering and 
retrieval of fragments. Since the approach attempts to exploit all 
the available redundancies in the system, depending on the size of 
the system it might be the case that there is no end to the process 
of scattering fragments and requests, thus overloading the 
communication system with messages. 
In terms of future work, a great deal remains to be done since the 
work presented in this paper has provided a preliminary insight on 
the effectiveness of the fragmentation-replication-scattering 
(FRS) technique when designing dependable and secure storage 
for large multi-agent systems. First and foremost, the other file 
operations, such as, file updating and removal, should also be 
implemented and evaluated. Also missing are proper schemes for 
optimizing the scattering of fragments and their request depending 
on the resources available in the system. A way in which the 

ReferenceManager should be dependably and securely stored it 
needs also to be investigated. Above all, the evaluations of the 
presented approach should be re-done, since the Aglet System has 
shown not to be scalable for the type of analyses that are 
necessary for properly evaluate the proposed approach. 
Future work could explore optimisation techniques for the system. 
Scattering while expensive is extremely successful in enforcing 
the redundancy of fragments throughout the system (placing few 
performance requirements of the client). The retrieval of 
fragments could be improved such that searches for fragments are 
made not with the present exhaustive flooding search routine, but 
with a more controlled and intelligent probing methodology, such 
as a simple depth first search or a trained searching model. A 
more limited search routine would facilitate the better usage of 
resources and perhaps while being slower to recollect the original 
data, be less resource intensive. 
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